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Constraint-induced movement therapy (CIMT) combined with repetitive transcranial

magnetic stimulation (rTMS) have shown great potential in improving function in

schoolchildren with unilateral cerebral palsy attributed to perinatal stroke. However,

the prospect of application in preschool children with unilateral cerebral palsy (UCP)

attributed to various brain disorders remains unclear. In this prospective, assessor-

blinded, randomized controlled study, 40 preschool children with UCP (aged 2.5–6 years)

were randomized to receive 10 days of CIMT combined with active or sham rTMS.

Assessments were performed at baseline, 2 weeks, and 6 months post-intervention to

investigate upper limb extremity, social life ability, and perceived changes by parents

and motor-evoked potentials. Overall, 35 participants completed the trial. The CIMT plus

active stimulation group had greater gains in the affected hand function (range of motion,

accuracy, and fluency) than the CIMT plus sham stimulation group (P < 0.05), but there

was no significant difference in muscular tone, social life ability, and perceived changes

by parents between the two groups (P > 0.05). In addition, there was no significant

difference in hand function between children with and without motor-evoked potential

(P > 0.05). No participants reported severe adverse events during the study session.

In short, the treatment of CIMT combined with rTMS is safe and feasible for preschool

children with UCP attributed to various brain disorders. Randomized controlled studies

with large samples and long-term effects are warranted.

Keywords: constraint-induced movement therapy, repetitive transcranial magnetic stimulation, preschool

children, unilateral cerebral palsy, hand function
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INTRODUCTION

Cerebral palsy is the most common physical disability in
childhood, occurring in 2.5–3.5 per 1,000 live births and with
complicated etiology (Bax et al., 2005; Li et al., 2021). Unilateral
cerebral palsy (UCP), which mainly affects the function of
children’s lateral extremity, accounts for 44% of the cases
(Stavsky et al., 2017). The main manifestations in children
are motor impairments and may encompass heterogeneous
clinical performance including impairment of communication,
cognition, or sensation (especially tactile sensation), the difficulty
of daily task performance, and quality of life (Senst, 2014).

Over the last decade, studies on interventions for children
with UCP have grown exponentially. It was indicated that the
effect of most treatments for upper limb function in hemiplegic
patients is induced by the principles of task- and context-
specific motor learning and repetition (Veerbeek et al., 2014).
One of the most popular treatments among clinicians and
researchers is constraint-induced movement therapy (CIMT),
with an emphasis on constraining the unaffected extremity and
coupling task-related practice with the affected upper extremity,
and increasing evidence proved the effect of CIMT in children
with UCP (Reedman et al., 2017; Hoare et al., 2019; Ilieva and
Ilieva, 2020; Simon-Martinez et al., 2020). What is more, it
was proved that CIMT might promote neural remodeling and
thereby improve motor function (Liu et al., 2021). However,
the findings on the effect of CIMT on improving bimanual
coordination are controversial (Reid et al., 2015; Hoare et al.,
2019). In addition, it has not been proven to have much effect
on improving decreasing muscle tone (Reid et al., 2015). Studies
have shown that neuromodulation technology such as repetitive
transcranial magnetic stimulation (rTMS), which acts directly
on the central nervous system, may yield a great impact on the
overall motor ability and decrease the muscle tone of children
with cerebral palsy (Boddington and Reynolds, 2017; Gupta and
Bhatia, 2018; Parvin et al., 2018; Rajak et al., 2019).

Children with UCP demonstrate atypical patterns of
corticospinal tract development and organization, which
leads to an imbalance in excitability between the affected and
unaffected hemispheres (Berweck et al., 2008; Chen et al., 2016).
These neural changes may underlie the limitations in upper
extremity function and social life ability (Holmström et al.,
2010). Given that rTMS depolarizes neurons by means of strong,
short magnetic pulses, aiming to suppress or facilitate cortical
excitability depending on electrode polarity, it may make up the
shortcomings of CIMT (Klomjai et al., 2015; Lefaucheur et al.,
2020). Indeed, the effect of CIMT combined with rTMS has been
proven in improving behavioral function and neurophysiologic
responses in school-aged children with UCP attributed to
perinatal strokes (Kirton et al., 2016).

