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Simple Summary: Oesophagogastric adenocarcinomas (OAC) are cancers of the food pipe and
stomach which have a strong link with obesity. Natural killer (NK) cells are assassins of the immune
system and are crucial for eliminating cancer. We have shown previously that NK cells are pulled into
fat in OAC patients by a signalling protein called fractalkine (CX3CL1). Once in fat, NK cells die or are
profoundly altered. This diminishes their ability to kill the tumour. We report that exposure to fat can
reduce movement of NK cells towards the tumour. However, if a drug called a CX3CR1 antagonist is
used to antagonise the receptor for fractalkine, we can restore NK cell movement towards the tumour.
When we activate NK cells with a protein called IL-15, fractalkine can reduce its effect on NK cells.
This provides further evidence for using CX3CR1 antagonists to reduce NK cell migration to fat and
boost NK cell movement to the tumour.

Abstract: Oesophagogastric adenocarcinomas (OAC) are obesity-associated malignancies, under-
pinned by severe immune dysregulation. We have previously shown that natural killer (NK) cells
preferentially migrate to OAC omentum, where they undergo phenotypic and functional alterations
and apoptosis. Furthermore, we have identified the CX3CR1:fractalkine (CX3CL1) pathway as pivotal
in their recruitment to omentum. Here, we elucidate whether exposure to the soluble microenvi-
ronment of OAC omentum, and in particular fractalkine and IL-15 affects NK cell homing capacity
towards oesophageal tumour. Our data uncover diminished NK cell migration towards OAC tumour
tissue conditioned media (TCM) following exposure to omental adipose tissue conditioned media
(ACM) and reveal that this migration can be rescued with CX3CR1 antagonist E6130. Furthermore,
we show that fractalkine has opposing effects on NK cell migration towards TCM, when used alone
or in combination with IL-15 and uncover its inhibitory effects on IL-15-mediated stimulation of
death receptor ligand expression. Interestingly, treatment with fractalkine and/or IL-15 do not
significantly affect NK cell adhesion to MAdCAM-1, despite changes they elicit to the expression
of integrin α4β7. This study provides further evidence that CX3CR1 antagonism has therapeutic
utility in rescuing NK cells from the deleterious effects of the omentum and fractalkine in OAC, thus
limiting their dysfunction.
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1. Introduction

Oesophagogastric adenocarcinomas (OAC) are a group of obesity-associated malig-
nancies which encompass oesophageal, gastric and gastro-oesophageal junctional adeno-
carcinomas. OAC is underpinned by severe immune dysregulation and inflammation [1–3].
The 5-year survival rates for oesophageal adenocarcinoma and gastric adenocarcinoma of
20% and 32%, respectively, are largely due to poor treatment response rates of less than
30%, meaning new therapeutic options are urgently required for a growing group of cancer
patients [4–8].

The innate lymphocytes natural killer (NK) cells possess both cytotoxic and cytokine
producing capabilities and play a key role in tumour immunosurveillance [9,10]. As such,
NK cells are of great interest in the realm of cell-based immunotherapy. In the setting of
OAC, our group have reported the enhanced recruitment of NK cells to the chemotactic
cues from visceral adipose tissue (VAT), the largest depot of which is the omentum [11].
We have also reported that soluble factors within OAC omentum drive phenotypical and
functional changes and induce apoptosis of NK cells [11,12]. Current immunotherapies
available for OAC have an efficacy of less than 25%, probably due to the cold immunosup-
pressive tumour microenvironment which does not facilitate immunotherapy-mediated
reinvigoration of the immune infiltrate of the tumour [13,14]. We propose that the mis-
guided immune cell migration to OAC omentum compromises anti-tumour immunity and
thus poses a significant challenge for immunotherapeutic efficacy in these patients.

Chemokines function as mediators of immune cell migration and inflammation, and
have also been implicated as promotors of cancer metastasis, thus placing them as potential
targets in an immunotherapeutic context [15,16]. Fractalkine (CX3CL1) is a multi-functional
inflammatory chemokine which is abundant in the OAC omentum [17]. It has an estab-
lished role in macrophage- and CD8+ T cell-mediated adipose tissue inflammation [17–20].
Fractalkine is unique in that it functions both in transmembrane and soluble forms and has
been implicated in roles beyond immune cell migration including immune cell survival,
cancer metastasis and chronic inflammation [21]. We have identified fractalkine as a key
driver of erroneous NK and CD8+ T cell migration to the omentum in OAC and established
its key role in shaping both the phenotype and function of NK cells [12,17]. As such, target-
ing the fractalkine: CX3CR1 pathway with therapeutic intent to reposition crucial T and NK
cells from omentum to tumour is of great interest in OAC. However it is prudent to further
explore the effects that fractalkine exerts on NK cell phenotype and function in OAC and
unearth the biological consequences of targeting this pathway for therapeutic purposes.

IL-15 is an important NK cell cytokine and has generated considerable interest in the
realm of cancer immunotherapy as an alternative to IL-2 [22]. Whilst IL-2 and IL-15 overlap
in several key functions, including supporting the proliferation and activation of NK cells,
IL-2 can support the persistence of regulatory T cells (Tregs), which is an undesirable
feature in the context of anti-tumour immunity [23,24]. Here, we explore the impact of the
OAC omentum microenvironment on NK cell migration to tumour in OAC and examine
its influence on NK cell phenotype and function. As OAC omentum is a fractalkine- and
IL-15-enriched tissue, we extend these studies to further investigate the role of fractalkine
and IL-15 in this milieu.

For the first time, our data demonstrate fractalkine-mediated endocytosis of CX3CR1
in NK cells. Short term exposure to this chemokine is followed by recycling of CX3CR1 to
the surface when NK cells are transferred to a fractalkine-free environment. Importantly,
we report that exposure to the soluble factors of the omentum of OAC patients dampens
NK cell migration towards the soluble chemotactic cues of OAC tumour. Furthermore,
pre-treatment with a CX3CR1 antagonist can overcome this conditioning by the omental
microenvironment and restore NK cell migration towards OAC tumour. Our data also re-
veal that exposure to soluble fractalkine significantly dampens IL-15-mediated stimulation
of death receptor ligand and integrin expression on NK cells. Our novel study provides
further evidence supporting the therapeutic utility of CX3CR1 antagonism to prevent NK
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cell trafficking to omentum and to limit the deleterious effects of fractalkine in viscerally
obese OAC patients.

2. Materials and Methods
2.1. Patient Demographics

Blood, omentum and tumour tissues were collected from a total of 28 patients at time of
surgical resection from patients attending the National Oesophageal and Gastric Centre at St
James’s Hospital, Dublin. The group consisted of nine patients with confirmed oesophageal
adenocarcinoma, 14 patients with oesophago-gastric junctional adenocarcinoma and five
patients with gastric adenocarcinoma (Table 1). The group consisted of 20 males and eight
females, representative of the predominance of OAC in males, with an average age 64 years.
The mean BMI at the time of surgery was 29 kg/m2, making 85% of our cohort overweight
or obese. The mean CT-defined VFA was 144 cm2. Neo-adjuvant chemoradiotherapy (CRT)
was administered to 68% of patients.

Table 1. Patient Demographics.

Age (years) 64
Sex ratio (M:F) 20:8

Diagnosis (no. patients)
OAC 9
OGJ 14

Gastric 5
Tumour Stage a (no. patients)

T0 3
T1 6
T2 7
T3 6
T4 5

Nodal Status b (no. patients)
Positive 12

Negative 13
Mean BMI (kg/m2) 29
BMI c (no. patients)

Underweight (BMI < 19.9) 0
Normal Weight (BMI 20–24.9) 4

Overweight (BMI 25–29.9) 12
Obese (BMI > 30) 11

Mean VFA (cm2) d 144
Viscerally Obese by VFA e 60%

Received Neoadjuvant CRT 68%
a Tumour stage was unavailable for one patient. b Nodal status was unavailable for one patient. c BMI was
unavailable for one patient. d VFA was unavailable for 10 patients. e Obese visceral fat area (VFA) > 160 cm2 for
men and >80 cm2 for women (Doyle et al. 2013).

The work was performed in accordance with the Code of Ethics of the World Med-
ical Association (Declaration of Helsinki) for experiments involving humans. Patients
provided informed consent for sample and data acquisition, and the study received full
ethical approval from the St. James’s Hospital Ethics Review Board. Patient samples were
pseudonymised to protect the privacy rights of the patients.

2.2. Sample Preparation

Blood, omental adipose tissue samples and tumour biopsies were collected during
surgical resection. Five grams of omental adipose tissue was enzymatically digested with
collagenase type II for 20 min to obtain the stromal vascular fraction (SVF) as previously
described [25]. Tumour biopsies were enzymatically digested with collagenase type IV as
previously described [26]. Adipose tissue conditioned media (ACM) and tumour tissue
conditioned media (TCM) were prepared as previously described [12,27]. ACM derived
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from obese OAC patients was used in experiments to recapitulate the obese omental
microenvironment as that is the predominant phenotype in OAC.

2.3. Patient Sample Phenotyping

Whole blood, SVF from omentum and intratumoural immune cells were stained
with CD56-FITC-Viobright (Miltenyi Biotec, Bergisch Gladbach, Germany), L-selectin-
BV510, CD3-APC-Cy7, Integrin β7-Pe-Cy5, α4-Pe-Cy7, TRAIL-APC, FasL-BV421 (Biole-
gend, San Diego, CA, USA). Red blood cells were lysed using BD Lysing Solution (BD Bio-
sciences, Franklin Lakes, NJ, USA) as per manufacturer’s instructions. NK cells were quanti-
fied as CD56+CD3- cells within the lymphocyte gate. Cells were acquired using the CANTO
II (BD Biosciences) flow cytometer and analysed using FlowJo software (BD Biosciences).