Furthermore, emerging evidence suggested that the CIMT
was more effective during the early developmental period (Reid
et al., 2015; Boddington and Reynolds, 2017). To our best
of knowledge, there are few studies to evaluate the effect of
CIMT combined with rTMS on the treatment response in
young children (Novak et al., 2020). Due to the immature
pattern of hand function and poor self-control, preschool

children with UCP, who are often affected by joint reaction
and mirror movements, i.e., involuntary imitations of unilateral
voluntary movements, can easily be affected by the motor
pattern of the affected side. This period may be critical for
more effective rehabilitation. On the other hand, most studies
focused on perinatal strokes, although UCP has complicated
pathogenic factors.

To fill this gap, we carried out a randomized controlled study
to evaluate the effect of CIMT combined with rTMS in preschool
children with UCP attributed to various brain disorders.

METHODS

The design of this study was a prospective, assessor-blind, and
randomized controlled trial, which was registered at chictr.org
(ChiCTR1900021924). The institutional research ethics board
approval was obtained from Guangzhou Women and Children’s
medical center, and written informed consent was obtained from
the legal representative of each participant before enrollment.

Participants
Eighty-four preschool children with UCP were recruited
through the goal-directed, peer-supported CIMT camp program.
Recruitment occurred from March 25, 2019 to August 31, 2019.
Inclusion criteria were as follows: (i) aged 2.5–6 years; (ii)
Manual Ability Classification System levels I-II or Mini-Manual
Ability Classification System levels I-II; (iii) ≥20◦ wrist active
extension and ≥10◦ metacarpophalangeal active extension from
full flexion; (iv) a 20–80% difference of global rating scale scores
between the affected and unaffected hands; and (v) written
informed consent. Participants were excluded if they met any of
these criteria: (i) other neurological diagnosis; (ii) uncontrolled
seizures; (iii) severe sensory impairment or visual problems; (iv)
contraindication for rTMS (Wassermann, 1998; Kirton et al.,
2008); (v) upper limb surgery; or (vi) botulinum toxin treatment
within 6 months. A total of 40 children met the inclusion criteria.
Thirty-five children completed the study in the end (with 17
children in the CIMT plus active stimulation group). The flow
of patients is summarized in Figure 1.

Design
Participants were randomly assigned to CIMT plus active or
sham stimulation groups (1:1) in an unbiased manner using
a random number table produced by Statistical Product and
Service Solutions for Windows (release 25.0, SPSS). Assessments
and administration of the functional scales and questionnaires
were performed by two independent assessors who had
received training and certification of the study measures. CIMT
assignment was concealed from the assessors. Assessors were
blind to rTMS assignment. Endpoints were assessed at the
baseline visit, 2 weeks, and 6 months postintervention.

Interventions
All the involved children participated in the 10 consecutive days
of goal-directed CIMT camp, active or sham rTMS was applied
independently in a separate room before daily CIMT therapy.
During the rTMS stimulation, participants were seated in a chair
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FIGURE 1 | Study flow diagram.

in a comfortably static position and wore a cap for marking
stimulation points. An eight-shaped circular coil connected to a
Yiruide CCY-1 stimulator (Yiruide Company Limited, Wuhan,
China) was positioned on the hotspot area pressing to the scalp. A
single pulse of transcranial magnetic stimulation was delivered to
detect the motor-evoked potential (MEP) by electromyographic
monitoring from the affected first dorsal interosseous muscle.
Theminimum stimulation intensity was considered as the resting
motor threshold when the collected amplitude was >50 µV in at
least 5 out of 10 trials.

After the determination of the resting motor threshold,
participants received priming rTMS for the unaffected primary
motor cortex. A therapist orientated the handle pointing at a 45◦

angle to the sagittal line for the CIMT plus active stimulation
group or a 90◦ angle for the CIMT plus sham stimulation group.
Parameters for rTMS were as follows: intensity 90% resting
motor threshold multiplied by 1 T, frequency 1Hz for 20min.
For children with absent resting motor thresholds, the fixed
resting motor threshold was set as 40% machine output for the
consideration of the rough mean resting motor threshold in
studies with different groups of people (Delvaux et al., 2003;
Ciechanski et al., 2017). That is to say, the stimulation intensity
was set as 40% × 90% × 1 T for the participants with absent
resting thresholds.

After the active or sham rTMS intervention, a tailor-made
restrictive glove was fitted and applied to all the participants
on the unaffected hand and forearm (from fingertips to middle
forearm) for more than 6 h each day. The restricted hand

retained the ability to support or prevent falls (Xu et al., 2012).
Motor learning for the affected upper extremity totaled 3 h
each day. The participant/therapist ratio of group activities was
3:1 to secure individual guidance. Group activities were age-
appropriate and play-based daily living activities to improve
children’s desire to participate (e.g., tug-of-war, shooting contest,
balloon transmission, and desktop cleaning). After the 3-h
hospital-centered CIMT training, participants continued family-
centered training for 3 h with an exercise program set by
therapists to practice with the affected upper extremity under the
guidance of caregivers. Telephone follow-up and rehabilitation
guidance were conducted every 2 weeks. Daily caregiver-
supervised records were followed-up.

Outcome Assessment
Assessments based on the dimensions of the international
classification of functioning, disability, and health (ICF) were
performed at the baseline visit, 2 weeks, and 6 months
postintervention (Cieza et al., 2019; Angeli et al., 2021).
The MEPs and adverse events were assessed to investigate
corticospinal excitability changes and safety. Safety was assessed
through the self-reporting of symptoms, updating medical
records, and physician review.

The manual abilities were classified by the Manual Ability
Classification System (for children aged over 4 years old) or
Mini-Manual Ability Classification System (for children aged 1–
4 years old), the evidence-based standard for upper extremity
functional levels (Eliasson et al., 2017; Palisano et al., 2018). The
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Melbourne Assessment 2 (MA2), a validated tool to evaluate
the unaffected upper limb function, was the main outcome
measure in this study (Wang et al., 2017). The modified
Ashworth scale was performed for the description muscle
tone (Meseguer-Henarejos et al., 2018; Zurawski et al., 2019).
Bimanual hand performance was assessed by the selective control
of the upper extremity scale (Wagner et al., 2016). Perceived
changes by caregivers were evaluated by global rating scale
and social life ability was evaluated by social life ability scale
for Chinese infant–junior school students, which comprised
six domains: independent living, athletic abilities, operational
abilities, communicative abilities, participation in collective
activities, and self-management abilities, with excellent reliability
and validity (Zhang et al., 1995). The MEPs in the unaffected
motor cortices were measured in the first dorsal interosseous
muscles by single-pulse TMS.

Adverse events related to CIMT or rTMSwere assessed during
the whole study period. A summary of the transient minor
adverse events was summarized in prior publications (Gillick
et al., 2018).

Statistical Analysis
The data were analyzed using SPSS version 25.0. For continuous
variables, an independent sample t-test was performed to
compare the baseline data between the two groups which
accorded to normal distribution. The ranked variables or
variables that did not conform to normal distribution were
analyzed by 2 independent samples such as Wilcoxon signed-
rank sum test. For categorical variables, the chi-squared
test was analyzed. Repeated measures analyses of variance
and simple effect analysis were performed for the within-
group and between-group differences of upper extremity
function, social life ability, perceived changes by parents,

and MEP data. Analysis of covariance was used to compute
mean differences between the two groups adjusting for
baseline. Level information was expressed by frequency and
percentage. For every analysis, the significance level was set
at P < 0.05.

RESULTS

There were no significant differences in baseline demographic
characteristics or functional performance between the two
groups (Table 1), with the independent sample t-test orWilcoxon
signed-rank sum test (P > 0.05).

Improvement of Affected Upper Extremity
Function
Most participants had significantly increased MA2 subscale
scores (range of motion, accuracy, dexterity, and fluency) at
both 2 weeks and 6 months post-intervention compared with
the baseline in the two groups (P < 0.05, Table 2). The CIMT
plus active stimulation group was associated with larger gains
in the subscales of accuracy, fluency, and range of motion
than the CIMT plus sham stimulation group (P < 0.05). Just
as important, the difference of average change value of MA2
subscales between groups exceeded the minimum clinically
important difference (MCID) of MA2 subscales that has been
established (the MCID of MA2 subscales are 2.35, 3.20, 2.09, and
2.22, respectively) (Wang et al., 2017). No significant diffidence
was reported between the two groups in the subscale of dexterity
(P > 0.05).