2.4. CX3CR1 Endocytosis following Treatment with Recombinant Fractalkine

PBMC were isolated from non-cancer controls by density gradient centrifugation and
seeded at a density of 1 × 106 cells/mL RPMI supplemented with 10% foetal bovine serum
(FBS) and 1% penicillin-streptomycin (cRPMI). To determine whether CX3CR1 was inter-
nalised via endocytosis following treatment with recombinant fractalkine, cells were treated
with 30 ng/mL of recombinant fractalkine (Biolegend) alone or in the presence 80 µM of the
dynamin inhibitor Dynasore (Sigma Aldrich, St. Louis, MO, USA) or cold treatment at 4 ◦C.
Cells were stained for flow cytometric analysis with CD56-FITC-Viobright, CX3CR1-PE
(Miltenyi Biotec) and CD3-APC-Cy7 (Biolegend). Cells were acquired using the CANTO II
(BD Biosciences) flow cytometer and analysed using FlowJo software (BD Biosciences).

2.5. CX3CR1 Recycling following Treatment with Recombinant Fractalkine

PBMC were isolated from non-cancer controls by density gradient centrifugation and
seeded at a density of 1 × 106 cells/mL cRPMI. PBMC were treated with 100 ng/mL of
recombinant fractalkine for 2 or 24 h (Peprotech, Cranbury, NJ, USA), subsequently washed
and resuspended in fresh cRPMI for 24 and 48 h. Cells were stained for flow cytometric
analysis with CD56-FITC-Viobright, CX3CR1-PE (Miltenyi Biotec, Bergisch Gladbach,
Germany) and CD3-APC-Cy7 (Biolegend). Cells were acquired using the CANTO II (BD
Biosciences) flow cytometer and analysed using FlowJo software (BD Biosciences).

2.6. Phenotyping NK Cells following Fractalkine and IL-15 Treatment

PBMC were isolated from non-cancer controls by density gradient centrifugation
and seeded at a density of 1 × 106 cells/mL cRPMI. Cells were treated with 30 ng/mL of
recombinant fractalkine (Biolegend) and/or 100 ng/mL of recombinant IL-15 (Immunotools,
Friesoythe, Germany) for 2 or 24 h. Cells were stained with CD56-FITC-Viobright (Miltenyi
Biotec), L-selectin-BV510, CD3-APC-Cy7, Integrin β7-Pe-Cy5, α4-Pe-Cy7, TRAIL-APC,
FasL-BV421 (Biolegend). Samples were acquired using the CANTO II (BD Biosciences) flow
cytometer and analysed using FlowJo software (BD Biosciences).

2.7. OAC Patient-Derived Adipose Conditioned Media Treatment

PBMC were isolated from non-cancer controls by density gradient centrifugation and
seeded at a density of 1 × 106 cells/mL cRPMI. Cells were cultured with OAC patient-
derived ACM for 2 and 24 h or M199. Cells were stained with CD56-FITC-Viobright (Mil-
tenyi Biotec), L-selectin-BV510, CD3-APC-Cy7, Integrin β7-Pe-Cy5, α4-Pe-Cy7 (Biolegend).
Samples were acquired using the CANTO II (BD Biosciences) flow cytometer and analysed
using FlowJo software (BD Biosciences).

2.8. NK Cell Adhesion Assay

Adhesion assay protocol was adapted from Strazza et al. [28]. Non-cancer control
primary NK cells were isolated from PBMC by magnetic cell sorting using human NK cell
isolation kit (Stemcell, Vancouver, British Columbia, Canada) according to manufacturer’s
instructions. NK cells were resuspended at a density of 1 × 105/100µL of NK MACS media
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(Miltenyi Biotec) supplemented with 100 IU IL-2 (Peprotech) and treated with 100 ng IL-15
(Immunotools) and/or 100 ng/mL fractalkine (Peprotech) for 2 and 24 h. NK cells were
also treated with OAC patient-derived TCM or ACM for 2 and 24 h with and without pre-
treatment with 5 nM CX3CR1 antagonist E6130 (MedChemExpress, Monmouth Junction,
NJ, USA) for 1 h prior to exposure to ACM. A 96 well plate was coated with goat-anti-
human IgG (Fc specific) in PBS and incubated overnight at 4 ◦C. Plates were subsequently
coated with 2.5 µg/mL MAdCAM-1 (R&D, Minneapolis, MN, USA) for 1 h at 37 ◦C. NK
cells were stained with CFSE and allowed to adhere for 20 min at 37 ◦C. Unbound cells
were washed away. Unwashed wells were used as controls. The percentage of adherent
cells was determined by a fluorescent plate reader and calculated as follows:

Avg intensity in well
Avg intensity in unwashed well

× 100
1

2.9. NK Cell Chemotaxis Assay

PBMC were isolated from non-cancer controls by density gradient centrifugation and
resuspended in RPMI and treated with 100 ng fractalkine (Peprotech) and/or 100 ng IL-15
(Immunotools) for 2 or 24 h. Alternatively cells were treated with ACM for 2 or 24 h
with and without pre-treatment with 5 nM of CX3CR1 antagonist E6130 (MedChemEx-
press) for 1 h before exposure to ACM. Cells were subsequently added at a density of
0.2 × 106 cells/100 µL RPMI to a 5 µm pore Transwell filter system (Corning Inc, Corning,
NY, USA) with TCM added in the lower chamber. M199 was used as a negative control and
M199 supplemented with 20% FBS was used as a positive control. This system was incu-
bated for 2 h at 37 ◦C, 5% CO2. Cells were collected from the lower chamber and stained for
flow cytometric analysis with CD56-FITC-Viobright (Miltenyi Biotec) and CD3-APC-Cy7
(Biolegend). CountBright beads (ThermoFisher, Waltham, MA, United States) were used to
enumerate the migrated CD56+CD3- NK cells. Cells were acquired using the CANTO II
(BD Biosciences) flow cytometer and analysed using FlowJo software (BD Biosciences).

2.10. Statistical Analysis

Statistical analysis was carried out using GraphPad Prism Version 8 (GraphPad Soft-
ware, San Diego, CA, USA). Differences between groups were analysed using one-way
ANOVA with Bonferroni post-hoc test or paired t-test where appropriate. p < 0.05 was
considered significant.

3. Results
3.1. Fractalkine Mediates the Endocytosis of CX3CR1

To ascertain whether our previously reported fractalkine-mediated decreases in CX3CR1
expression by NK cells were due to receptor endocytosis, PBMC were treated with fractalkine
along with the dynamin inhibitor dynasore or cold treatment at 4 ◦C (n = 9) [17]. Our data
revealed significantly higher frequencies of CX3CR1+ NK cells following fractalkine treat-
ment in combination with dynasore, or at 4 ◦C, compared to 2 hfractalkine treatment alone,
suggesting reduced CX3CR1 expression is due to endocytosis; 2 h vs. dynasore (13.38%
vs 47.36%, p = 0.0089), 2 h vs. cold treatment (13.38% vs 52.38%, p = 0.0099) (Figure 1A,B).
It is of note that there is a loss of the CD56BRIGHT population following treatment with
fractalkine in combination with dynasore or at 4 ◦C. Our data strongly suggest that this
is a result of the experimental conditions and not a fractalkine-mediated loss of CD56
expression. To ascertain whether removal to a fractalkine-free environment would restore
CX3CR1 expression, NK cells were treated with fractalkine for 2 or 24 h and subsequently
re-suspended in fractalkine-free media for 24 and 48 h. Following 2 h fractalkine treat-
ment, subsequent resuspension in fractalkine-free media for 48 h significantly increased
the frequencies of CX3CR1+ NK cells; 2 h vs. +48 h (35.9% vs. 57.1% p = 0.0070) (Figure 1C).
There are however significantly less CX3CR1+ NK cells following 24 and 48 h removal to a
fractalkine free environment and cells left untreated, suggesting the frequency CX3CR1+
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is not fully restored; untreated vs. +24 h (95% vs. 32%, p = 0.0022), untreated vs. +48 h
(90.9% vs. 57.1%, p = 0.0010). There were no significant differences in the frequency of
CX3CR1+ NK cells treated for 24 h and those treated for 24 h and subsequently removed
to a fractalkine free environment for 24 or 48 h. Furthermore, following 24 h fractalkine
treatment and subsequent culture in a fractalkine-free environment for 24 and 48 h the
frequencies of CX3CR1+ NK cells remained significantly lower than cells left untreated;
untreated vs. +24 h (86% vs. 35.76%, p < 0.0001) untreated vs. +48 h (86% vs. 49.7%,
p = 0.0004) (Figure 1D).

Figure 1. Fractalkine mediates endocytosis of CX3CR1 in NK cells. (A) Bar chart showing the
frequencies of CX3CR1+ NK cells as a percentage of total NK cells following no treatment (NT),
treatment with 30 ng/mL of recombinant fractalkine for 2 h alone, in combination with 80 µM of
dynamin inhibitor Dynasore or at 4 ◦C. (B) Representative dot plots showing peripheral blood derived
CX3CR1+ NK cells previously gated on total lymphocytes following no treatment (NT) or treatment
with fractalkine for 2 h alone, at 4 ◦C or in combination with dynasore. (C) Bar chart showing the
frequencies of CX3CR1+ NK cells as a percentage of total NK cells following no treatment (NT),
treatment with fractalkine for 2 h (white) and following removal to a fractalkine-free environment
for 24 h (grey) or 48 h (check). (D) Bar chart showing the frequencies of CX3CR1+ NK cells as a
percentage of total NK cells following no treatment (NT), treatment with fractalkine for 24 h (white)
and following removal to a fractalkine free environment for 24 h (grey) or 48 h (check). One way
ANOVA, * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001.

3.2. Exposure to ACM Significantly Reduces NK Cell Migration towards OAC Patient-Derived TCM

To elucidate the effects of the omental microenvironment on NK cell chemotaxis
towards tumour, NK cells were exposed to obese OAC patient ACM with and with-
out pre-treatment with CX3CR1 antagonist E6130. NK cell migration towards TCM
was significantly reduced following exposure to ACM for 2 (n = 3) and 24 (n = 4) h;
Untreated vs. 2 h (1 vs. 0.5026, p = 0.0229), untreated vs. 24 h (1 vs. 0.4019, p = 0.0185)
(Figure 2A). Pre-treatment with a CX3CR1 antagonist for one hour prior to ACM exposure
for 24 h significantly restored migration towards TCM compared to ACM alone (n = 3); 24 h
ACM vs. 24 h ACM and CX3CR1 antagonist (0.4019 vs. 0.9345, p = 0.0114) (Figure 2B,C).
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Figure 2. Soluble mediators in OAC patient-derived omentum significantly impede NK cell migration
towards OAC tumour, which can be restored by CX3CR1 antagonist E6130. (A) Bar chart showing
the fold-change migration of NK cells to OAC patient-derived tumour conditioned media (TCM)
relative to no treatment (NT) or treatment with adipose conditioned media (+ACM) for 2 h or 24 h
(n = 3–4). (B) Bar chart showing the fold-change migration of NK cells to OAC patient-derived tumour
conditioned media (TCM) relative to no treatment, following treatment with adipose conditioned
media (ACM) for 2 h or 24 h with and without pre-treatment with 5 nM CX3CR1 antagonist (+E6130)
(n = 3–4). (C) Schematic of NK cell chemotaxis towards TCM. NK cells are pre-treated with CX3CR1
antagonist E6130 for 1 h prior to culture in ACM or left untreated. Cells are then cultured in OAC
patient-derived ACM for 2 or 24 h. NK cell migration towards TCM is then measured in a transwell
assay for 2 h. ACM exposure significantly decreases NK cell migration towards TCM, while pre-
treatment significantly increases NK cell migration towards TCM. Paired t-test, * p < 0.05.

3.3. IL-15 Antagonises Fractalkine-Mediated Decreases in NK Cell Migration towards the
Chemotactic Signals of OAC Tumour

To elucidate the effects of fractalkine on NK cell migration, PBMC were treated with
fractalkine for 2 or 24 h and migration towards TCM was measured with a transwell
chemotaxis assay. Treatment with fractalkine for 24 h mediated a significant decrease in
the migration of NK cell towards TCM compared to cells left untreated; untreated vs. 24 h
fractalkine (1 vs. 0.63, p = 0.02) (Figure 3). Treatment with the well described NK cell
activator IL-15 for 2 and 24 h significantly increased migration towards TCM; untreated vs.
2 h IL-15 (1 vs. 1.623, p = 0.0146), untreated vs. 24 h IL-15 (1 vs. 1.29, p = 0.0434) (Figure 3).
Interestingly, treatment with both fractalkine and IL-15 for 2 and 24 h significantly increased
migration towards TCM; untreated vs. 2 h IL-15 and fractalkine (1 vs. 2.41, p = 0.0166),
untreated vs. 24 h IL-15 and fractalkine (1 vs. 2.47, p = 0.02). Furthermore, migration
towards TCM was significantly increased following treatment with Fractalkine and IL-15
compared to fractalkine alone at 2 and 24 h; 2 h Fractalkine vs. Fractalkine and IL-15
(0.84 vs. 2.41, p = 0.0071), 24 h Fractalkine vs. Fractalkine and IL-15 (0.63 vs. 2.47, p = 0.0311)
(Figure 3).
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Figure 3. Fractalkine-induced impedance of NK cell migration to OAC tumour-derived conditioned
media can be overcome by IL-15. Bar chart showing the fold-change migration of NK cells to OAC
patient-derived TCM following no treatment, treatment with 100 ng/mL of fractalkine and/or IL-15
(n = 3–6). Paired t test, * p < 0.05, ** p < 0.01.

3.4. Fractalkine Antagonises IL-15-Mediated Increases in Adhesion Molecule Expression

To ascertain whether dysregulated NK cell migration was accompanied by altered
adhesion in OAC, we first profiled integrin and adhesion molecule expression on NK
cells from OAC patient-derived blood, omentum and tumour. There were significantly
higher frequencies of NK cells expressing the gut-homing integrins α4 and β7 in the
omentum (n = 17) and tumour (n = 9), compared to the circulation (n = 19); blood vs.
omentum (11% vs. 19.6%, p = 0.0155), blood vs. tumour (11% vs. 42.6%, p < 0.0001).
Similarly, there were significantly higher frequencies within the tumour of OAC patients,
compared to the omentum; omentum vs. tumour (19.6% vs. 42.6%, p < 0.0001) (Figure 4A).
There were significantly lower frequencies of NK cells expressing the adhesion molecule
L-selectin in the omentum (n = 17) and tumour (n = 7) of OAC patients, compared to the
circulation (n = 18); blood vs. omentum (54.43% vs. 21.24%, p < 0.0001), blood vs. tumour
(54.43% vs.23.02%, p = 0.0012) (Figure 4E).

To examine the impact of obesity status on NK cell adhesion molecule expression,
OAC patients were stratified into obese (n = 8–9) and non-obese (n = 4) by VFA. There
were significantly lower frequencies of α4+β7+ NK cells in the circulation and omentum
of obese OAC patients, compared to their non-obese counterparts; blood non-obese vs.
obese (20.05% vs. 8.99%, p = 0.0188), omentum non-obese vs. obese (24.83% vs. 14.19%,
p = 0.0169) (Figure 4B).

We next sought to determine whether soluble factors in the omentum alter NK cell
adhesion in addition to migration. Blood-derived NK cells were treated with ACM for
2 or 24 h and then examined for integrin and adhesion molecule expression. There were
significantly higher frequencies of the NK cells expressing the gut-homing integrins α4
and β7 following treatment with OAC ACM for 24 h compared to cells treated with M199
or ACM for 2 h; M199 vs. 24 h (27.98% vs. 43.7%, p = 0.04), 2 h vs. 24 h (24% vs. 43.7%,
p = 0.03) (Figure 4c). There were no changes in the frequencies of cells expressing L-selectin
following culture in ACM (Figure 4G).
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Figure 4. Fractalkine attenuates IL-15 induced expression of gut-homing integrins α4β7. (A) Dot
plot showing the frequencies of α4+β7+ NK cells as a percentage of total NK cells in OAC patient
derived blood (n = 18), omentum (n = 17) and tumour (n = 9). (B) Dot plot showing the frequencies
of α4+β7+ NK cells as a percentage of total NK cells in OAC patient derived blood divided in to
obese (n = 8-9) and non-obese (n = 4) by VFA in blood (left) and omentum (right). (C) Bar chart
showing the frequencies of α4+β7+ NK cells following treatment with M199 or OAC patient derived
adipose conditioned media for 2 and 24 h. (D) Bar chart showing the frequencies of α4+β7+ NK
cells following no treatment (untreated) or treatment with 30 ng/mL fractalkine and/or 100 ng/mL
IL-15 for 2 or 24 h (n = 3–14). (E) Dot plot showing the frequencies of L-selectin+ NK cells as a
percentage of total NK cells in OAC patient derived blood (n = 18), omentum (n = 17) and tumour
(n = 8). (F) Dot plot showing the frequencies of L-selectin+ NK cells as a percentage of total NK cells
in OAC patient derived blood divided in to obese (n = 9) and non-obese (n = 4) by VFA in blood
(left) and omentum (right). (G) Bar chart showing the frequencies of L-selectin+ NK cells following
treatment with M199 or OAC patient derived adipose conditioned media for 2 and 24 h. (H) Bar chart
showing the frequencies of L-selectin+ NK cells following no treatment (untreated) or treatment with
30 ng/mL fractalkine and/or 100 ng/mL IL-15 for 2 or 24 h (n = 3–14). One way ANOVA or t-test as
appropriate, * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001.
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Finally, blood-derived NK cells were treated with fractalkine and/or IL-15 for 2 or
24 h and then examined for integrin and adhesion molecule expression. Fractalkine alone
had no effect on α4, β7 or L-selectin expression (Figure 4D,H). There were significantly
higher frequencies of α4+β7+ NK cells following treatment with IL-15 for 2 and 24 h
(n = 6) compared to cells left untreated (n = 14); untreated vs. 2 h (9.567% vs. 31.92%,
p = 0.0001), untreated vs. 24 h (9.567% vs. 39.00%, p < 0.0001). Interestingly, there were
significantly higher frequencies of α4+β7+ following stimulation with IL-15 compared with
fractalkine alone for 2 and 24 h; 2 h IL-15 vs. fractalkine (31.92% vs. 4.6%, p < 0.0001),
24 h IL-15 vs. fractalkine (39% vs. 5.05%, p < 0.0001). Similarly, there were significantly
higher frequencies of α4+β7+ NK cells following treatment with IL-15 compared with
fractalkine and IL-15 at 2 and 24 h; 2 h IL-15 vs. fractalkine and IL-15 (31.92% vs. 8.78%,
p = 0.0130), 24 h IL-15 vs. fractalkine and IL-15 (39% vs. 9.81%, p = 0.0008) (Figure 4D).
There were significantly higher frequencies of L-selectin+ NK cells following treatment
with IL-15 for 24 h (n = 3), compared to cells left untreated (n = 11); untreated vs. 24 h
IL-15 (40.39% vs. 79.7%, p = 0.0420). However, there are no significant increases following
treatment with fractalkine and IL-15, suggesting again that fractalkine antagonises IL-15-
induced increases in L-selectin expression (Figure 4H).