For muscular tone, no treatment-related change emerged in
the modified Ashworth scale (forearm, wrist, thumb, and fingers)
in the two groups (P > 0.05, Figure 2).

TABLE 1 | Baseline participant characteristics by the group.

CIMT + rTMS (+) (n = 17) CIMT + rTMS (−) (n = 18) P-value

Age (m) 50.6 (10.5) 43.83 (12.6) 0.123

Gender, male/female 6/11 8/10 0.594

Left side of hemiparesis, n (%) 8 (47.1) 10 (55.6) 0.620

Gross motor function classification system, level I/II 15/2 13/5 0.249

Manual ability classification system, level I/II 11/6 8/10 0.236

The modified Ashworth scale, median (range) 1+ (1–3) 2 (1–3) 0.756

Melbourne assessment 2

Range of motion 72.77 (17.37) 68.90 (19.05) 0.535

Accuracy 82.59 (15.16) 74.49 (19.20) 0.177

Dexterity 65.03 (15.34) 59.18 (15.52) 0.271

Fluency 70.31 (13.21) 62.15 (11.85) 0.052

SCUES of affected side 8.71 (2.4) 8.17 (3.6) 0.603

SCUES of the unaffected side 14.00 (2.3) 14.17 (1.7) 0.465

Global rating scale 4.76 (1.8) 4.11 (1.9) 0.304

Standard scores of social life ability scale 10 (1.2) 10 (1.4) 0.930

Magnetic resonance imaging (n) PVL (6), ventricle broadening (3), cyst

(1); normal (1), absence (6)

PVL (9); ventricle broadening (4); cyst (2);

absence (3)

P-value represents between-group differences. Data shown are means (SD) or n (%), unless otherwise stated.

CIMT, constraint-induced movement therapy; rTMS, repetitive transcranial magnetic stimulation; SCUES, selective control of upper extremity scale; PVL, periventricular leukomalacia.
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TABLE 2 | Pre- and post-intervention changes in the Melbourne Assessment 2 in the 2 treatment groups.

Assessments Intervention point CIMT + rTMS (+) (n = 17) CIMT + rTMS (−) (n = 18) P-value

MA2-range of motion Baseline 72.77 (17.4) 68.90 (19.0) 0.021

2 Weeks 83.44 (13.7)## 75.36 (20.5)#

6 Months 81.25 (14.4)# 71.80 (16.1)

MA2-accuracy Baseline 82.59 (15.2) 74.44 (19.2) 0.017

2 Weeks 90.35 (10.5)## 82.89 (19.1)##

6 Months 90.59 (10.6)# 80.4 (19.3)#

MA2-dexterity Baseline 65.03 (15.3) 59.18 (15.5) 0.356

2 weeks 78.28 (14.2)## 64.06 (13.8)#

6 months 73.49 (13.4)## 65.25 (13.7)##

MA2-fluency Baseline 70.31 (13.2) 62.15 (11.8) 0.020

2 Weeks 79.83 (11.1)## 74.60 (11.4)##

6 Months 79.27 (12.8)## 68.26 (11.0)##

SCUES (affected) Baseline 8.71 (2.4) 8.17 (3.6) 0.742

2 Weeks 12.59 (2.5)## 11.28 (3.5)##

6 Months 10.76 (2.2)## 9.56 (2.5)

SCUES (unaffected) Baseline 14.00 (2.3) 14.17 (1.7) 0.451

2 Weeks 13.24 (2.4) 12.94 (3.6)

6 Months 14.06 (1.5) 13.89 (1.2)

P-value represents between-group differences (the bold values represent P < 0.05). Values are reported as mean (SD). Within-group and between-group differences were analyzed

with repeated measures analyses of variance.
#Significantly different than baseline, P < 0.05.
##Significantly different than baseline, P < 0.01.

CIMT, constraint-induced movement therapy; rTMS, repetitive transcranial magnetic stimulation; MA2, the modified Melbourne assessment 2; SCUES, selective control of upper

extremity scale.

Bimanual Performance
Although most participants had increased selective control of the
affected upper extremity scale scores, there was no significant
difference between the two groups (P > 0.05, Table 2). As for
the unaffected upper extremity, there was no significant within-
group and between-groups difference (P > 0.05).