3.5. The OAC Omental Microenvironment Significantly Decreases NK Cell Adhesion to MAdCAM-1

The effect of fractalkine and OAC patient-derived ACM on NK cell adhesion to
MAdCAM-1 was determined via an adhesion assay. MAdCAM-1 is a gut-homing adhe-
sion molecule known to play a key role in the trafficking of lymphocytes into inflamed
tissues [29,30]. NK cell adhesion to MAdCAM-1 was significantly decreased following
exposure to ACM for 2 (n = 5) and 24 h (n = 4) compared to cells left untreated; untreated
vs 2 h ACM (1 vs. 0.89, p= 0.0215), untreated vs 24 h ACM (1 vs. 0.95, p = 0.05) (Figure 5A).
There were no differences in NK cell adhesion when pre-treated with a CX3CR1 antagonist
prior to exposure to ACM compared to cells not pre-treated (Figure 5B). NK cell adhesion
to MAdCAM-1 was significantly increased following exposure to TCM for 24 h (n = 3)
compared to cells left untreated; untreated vs 24 h TCM (1 vs. 1.07, p = 0.0021) (Figure 5A).
There were no significant differences in adhesion following treatment with fractalkine,
IL-15 or a combination of both (all n = 6) (Figure 5C).

Figure 5. ACM slightly but significantly reduces NK cell adhesion to gut-homing adhesion molecule
MAdCAM-1 whilst TCM significant increases it. (A) Bar chart showing the fold-change adhesion of
NK cells to MAdCAM-1 following no treatment (NT), treatment with adipose conditioned media
(ACM) or tumour conditioned media (TCM) for 2 or 24 h (n = 3–6). (B) Bar chart showing the
fold-change adhesion of NK cells to MAdCAM-1 following treatment with adipose conditioned
media (ACM) for 2 or 24 h with and without 1 h pre-treatment with 5 nM CX3CR1 antagonist E6130
(n = 3–6). (C) Bar chart showing the fold-change adhesion of NK cells to MAdCAM-1 following no
treatment (NT), or treatment with 100 ng/mL of fractalkine and/or IL-15 (n = 3–6). Paired t-test,
* p < 0.05, ** p < 0.01.
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3.6. Fractalkine Significantly Reduces IL-15-Mediated Stimulation of Death Receptor Ligand
Expression by NK Cells

We next sought to profile death receptor ligand expression on NK cells from OAC
patient blood, omentum and tumour. Death receptors are perforin and granzyme indepen-
dent methods of NK cell cytotoxicity [31]. There were significantly higher frequencies of
FasL+ NK cells in the tumour (n = 9) of OAC patients, compared to the circulation (n = 17)
and omentum (n = 14); circulation vs. tumour (4.014% vs. 41.15%, p < 0.0001), omentum
vs. tumour (11.44% vs. 41.15%, p = 0.0007) (Figure 6A). Similarly, there were significantly
higher frequencies of TRAIL+ NK cells in the tumour (n = 9) of OAC patients, compared to
the circulation (n = 17) and omentum (n = 17); circulation vs. tumour (7.143%vs. 22.32%,
p = 0.0134), omentum vs. tumour (6.007% vs. 22.32%, p = 0.0075) (Figure 6E).

Interestingly, when patients were stratified into obese (n = 7) and non-obese (n = 4)
cohorts by VFA, there were significantly lower frequencies of FasL+ NK cells in the circula-
tion of the obese cohort compared to their non-obese counterparts; non-obese vs. obese
(10.44% vs. 0.7943%, p = 0.0003) (Figure 6B). Similarly, there were significantly lower fre-
quencies of TRAIL+ NK cells in the circulation of obese (n = 8) OAC patients compared to
their non-obese (n = 4) counterparts; non-obese vs. obese (14.88% vs. 1.31%, p = 0.0044)
(Figure 6F). Furthermore, in the omentum there were significantly lower frequencies of
TRAIL+ NK cells in the omentum of obese (n = 9) OAC patients compared to their non-obese
(n = 4) counterparts; non-obese vs. obese (5.563% vs. 2.769%, p = 0.0461) (Figure 6F).

The percentage frequencies of TRAIL+ and FasL+ NK cells were analysed following
treatment with fractalkine and/or IL-15. There were significantly higher frequencies of NK
cells expressing FasL following stimulation with IL-15 for 2 (n = 4) and 24 h (n = 3) compared
to untreated cells (n = 11); untreated vs. 2 h (2.857% vs. 83.15%, p < 0.0001), untreated vs.
24 h (2.857% vs. 89.50%, p < 0.0001) (Figure 6B). Similar higher frequencies of TRAIL+ cells
were observed following stimulation with IL-15 for 2 (n = 7) and 24 h (n = 6) compared to
untreated cells (n = 11); untreated vs. 2 h (4.31% vs. 34.57%, p < 0.0001), untreated vs. 24 h
(4.310% vs. 45.27%, p < 0.0001). Furthermore, there were significantly lower frequencies of
FasL+ NK cells following treatment with fractalkine and IL-15 (n = 5) compared to cells
treated with IL-15 alone (n = 6) for 2 and 24 h; 2 h IL-15 vs. fractalkine and IL-15 (83.15%
vs. 42.09%, p= 0.0015), 24 h IL-15 vs. fractalkine and IL-15 (89.5% vs. 40.95%, p= 0.0009).
Similarly, there were significantly lower frequencies of TRAIL+ NK cells following treatment
with fractalkine and IL-15 (n = 5) compared to cells treated with IL-15 alone (n = 6) for 24 h;
24 h IL-15 vs. fractalkine and IL-15 (45% vs. 13%, p < 0.0001) (Figure 6B).

To ascertain whether the expression levels of TRAIL and FasL on NK cells were
altered by fractalkine and/or IL-15, the median fluorescence intensity (MFI) of their surface
expression was analysed following treatment with fractalkine and/or IL-15. The MFI of
FasL was significantly higher following stimulation with IL-15 for 2 and 24 h compared to
untreated cells; untreated vs. 2 h (219 vs. 1334, p = 0.0008), untreated vs. 24 h (219 vs. 1715,
p < 0.0001). Similarly, the MFI of TRAIL was significantly higher following stimulation with
IL-15 for 2 and 24 h compared to untreated cells; untreated vs. 2 h (71.7 vs. 404, p = 0.0002),
untreated vs. 24 h (71.7 vs. 695, p < 0.0001). Furthermore, the MFI of FasL was significantly
lower following treatment with fractalkine and IL-15 compared to cells treated with IL-15
alone for 2 and 24 h; 2 h IL-15 vs. fractalkine and IL-15 (1334 vs. 415, p = 0.0475), 24 h
IL-15 vs. fractalkine and IL-15 (1715 vs. 378, p = 0.0351). Similarly, the MFI of TRAIL was
significantly lower following treatment with fractalkine and IL-15 compared to cells treated
with IL-15 alone for 2 and 24 h; 2 h IL-15 vs. fractalkine and IL-15 (404 vs. 79, p = 0.0103),
24 h IL-15 vs. fractalkine and IL-15 (695 vs. 63, p < 0.0001) (Figure 6C).
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Figure 6. Death receptor ligand expressing NK cells are abundant in the OAC tumour and fractalkine
antagonises the stimulatory effects of IL-15 on their expression. (A) Dot plot showing the frequencies
of FasL + NK cells as a percentage of total NK cells in OAC patient derived blood (n = 14), omentum
(n = 17) and tumour (n = 8). (B) Dot plot showing the frequencies of FasL+ NK cells as a percentage of
total NK cells in OAC patient derived blood divided in to obese and non-obese by VFA in blood (left)
and omentum (right). (C) Bar chart showing the frequencies of FasL+ NK cells as a percentage of total
NK cells following no treatment (untreated), treatment with 30 ng/mL fractalkine and/or 100 ng/mL
IL-15 for 2 and 24 h. (D) Bar chart showing the MFI of FasL+ expressing NK following no treatment
(untreated), treatment with 30 ng/mL fractalkine and/or 100 ng/mL IL-15 for 2 and 24 h. (E) Dot
plot showing the frequencies of TRAIL+ NK cells as a percentage of total NK cells in OAC patient
derived blood (n = 20), omentum (n = 17) and tumour (n = 9). (F) Dot plot showing the frequencies of
TRAIL+ NK cells as a percentage of total NK cells in OAC patient derived blood divided in to obese
and non-obese by VFA in blood (left) and omentum (right). (G) Bar chart showing the frequencies
of TRAIL+ NK cells as a percentage of total NK cells following no treatment (untreated), treatment
with 30 ng/mL fractalkine and/or 100 ng/mL IL-15 for 2 and 24 h. (H) Bar chart showing the MFI of
TRAIL expressing NK cells following no treatment (untreated), treatment with 30 ng/mL fractalkine
and/or 100 ng/mL IL-15 for 2 and 24 h. One way ANOVA or t-test, * p < 0.05, ** p < 0.01, *** p < 0.001,
**** p < 0.0001.
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4. Discussion

Novel immunotherapeutic approaches, including those which utilise NK cells, are
required to reinvigorate anti-tumour immunity and improve survival rates for OAC pa-
tients [4–8]. We propose that novel chemokine-based therapies which harness NK cell
chemotactic pathways to boost migration to the solid OAC tumour may provide a means of
augmenting anti-tumour immunity in OAC. Our group has reported the active recruitment
of NK cells to OAC omentum and the alteration of NK cell viability, phenotype and function
by soluble mediators within this microenvironment [11]. Furthermore we have identified
the CX3CR1 ligand fractalkine as a key driver of NK cell migration to soluble factors in the
OAC omentum, but not tumour, presenting CX3CR1 antagonism as an attractive therapeu-
tic approach to impede erroneous NK cell recruitment to the omentum and concurrently,
maximise their availability to traffic to the tumour in obese cancer patients [12].

Previous work by our group established fractalkine’s abundance within the omentum
of OAC patients and demonstrated its capacity to significantly reduce the frequency of
CX3CR1+ NK and CD8+ T cells in this compartment [12,17]. Here we report that this
reduction is due to fractalkine-mediated endocytosis of CX3CR1 on the surface of NK
cells. This is in line with previous work by our group which reported fractalkine-mediated
endocytosis of CX3CR1 on the surface of CD8+ T cells [17]. Interestingly, and in contrast
with results reported in relation to CD8+ T cells, short term treatment with fractalkine
followed by subsequent removal to a fractalkine-free environment for 24 and 48 h allows
for recycling of the receptor to the surface [17]. However, a longer 24 h treatment appears
to impede this recycling. This suggests that the effects of fractalkine on NK cells is some-
what reversible and that preventing their long term exposure to high levels of fractalkine
within the OAC omentum may allow for recycling of the receptor and restoration of the
CX3CR1HIGH NK cell phenotype [11]. In turn this may prevent the conversion of NK cell
phenotype towards a CD27+ cytokine producing profile, which we propose is detrimental
for anti-tumour immunity in OAC, and facilitate the maintenance of the cytotoxic CD27-

NK cell population [12].
Crucially and for the first time, we have uncovered that exposure to the soluble envi-

ronment of the obese OAC omentum significantly reduces migration of NK cells towards
OAC patient-derived TCM. This provides further evidence of the plethora of detrimental
effects of visceral obesity on NK cell phenotype and function in OAC and provides further
evidence that halting NK cell migration to the omentum is key to maximising their avail-
ability to infiltrate the tumour in OAC patients [11,12]. Importantly, pre-treatment with a
CX3CR1 antagonist helps rescue NK cell chemotaxis towards TCM. This provides further
evidence that fractalkine is a master regulator of NK cell migration, phenotype and function
in OAC [12]. Furthermore, it adds merit to targeting the CX3CR1 pathway with therapeutic
intent in OAC patients. It is well established that the infiltration of the solid tumour by NK
cells is associated with improved prognosis, and as such, therapeutically boosting NK cell
migration to OAC tumours is a desirable concept [32,33]. We have previously reported an
abundance of CX3CR1HIGH NK cells in the circulation of OAC patients, indicating their
amenability to systemic administration of a CX3CR1 antagonist [12].

The cytokine IL-15 is being extensively explored in the setting of NK cell-based
immunotherapies as it induces the proliferation and activation of NK cells [22,34]. Further-
more, IL-15 is a known promoter of NK cell migratory responses [35]. Since NK cells are
exposed to both IL-15 and fractalkine in the omentum of OAC patients, we elucidated the
effects of fractalkine on IL-15 stimulation of NK cell migration towards TCM. Interestingly,
exposure to fractalkine for 24 h significantly decreases migration towards TCM, while as
expected IL-15 enhances chemotaxis towards TCM. Importantly, the combination of IL-15
and fractalkine increases NK cell chemotaxis towards TCM. This further suggests IL-15 is a
potent inducer of NK cell chemotaxis and can overcome fractalkine-mediated decreases in
NK cell migration towards OAC tumours [35]. Moreover, it suggests that fractalkine and
IL-15 synergise to promote NK cell migration and indicates that these two alone are not
the soluble factors in OAC omentum which impede NK cell migration towards tumour
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in our ex vivo assays. This further supports our proposal to prevent circulating NK cells
from migrating to the omentum and being exposed to the omental microenvironment, via
the use of a CX3CR1 antagonist [12]. The adoptive transfer of immune cells, including NK
cells, has had limited success in the setting of solid tumours and we have proposed that
antagonism of specific chemokine receptors may prevent recruitment to the omentum and
allow for homing of NK cells to the tumour in OAC [12,36]. As such, combination therapies
including adoptive transfer of immune cells combined with antagonism of chemokine
receptors to prevent migration towards the omentum could benefit from the addition of
cytokines such as IL-15, which may serve to boost chemotaxis towards the tumour whilst
also supporting and enhancing NK cell proliferation and cytotoxicity [22,34,35,37].

Since ACM obstructs NK cell migration towards tumour, we next sought to determine
whether NK cells in OAC exhibit altered adhesion characteristics and if ACM promotes
retention of NK cells within this tissue. Previous work by our group has reported altered
adhesive capacities of CD8+ T cells following exposure to fractalkine, suggesting fractalkine
may mediate cell retention in the omentum [17]. Firstly, we profiled the frequencies of NK
cells expressing these adhesion molecules in our three compartments of interest, the blood,
the omentum and the tumour. Here, we report significantly higher frequencies of NK cells
expressing the gut-homing integrin α4β7 in the omentum and tumour of OAC patients,
compared to the circulation. This is in line with previous work which has shown low levels
of α4β7 expression of circulating NK cells [38]. α4β7 plays a key role in intestinal homing
through its interactions with MAdCAM-1 [29,30]. MAdCAM-1 is expressed on the Peyer’s
patches and mesenteric lymph nodes, along with the lamina propria of the intestines and its
expression can be induced by TNF-α [39]. Importantly, the highly vascularised omentum
contains vessels which express MAdCAM-1 and thus α4β7 is involved in migration of
immune cells in to the omentum [30,40–42]. Increases in MAdCAM-1 expression have been
reported in diseases underpinned by severe inflammation including inflammatory bowel
disease, diabetes and cholangitis [30,43]. As such, the interactions between MAdCAM-1
and α4β7 are believed to play a critical role in facilitating the entry of lymphocytes into
chronically inflamed tissue. As OAC is underpinned by inflammation, this suggests the
increases in α4β7 expressing cells may be mediated by increased expression of MAdCAM-1
facilitating entry in to the inflamed omentum and tumour [44]. In support of our findings,
exposure to OAC patient-derived ACM significantly increased the expression of α4β7 on
NK cells, demonstrating that the omentum may be playing a role in shaping adhesion
molecule expression in OAC.

To further explore the effects of fractalkine and IL-15 on NK cell migration and ad-
hesion, the frequencies of cells expressing the adhesion molecules L-selectin and α4β7
were analysed. Interestingly, whilst IL-15 significantly increased the frequencies of cells
expressing L-selectin and α4β7, simultaneous exposure to fractalkine undermines these
effects, suggesting that fractalkine antagonises the stimulatory effects of IL-15 in relation
to enhanced adhesion molecule expression. Previous work has shown short term stim-
ulation with IL-15 increases L-selectin expression on NK cells, while a recent report has
shown longer term stimulation can decrease L-selectin expression which can stifle NK cell
expansion [45,46].

The highest proportion of L-selectin+ NK cells were identified in the circulation of
OAC patients. L-selectin mediates the initial rolling step within the adhesion cascade and
binds to MAdCAM-1 [47,48]. L-selectin is indispensable in the recruitment of NK cells to
the tumour and the lymph nodes, allowing for NK cell tumour immunosurveillance [49,50].
Furthermore, L-selectin expression is indicative of a multi-functional NK cell with potent
effector functions [51]. Our group has previously reported high levels of soluble L-selectin
in the ACM of OAC patients, suggesting it may be shed by immune cells within this tissue
and may influence immune cell retention within the omentum [17]. This suggests omental
MAdCAM-1 may recruit L-selectin-expressing NK cells into the VAT and allow for their
subsequent shedding of the ligand in this environment, thus contributing to the significantly
lower frequencies seen within the omentum. Furthermore, we have previously identified a
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population of L-selectin+CX3CR1+ NK cells in the circulation of OAC patients, which we
propose would be amenable to CX3CR1 antagonism and thus spared from recruitment to
the omentum and subsequent loss of L-selectin expression [12].

Given the bias of gut-homing integrin expression in compartments of tumour and
omentum, we next examined the adhesion of NK cells following exposure to these microen-
vironments. Adhesion to MAdCAM-1 was significantly increased following treatment with
OAC patient-derived TCM. Adhesion is integral to the successful infiltration of lympho-
cytes into the solid tumour, with so called “cold” tumours often displaying disordered
adhesion molecule expression on tumour vessels, thus leading to poorer infiltration [52].
This suggests the OAC tumour microenvironment leads to enhanced adhesion, which
may facilitate the successful infiltration of immune cells into the solid tumour once they
reach this site. In contrast, adhesion to MAdCAM-1 was mildly but significantly lessened
following exposure to the ACM suggesting that this is not as important for adhesion within
the omentum. Interestingly, pre-treatment with a CX3CR1 antagonist did not dampen
this, suggesting that while antagonism can rescue ACM mediated alternations in NK cell
migration, it cannot alter the adhesive capacity of NK cells.

In light of changes in α4β7 and L-selectin expression on NK cells observed following
IL-15 treatment, we next wanted to determine whether treatment with fractalkine and IL-15
can alter NK cell adhesion to the ligand of α4β7 and L-selectin, MAdCAM-1. However, no
differences in NK cell adhesion to MAdCAM-1 were observed following treatment with
fractalkine, IL-15 or both. IL-15 is known to induce NK cell adhesion to endothelial cells,
however these results suggest adhesion to MAdCAM-1 is not impacted [35].