Social Life Ability and Perceived Changes
by Caregivers
For the social life ability scale, there were no significant within-
group and between-group differences between the two groups
(P > 0.05; Figure 3A). We found that the global rating scale
scores achieved clinically significant gains at 2 weeks of post-
intervention in both the groups (P< 0.01), even though there was
no significant between-group difference (P > 0.05; Figure 3B).

Motor-Evoked Potential Outcomes
To investigate the correlations between MEP outcomes and
hand function after the intervention of CIMT combined with
active rTMS stimulation, we compared MA2 outcomes between
children with (n= 7) and without (n= 10) MEPs in the lesioned
hemisphere at 2 weeks of post-intervention. No significant
difference emerged between the groups (P > 0.05, Table 3).

Safety
Headache occurred in one participant, which was relieved after
several minutes. No participants reported severe adverse events

such as epileptic seizures or behavioral problems during the
study session.

DISCUSSION

We examined the effect of the intervention of CIMT combined
with rTMS on preschool children with UCP and found that the
addition of rTMS exaggerated the effect on the affected upper
extremity function induced by CIMT. No serious adverse events
occurred during the study period, only one participant reported
a self-limiting headache.

In this study, most participants experienced improvements
in the affected upper extremity function after 2 weeks and 6
months post-intervention. Greater improvement in accuracy,
fluency, and range of motion in the CIMT plus active stimulation
group, suggested a greater impact of CIMT combined with rTMS
than CIMT alone, which is consistent with the previous study
in school-age children (Kirton et al., 2016). Young children
with UCP are often affected by joint reaction and mirror
movements (Ismail et al., 2017). Hence, it is still necessary
to carry out effect-oriented trials of CIMT combined with
rTMS in younger children, and our results complemented this
evidence in preschool children with UCP. Even though no
significant difference in dexterity and selective control of the
upper extremity scale of the affected upper extremity were
reported between the two groups, participants who received
CIMT combined with active stimulation had more favorable
mean scores 2 weeks postintervention. Notably, improvements
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FIGURE 2 | Changes of muscle tone of the affected upper extremity in the constraint-induced movement therapy (CIMT) plus active stimulation group and sham

stimulation group. (A) Muscle tone of forearm. (B) Muscle tone of wrist. (C) Muscle tone of thumb. (D) Muscle tone of the other fingers. rTMS, repetitive transcranial

magnetic stimulation.

FIGURE 3 | Perceived changes by caregivers and changes of activity of daily living in the constraint induced movement therapy (CIMT) plus active stimulation group

and sham stimulation group. (A) Changes of global rating scale. (B) Changes of social life ability scale for Chinese infant-junior school student. rTMS, repetitive

transcranial magnetic stimulation.

measured with MA2 sustained for 6 months in this study may
reflect long-term depression of 1-Hz rTMS in corticospinal
excitability. The maintained after-effect, which may be relevant
to a complex scenario (e.g., gene activation/regulation, de-novo
protein expression, and postsynaptic excitability state), is the

rationale for rTMS applications as a clinical tool (Cirillo et al.,
2017; Baur et al., 2020).

The muscle tone was not reported with significant differences
between groups. The previous study has indicated the positive
effect of 10-Hz rTMS on muscle tone of children with cerebral
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TABLE 3 | Comparison of upper extremity function between the groups with or without MEPs at 2 weeks of postintervention.

Measurements Intervention point With MEP (n = 7) Without MEP (n = 10) Between-group comparison (P)

MA2-range of motion Baseline 80.42 (4.90) 78.27 (8.51) 0.826

2 Weeks 87.83 (4.41) 82.54 (6.40)

MA2-accuracy Baseline 76.57 (18.82) 86.86 (13.41) 0.426

2 Weeks 88.57 (13.35) 90.29 (9.48)

MA2-dexterity Baseline 58.64 (18.59) 74.47(8.24) 0.381

2 Weeks 78.59 (19.39) 82.57 (8.42)

MA2-fluency Baseline 69.38 (17.14) 75.51 (9.29) 0.329

2 Weeks 74.53 (19.48) 80.03 (6.40)

SCUES (affected) Baseline 7.71 (2.36) 10.00 (1.91) 0.648

2 Weeks 12.71 (2.87) 13.43 (2.15)

SCUES (unaffected) Baseline 14.29 (1.89) 15.00 (0.00) 0.288

2 Weeks 12.71 (2.87) 13.86 (2.27)

Values are reported as mean (SD).