Our data show that exposure to soluble factors in the OAC omental microenvironment,
namely fractalkine, can significantly obstruct passage of NK cells to the tumour. This
places more emphasis on finding a therapeutic means to prevent NK cell trafficking to
the omentum in obesity-associated cancer and our data suggest that CX3CR1 antagonism
provides the solution. We next sought to examine whether exposure to the omental secreted
factors compromised the killing potential of NK cells via modulation of their death receptor
ligands. Death receptor ligands such as TRAIL and FasL provide an alternative mode for
NK cell cytotoxicity [31,53,54]. TRAIL is expressed at low levels on circulating NK cells but
can be induced by cytokine stimulation [55]. FasL, the cognate ligand of Fas is expressed
on cytotoxic effector cells, such as NK cells [56]. Our data show that the frequencies of
TRAIL and FasL-expressing NK cells are significantly higher within the tumour of OAC
patients, compared to the blood and omentum, indicating that once NK cells infiltrate the
tumour microenvironment (TME), they are not inhibited from eliciting their killing activities.
These data suggest that therapeutically boosting NK cell infiltration of OAC tumour may
lead to enhanced killing. Overall, this suggests that the OAC TME is not completely
immunosuppressive and that NK cells which successfully infiltrate the OAC tumour
may have cytotoxic potential. Interestingly, there were significantly lower frequencies of
TRAIL+ and FasL+ NK cells in the circulation of obese OAC patients compared to their
non-obese counterparts. This is indicative of the often dysfunctional state of NK cells
in obesity and is in agreement with a previous report which showed diminished TRAIL
and CD107a expression on circulating NK cells from obese patients [57–59]. Importantly,
treatment with fractalkine impedes IL-15-stimulated NK cell expression of TRAIL and FasL
and presents further rationale to target this pathway via CX3CR1 antagonism. Overall
these data suggest that entry into the fractalkine-rich omentum may not only compromise
subsequent migration to the tumour but also attenuate the cytotoxic capacity of NK cells.

5. Conclusions

Here, we report the endocytosis of CX3CR1 on the surface of NK cells is reversible
following short-term exposure to fractalkine suggesting that NK cell phenotype can be
rescued in OAC (Figure 7). Crucially, we report for the first time that exposure to the
soluble mediators of the OAC omentum significantly dampens NK cell migration towards
OAC patient tumour providing further rationale to limit their recruitment to the VAT.
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Importantly, pre-treatment with a CX3CR1 antagonist can help rescue this migration,
further indicating the central role that fractalkine plays in NK cell phenotype, function
and migration in obesity-associated cancer. Furthermore, exposure to soluble fractalkine
can dampen IL-15-mediated stimulatory effects on NK cell cytotoxicity markers and gut-
homing integrins. Overall, this study presents further evidence that CX3CR1 antagonism
holds therapeutic potential to rescue NK cells from fractalkine-mediated recruitment and
subsequent alterations in omentum. In addition, our data provide novel insights into the
utility of combining CX3CR1 antagonism with IL-15 to boost NK cell tumour-homing and
tumour-killing in OAC patients.

Figure 7. NK cell fate following exposure to fractalkine. Circulating NK cells are exposed to
fractalkine. After 2 h of exposure there is reversible endocytosis of CX3CR1. When NK cells are stimu-
lated with IL-15, fractalkine diminishes IL-15-mediated increases in α4β7 and FasL expression. After
24 h of exposure endocytosis of CX3CR1 is sustained. Migration towards TCM is decreased. Further-
more, IL-15-mediated increases in α4β7, TRAIL and FasL expression are dampened by fractalkine.

Author Contributions: Conceptualization, E.M., J.L. and M.J.C.; methodology, E.M., F.O. and N.E.D.;
resources, J.V.R. and C.B.; writing—original draft preparation, E.M.; writing—review and editing,
E.M., J.L. and M.J.C.; supervision, J.L. and M.J.C.; funding acquisition, E.M., J.L. and M.J.C. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Breakthrough Cancer Research (BCR-2019-02-PhD-TCD). The
APC was funded by Breakthrough Cancer Research (BCR-2019-02-PhD-TCD).

Institutional Review Board Statement: The study was conducted according to the guidelines of the
Declaration of Helsinki and approved by the St. James’s Hospital Ethics Review Board.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: Data available on request.

Acknowledgments: The authors would like to thank the patients and staff at the Oesophageal and
Gastric Centre at St. James’s Hospital for their participation in this study. The authors would like to
thank Aideen Long and Siobhan Gargan for their intellectual guidance.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.



Cancers 2022, 14, 64 17 of 19

References
1. Lauby-Secretan, B.; Scoccianti, C.; Loomis, D.; Grosse, Y.; Bianchini, F.; Straif, K. Body Fatness and Cancer—Viewpoint of the

IARC Working Group. N. Engl. J. Med. 2016, 375, 794–798. [CrossRef]
2. Hoyo, C.; Cook, M.B.; Kamangar, F.; Freedman, N.D.; Whiteman, D.C.; Bernstein, L.; Brown, L.M.; Risch, H.A.; Ye, W.; Sharp, L.;

et al. Body mass index in relation to oesophageal and oesophagogastric junction adenocarcinomas: A pooled analysis from the
international BEACON consortium. Int. J. Epidemiol. 2012, 41, 1706–1718. [CrossRef]

3. O’Sullivan, K.E.; Phelan, J.J.; O’Hanlon, C.; Lysaght, J.; O’Sullivan, J.N.; Reynolds, J.V. The role of inflammation in cancer of the
esophagus. Expert Rev. Gastroenterol. Hepatol. 2014, 8, 749–760. [CrossRef]

4. Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2020. CA. Cancer J. Clin. 2020, 70, 7–30. [CrossRef]
5. Van Hagen, P.; Hulshof, M.C.C.M.; Van Lanschot, J.J.B.; Steyerberg, E.W.; Henegouwen, M.V.B.; Wijnhoven, B.P.L.; Richel, D.J.;

Nieuwenhuijzen, G.A.P.; Hospers, G.A.P.; Bonenkamp, J.J.; et al. Preoperative Chemoradiotherapy for Esophageal or Junctional
Cancer. N. Engl. J. Med. 2012, 366, 2074–2084. [CrossRef] [PubMed]

6. ASCO, Stomach Cancer: Statistics, Cancer.Net. 2021. Available online: www.cancer.net/cancer-types/stomach-cancer/statistics
(accessed on 14 October 2021).

7. Ajani, J.A.; Mansfield, P.F.; Janjan, N.; Morris, J.; Pisters, P.W.; Lynch, P.M.; Feig, B.; Myerson, R.; Nivers, R.; Cohen, D.S.; et al.
Multi-institutional trial of preoperative chemoradiotherapy in patients with potentially resectable gastric carcinoma. J. Clin.
Oncol. 2004, 22, 2774–2780. [CrossRef] [PubMed]

8. Ajani, J.A.; Mansfield, P.F.; Crane, C.H.; Wu, T.T.; Lunagomez, S.; Lynch, P.M.; Janjan, N.; Feig, B.; Faust, J.; Yao, J.C.; et al.
Paclitaxel-Based Chemoradiotherapy in Localized Gastric Carcinoma: Degree of Pathologic Response and Not Clinical Parameters
Dictated Patient Outcome. J. Clin. Oncol. 2005, 23, 1237–1244. [CrossRef] [PubMed]

9. Vivier, E.; Tomasello, E.; Baratin, M.; Walzer, T.; Ugolini, S. Functions of natural killer cells. Nat. Immunol. 2008, 9, 503–510.
[CrossRef]

10. Waldhauer, I.; Steinle, A. NK cells and cancer immunosurveillance. Oncogene 2008, 27, 5932–5943. [CrossRef] [PubMed]
11. Conroy, M.J.; Fitzgerald, V.; Doyle, S.L.; Channon, S.; Useckaite, Z.; Gilmartin, N.; O’Farrelly, C.; Ravi, N.; Reynolds, J.V.;

Lysaght, J. The microenvironment of visceral adipose tissue and liver alter natural killer cell viability and function. J. Leukoc. Biol.
2016, 100, 1435–1442. [CrossRef] [PubMed]

12. Mylod, E.; Melo, A.M.; Donlon, N.E.; Davern, M.; Bhardwaj, A.; Reynolds, J.V.; Lysaght, J.; Conroy, M.J. Fractalkine Elicits
Chemotactic, Phenotypic, and Functional Effects on CX3CR1 + CD27 − NK Cells in Obesity-Associated Cancer. J. Immunol. 2021,
207, 1200–1210. [CrossRef] [PubMed]

13. Lin, E.W.; Karakasheva, T.A.; Hicks, P.D.; Bass, A.J.; Rustgi, A.K. The tumor microenvironment in esophageal cancer. Oncogene
2016, 35, 5337–5349. [CrossRef]

14. Muro, K.; Chung, H.C.; Shankaran, V.; Geva, R.; Catenacci, D.; Gupta, S.; Eder, J.P.; Golan, T.; Le, D.T.; Burtness, B.; et al.
Pembrolizumab for patients with PD-L1-positive advanced gastric cancer (KEYNOTE-012): A multicentre, open-label, phase 1b
trial. Lancet Oncol. 2016, 17, 717–726. [CrossRef]

15. Charo, I.F.; Ransohoff, R.M. Mechanisms of disease: The many roles of chemokines and chemokine receptors in inflammation. N.
Engl. J. Med. 2006, 354, 610–621. [CrossRef] [PubMed]

16. O’Donovan, C.; Davern, M.; Donlon, N.E.; Lysaght, J.; Conroy, M.J. Chemokine-targeted therapies: An opportunity to remodel
immune profiles in gastro-oesophageal tumours. Cancer Lett. 2021, 521, 224–236. [CrossRef]

17. Conroy, M.J.; Maher, S.G.; Melo, A.M.; Doyle, S.L.; Foley, E.; Reynolds, J.V.; Long, A.; Lysaght, J. Identifying a novel role for
fractalkine (CX3CL1) in memory CD8+ T cell accumulation in the omentum of obesity-associated cancer patients. Front. Immunol.
2018, 9, 1867. [CrossRef]

18. Polyák, A.; Ferenczi, S.; Dénes, A.; Winkler, Z.; Kriszt, R.; Pintér-Kübler, B.; Kovács, K.J. The fractalkine/Cx3CR1 system is
implicated in the development of metabolic visceral adipose tissue inflammation in obesity. Brain Behav Immun. 2014, 38, 25–35.
[CrossRef]

19. Shah, R.; Hinkle, C.C.; Ferguson, J.F.; Mehta, N.N.; Li, M.; Qu, L.; Lu, Y.; Putt, M.E.; Ahima, R.S.; Reilly, M.P. Fractalkine is a novel
human adipochemokine associated with type 2 diabetes. Diabetes 2011, 60, 1512–1518. [CrossRef]

20. D’Haese, J.G.; Demir, I.E.; Friess, H.; Ceyhan, G.O. Fractalkine/CX3CR1: Why a single chemokine-receptor duo bears a major and
unique therapeutic potential. Expert Opin. Ther. Targets 2010, 14, 207–219. [CrossRef]

21. Conroy, M.J.; Lysaght, J. CX3CL1 Signaling in the Tumor Microenvironment. Adv. Exp. Med. Biol. 2020, 1231, 1–12. [CrossRef]
22. Waldmann, T.A. Interleukin-15 in the treatment of cancer. Expert Rev. Clin. Immunol. 2014, 10, 1689–1701. [CrossRef]
23. Waldmann, T.A. The biology of interleukin-2 and interleukin-15: Implications for cancer therapy and vaccine design. Nat. Rev.

Immunol. 2006, 6, 595–601. [CrossRef]
24. Yang, Y.; Lundqvist, A. Immunomodulatory Effects of IL-2 and IL-15; Implications for Cancer Immunotherapy. Cancers 2020,

12, 3586. [CrossRef]
25. Lysaght, J.; Allott, E.H.; Donohoe, C.L.; Howard, J.M.; Pidgeon, G.P.; Reynolds, J.V. T lymphocyte activation in visceral adipose

tissue of patients with oesophageal adenocarcinoma. Br. J. Surg. 2011, 98, 964–974. [CrossRef] [PubMed]
26. Melo, A.M.; O’Brien, A.M.; Phelan, J.J.; Kennedy, S.A.; Wood, N.A.W.; Veerapen, N.; Besra, G.S.; Clarke, N.E.; Foley, E.K.;

Ravi, A.; et al. Mucosal-Associated Invariant T Cells Display Diminished Effector Capacity in Oesophageal Adenocarcinoma.
Front. Immunol. 2019, 10, 1580. [CrossRef] [PubMed]

http://doi.org/10.1056/NEJMsr1606602
http://doi.org/10.1093/ije/dys176
http://doi.org/10.1586/17474124.2014.913478
http://doi.org/10.3322/caac.21590
http://doi.org/10.1056/NEJMoa1112088
http://www.ncbi.nlm.nih.gov/pubmed/22646630
www.cancer.net/cancer-types/stomach-cancer/statistics
http://doi.org/10.1200/JCO.2004.01.015
http://www.ncbi.nlm.nih.gov/pubmed/15254045
http://doi.org/10.1200/JCO.2005.01.305
http://www.ncbi.nlm.nih.gov/pubmed/15718321
http://doi.org/10.1038/ni1582
http://doi.org/10.1038/onc.2008.267
http://www.ncbi.nlm.nih.gov/pubmed/18836474
http://doi.org/10.1189/jlb.5AB1115-493RR
http://www.ncbi.nlm.nih.gov/pubmed/27365528
http://doi.org/10.4049/jimmunol.2000987
http://www.ncbi.nlm.nih.gov/pubmed/34321227
http://doi.org/10.1038/onc.2016.34
http://doi.org/10.1016/S1470-2045(16)00175-3
http://doi.org/10.1056/NEJMra052723
http://www.ncbi.nlm.nih.gov/pubmed/16467548
http://doi.org/10.1016/j.canlet.2021.09.005
http://doi.org/10.3389/fimmu.2018.01867
http://doi.org/10.1016/j.bbi.2014.01.010
http://doi.org/10.2337/db10-0956
http://doi.org/10.1517/14728220903540265
http://doi.org/10.1007/978-3-030-36667-4_1
http://doi.org/10.1586/1744666X.2014.973856
http://doi.org/10.1038/nri1901
http://doi.org/10.3390/cancers12123586
http://doi.org/10.1002/bjs.7498
http://www.ncbi.nlm.nih.gov/pubmed/21520028
http://doi.org/10.3389/fimmu.2019.01580
http://www.ncbi.nlm.nih.gov/pubmed/31354725


Cancers 2022, 14, 64 18 of 19

27. Lysaght, J.; van der Stok, E.P.; Allott, E.H.; Casey, R.; Donohoe, C.L.; Howard, J.M.; McGarrigle, S.A.; Ravi, N.; Reynolds, J.V.;
Pidgeon, G.P. Pro-inflammatory and tumour proliferative properties of excess visceral adipose tissue. Cancer Lett. 2011, 312, 62–72.
[CrossRef] [PubMed]

28. Strazza, M.; Azoulay-Alfaguter, I.; Pedoeem, A.; Mor, A. Static Adhesion Assay for the Study of Integrin Activation in T
Lymphocytes. J. Vis. Exp. 2014, 88, 51646. [CrossRef]

29. Wagner, N.; Löhler, J.; Kunkel, E.J.; Ley, K.; Leung, E.; Krissansen, G.; Rajewsky, K.; Müller, W. Critical role for beta7 integrins in
formation of the gut-associated lymphoid tissue. Nature 1996, 382, 366–370. [CrossRef]

30. Briskin, M.; Winsor-Hines, D.; Shyjan, A.; Cochran, N.; Bloom, S.; Wilson, J.; McEvoy, L.M.; Butcher, E.C.; Kassam, N.;
Mackay, C.R.; et al. Human mucosal addressin cell adhesion molecule-1 is preferentially expressed in intestinal tract and associ-
ated lymphoid tissue. Am. J. Pathol. 1997, 151, 97–110.

31. Smyth, M.J.; Cretney, E.; Kelly, J.M.; Westwood, J.A.; Street, S.E.A.; Yagita, H.; Takeda, K.; Dommelen, S.L.H.V.;
Degli-Esposti, M.A.; Hayakawa, Y. Activation of NK cell cytotoxicity. Mol. Immunol. 2005, 42, 501–510. [CrossRef]

32. Ishigami, S.; Natsugoe, S.; Tokuda, K.; Nakajo, A.; Che, X.; Iwashige, H.; Aridome, K.; Hokita, S.; Aikou, T. Prognostic value of
intratumoral natural killer cells in gastric carcinoma. Cancer 2000, 88, 577–583. [CrossRef]

33. Xu, B.; Chen, L.; Li, J.; Zheng, X.; Shi, L.; Wu, C.; Jiang, J. Prognostic value of tumor infiltrating NK cells and macrophages in stage
II+III esophageal cancer patients. Oncotarget 2016, 7, 74904–74916. [CrossRef]

34. Berger, C.; Berger, M.; Hackman, R.C.; Gough, M.; Elliott, C.; Jensen, M.C.; Riddell, S.R. Safety and immunologic effects of IL-15
administration in nonhuman primates. Blood 2009, 114, 2417–2426. [CrossRef]

35. Allavena, P.; Giardina, G.; Bianchi, G.; Mantovani, A. IL-15 is chemotactic for natural killer cells and stimulates their adhesion to
vascular endothelium. J. Leukoc. Biol. 1997, 61, 729–735. [CrossRef] [PubMed]

36. Nayyar, G.; Chu, Y.; Cairo, M.S. Overcoming resistance to natural killer cell based immunotherapies for solid tumors. Front.
Oncol. 2019, 9, 51. [CrossRef]

37. Zhang, C.; Zhang, J.; Niu, J.; Zhang, J.; Tian, Z. Interleukin-15 improves cytotoxicity of natural killer cells via up-regulating
NKG2D and cytotoxic effector molecule expression as well as STAT1 and ERK1/2 phosphorylation. Cytokine 2008, 42, 128–136.
[CrossRef] [PubMed]

38. Pérez-Villar, J.J.; Zapata, J.M.; Melero, I.; Postigo, A.; Sánchez-Madrid, E.; López-Botet, M. Expression and function of alpha
4/beta 7 integrin on human natural killer cells. Immunology 1996, 89, 96–104. [CrossRef]

39. Connor, E.M.; Eppihimer, M.J.; Morise, Z.; Granger, D.N.; Grisham, M.B. Expression of mucosal addressin cell adhesion molecule-1
(MAdCAM-1) in acute and chronic inflammation. J. Leukoc. Biol. 1999, 65, 349–355. [CrossRef] [PubMed]

40. Berberich, S.; Dähne, S.; Schippers, A.; Peters, T.; Müller, W.; Kremmer, E.; Förster, R.; Pabst, O. Differential molecular and
anatomical basis for B cell migration into the peritoneal cavity and omental milky spots. J. Immunol. 2008, 180, 2196–2203.
[CrossRef]