MEP, motor-evoked potential; CIMT, constraint-induced movement therapy; rTMS, repetitive transcranial magnetic stimulation.

palsy (Rajak et al., 2019). In light of the proven safety of low-
frequency rTMS, we adhered to established principles of 1-Hz
rTMS applied to the unaffected motor cortex (Emara et al.,
2010; Gillick et al., 2014a). Rossi et al. had compared the safety
between high-frequency and low-frequency rTMS and found that
induction of seizures was with 1.4% and crude risk estimate in
epileptic patients and <1% under high-frequency stimulation in
patients without the history of seizures, yet was hardly reported in
studies with low-frequency stimulation (Gillick et al., 2014a). In
line with the evidence of low-frequency rTMS, no serious adverse
event was reported in this study. For developing brains, safety
deserves to be handled with the utmost seriousness, and more
studies of low-frequency rTMS on this group are warranted.

A previous study reported improvements in quality-of-life
measures in children older than six (Gillick et al., 2014b; Kirton
et al., 2016; Rich et al., 2016). However, we did not find
any significant differences in social life ability scale scores and
perceived changes by caregivers between the two groups. One of
the potential factors to consider was the educational environment
in China. Many Chinese caregivers, especially grandparents,
usually overprotect their kids and are used to reducing the
opportunities of their children to complete the tasks in life by
themselves, which may limit the improvements to the children’s
social abilities to a certain extent. What is more, the optimal
timing of follow-up for clinically relevant change of CIMT
combined with rTMS is not well understood in young children.
A longer follow-up period and more follow-up time points may
be important for the understanding of clinically relevant change.

It was shown that MEPs were detected only from some
participants. We wondered if children with absent MEP on the
affected side do worse than the others after the intervention of
CIMT combined with active rTMS. Interestingly, we did not find
significant differences in upper extremity function between the
groups with or without MEP, which provides a train of thought
to search for an optimal fixedmotor threshold for young children
with absentMEP. On the other hand, the reason forMEP absence

in young children is not well understood yet. We presumed that
the high level of motor cortex excitability and the difficulty for
young children to maintain relaxed muscles may be important
resources. An increased understanding of the developmental
neurophysiological processes in preschool children with cerebral
palsy is essential for the establishment of neuromodulation
principles. Considering the difficulty of measuring the MEPs for
preschool children, our study may be a beneficial exploration of
the rTMS parameters for this group.

In addition, studies reported that the integrity of underlying
brain anatomy and various brain disorders could potentially
influence the distribution of current across the scalp, which
may contribute to the variable efficacy of rTMS in children
with brain disorders (Rossi et al., 2009; Klomjai et al., 2015).
Importantly, a large number of studies have focused on UCP
attributed to perinatal stroke, although complicated factors may
play an important role in cerebral palsy (e.g., leukomalacia and
intracranial hemorrhage in infants). Participants in the study
were represented with various brain disorders, expanding the
chance of variable efficacy of rTMS. Furthermore, consistent
with the adult stroke model, current models considered
interhemispheric balance in young children as a spectrum, rather
than a dichotomy. Pino et al. (2014) demonstrated that the
cerebral structural reserve (preservation of neural pathways and
connections) was important to cerebral plasticity. The chance is
that the treatment effect is related to interhemispheric balance
rather than the simple interhemispheric competition model. In
this context, the determination of brain damage is important to
the rTMS effect.

Limitations of this study embodied the modest sample size,
the insufficient follow-up time points, and lack of subgroups
for lesion location of brain and age. Still, there was no
formal assessment of potential complications and the impact
of parental education and social background on treatment.
Different requirements and expectations of the parent may lead
to bias in some subjective indicators.
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Concerns about the deeper influence of age and
lesion location of the brain on CIMT combined with
rTMS warrant further investigation in studies. With the
combination of neuroimaging techniques, we can observe
the changes of cerebral blood flow and molecular biology
in the course of rTMS action, thus providing more
help for studying the mechanism of rTMS and the best
treatment parameters.

CONCLUSION

The rTMS combined with CIMT has a superimposed
therapeutic effect on the affected hand function in preschool
children with UCP attributed to various brain disorders,
which is safe and worthy of promotion among this group
of children.
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