41. Carlow, D.A.; Gold, M.R.; Ziltener, H.J. Lymphocytes in the peritoneum home to the omentum and are activated by resident
dendritic cells. J. Immunol. 2009, 183, 1155–1165. [CrossRef] [PubMed]

42. Meza-Perez, S.; Randall, T.D. Immunological Functions of the Omentum. Trends Immunol. 2017, 38, 526–536. [CrossRef]
43. Salmi, M.; Andrew, D.P.; Butcher, E.C.; Jalkanen, S. Dual binding capacity of mucosal immunoblasts to mucosal and synovial

endothelium in humans: Dissection of the molecular mechanisms. J. Exp. Med. 1995, 181, 137–149. [CrossRef]
44. Kavanagh, M.E.; Conroy, M.J.; Clarke, N.E.; Gilmartin, N.T.; O’Sullivan, K.E.; Feighery, R.; MacCarthy, F.; O’Toole, D.; Ravi, N.;

Reynolds, J.V.; et al. Impact of the inflammatory microenvironment on T-cell phenotype in the progression from reflux oesophagitis
to Barrett oesophagus and oesophageal adenocarcinoma. Cancer Lett. 2016, 370, 117–124. [CrossRef] [PubMed]

45. Lin, S.-J.; Chen, J.-Y.; Kuo, M.-L.; Hsiao, H.-S.; Lee, P.-T.; Huang, J.-L. Effect of Interleukin-15 on CD11b, CD54, and CD62L
Expression on Natural Killer Cell and Natural Killer T-Like Cells in Systemic Lupus Erythematosus. Mediators Inflamm. 2016,
2016, 9675861. [CrossRef]

46. Mishra, H.K.; Dixon, K.J.; Pore, N.; Felices, M.; Miller, J.S.; Walcheck, B. Activation of ADAM17 by IL-15 Limits Human NK Cell
Proliferation. Front. Immunol. 2021, 12, 1621. [CrossRef]

47. Yamada, M.; Yanaba, K.; Hasegawa, M.; Matsushita, Y.; Horikawa, M.; Komura, K.; Matsushita, T.; Kawasuji, A.; Fujita, T.;
Takehara, K.; et al. Regulation of local and metastatic host-mediated anti-tumour mechanisms by l-selectin and intercellular
adhesion molecule-1. Clin. Exp. Immunol. 2006, 143, 216–227. [CrossRef]

48. Berg, E.L.; McEvoy, L.M.; Berlin, C.; Bargatze, R.F.; Butcher, E.C. L-selectin-mediated lymphocyte rolling on MAdCAM-1. Nature
1993, 366, 695–698. [CrossRef]

49. Sobolev, O.; Stern, P.; Lacy-Hulbert, A.; Hynes, R.O. Natural killer cells require selectins for suppression of subcutaneous tumors.
Cancer Res. 2009, 69, 2531–2539. [CrossRef] [PubMed]

50. Chen, S.; Kawashima, H.; Lowe, J.B.; Lanier, L.L.; Fukuda, M. Suppression of tumor formation in lymph nodes by L-selectin-
mediated natural killer cell recruitment. J. Exp. Med. 2005, 202, 1679–1689. [CrossRef]

51. Juelke, K.; Killig, M.; Luetke-Eversloh, M.; Parente, E.; Gruen, J.; Morandi, B.; Ferlazzo, G.; Thiel, A.; Schmitt-Knosalla, I.;
Romagnani, C. CD62L expression identifies a unique subset of polyfunctional CD56 dim NK cells. Blood 2010, 116, 1299–1307.
[CrossRef] [PubMed]

52. Harjunpää, H.; Llort Asens, M.; Guenther, C.; Fagerholm, S.C. Cell Adhesion Molecules and Their Roles and Regulation in the
Immune and Tumor Microenvironment. Front. Immunol. 2019, 10, 78. [CrossRef]

http://doi.org/10.1016/j.canlet.2011.07.034
http://www.ncbi.nlm.nih.gov/pubmed/21890265
http://doi.org/10.3791/51646
http://doi.org/10.1038/382366a0
http://doi.org/10.1016/j.molimm.2004.07.034
http://doi.org/10.1002/(SICI)1097-0142(20000201)88:3&lt;577::AID-CNCR13&gt;3.0.CO;2-V
http://doi.org/10.18632/oncotarget.12484
http://doi.org/10.1182/blood-2008-12-189266
http://doi.org/10.1002/jlb.61.6.729
http://www.ncbi.nlm.nih.gov/pubmed/9201264
http://doi.org/10.3389/fonc.2019.00051
http://doi.org/10.1016/j.cyto.2008.01.003
http://www.ncbi.nlm.nih.gov/pubmed/18280748
http://doi.org/10.1046/j.1365-2567.1996.d01-706.x
http://doi.org/10.1002/jlb.65.3.349
http://www.ncbi.nlm.nih.gov/pubmed/10080539
http://doi.org/10.4049/jimmunol.180.4.2196
http://doi.org/10.4049/jimmunol.0900409
http://www.ncbi.nlm.nih.gov/pubmed/19553538
http://doi.org/10.1016/j.it.2017.03.002
http://doi.org/10.1084/jem.181.1.137
http://doi.org/10.1016/j.canlet.2015.10.019
http://www.ncbi.nlm.nih.gov/pubmed/26519754
http://doi.org/10.1155/2016/9675861
http://doi.org/10.3389/fimmu.2021.711621
http://doi.org/10.1111/j.1365-2249.2005.02989.x
http://doi.org/10.1038/366695a0
http://doi.org/10.1158/0008-5472.CAN-08-3126
http://www.ncbi.nlm.nih.gov/pubmed/19258505
http://doi.org/10.1084/jem.20051473
http://doi.org/10.1182/blood-2009-11-253286
http://www.ncbi.nlm.nih.gov/pubmed/20505160
http://doi.org/10.3389/fimmu.2019.01078


Cancers 2022, 14, 64 19 of 19

53. Cibrián, D.; Sánchez-Madrid, F. CD69: From activation marker to metabolic gatekeeper. Eur. J. Immunol. 2017, 47, 946–953.
[CrossRef] [PubMed]

54. Zamai, L.; Ahmad, M.; Bennett, I.M.; Azzoni, L.; Alnemri, E.S.; Perussia, B. Natural Killer (NK) Cell–mediated Cytotoxicity:
Differential Use of TRAIL and Fas Ligand by Immature and Mature Primary Human NK Cells. J. Exp. Med. 1998, 188, 2375–2380.
[CrossRef]

55. Mirandola, P.; Ponti, C.; Gobbi, G.; Sponzilli, I.; Vaccarezza, M.; Cocco, L.; Zauli, G.; Secchiero, P.; Manzoli, F.A.; Vitale, M.
Activated human NK and CD8+ T cells express both TNF-related apoptosis-inducing ligand (TRAIL) and TRAIL receptors but
are resistant to TRAIL-mediated cytotoxicity. Blood 2004, 104, 2418–2424. [CrossRef] [PubMed]

56. Peter, M.E.; Hadji, A.; Murmann, A.E.; Brockway, S.; Putzbach, W.; Pattanayak, A.; Ceppi, P. The role of CD95 and CD95 ligand in
cancer. Cell Death Differ. 2015, 22, 549–559. [CrossRef] [PubMed]

57. O’Shea, D.; Hogan, A.E. Dysregulation of Natural Killer Cells in Obesity. Cancers 2019, 11, 573. [CrossRef] [PubMed]
58. Bähr, I.; Spielmann, J.; Quandt, D.; Kielstein, H. Obesity-Associated Alterations of Natural Killer Cells and Immunosurveillance

of Cancer. Front. Immunol. 2020, 11, 245. [CrossRef] [PubMed]
59. Laue, T.; Wrann, C.D.; Hoffmann-Castendiek, B.; Pietsch, D.; Hübner, L.; Kielstein, H. Altered NK cell function in obese healthy

humans. BMC Obes. 2015, 2, 1. [CrossRef] [PubMed]

http://doi.org/10.1002/eji.201646837
http://www.ncbi.nlm.nih.gov/pubmed/28475283
http://doi.org/10.1084/jem.188.12.2375
http://doi.org/10.1182/blood-2004-04-1294
http://www.ncbi.nlm.nih.gov/pubmed/15205263
http://doi.org/10.1038/cdd.2015.3
http://www.ncbi.nlm.nih.gov/pubmed/25656654
http://doi.org/10.3390/cancers11040573
http://www.ncbi.nlm.nih.gov/pubmed/31018563
http://doi.org/10.3389/fimmu.2020.00245
http://www.ncbi.nlm.nih.gov/pubmed/32231659
http://doi.org/10.1186/s40608-014-0033-1
http://www.ncbi.nlm.nih.gov/pubmed/26217516

	Introduction 
	Materials and Methods 
	Patient Demographics 
	Sample Preparation 
	Patient Sample Phenotyping 
	CX3CR1 Endocytosis following Treatment with Recombinant Fractalkine 
	CX3CR1 Recycling following Treatment with Recombinant Fractalkine 
	Phenotyping NK Cells following Fractalkine and IL-15 Treatment 
	OAC Patient-Derived Adipose Conditioned Media Treatment 
	NK Cell Adhesion Assay 
	NK Cell Chemotaxis Assay 
	Statistical Analysis 

	Results 
	Fractalkine Mediates the Endocytosis of CX3CR1 
	Exposure to ACM Significantly Reduces NK Cell Migration towards OAC Patient-Derived TCM 
	IL-15 Antagonises Fractalkine-Mediated Decreases in NK Cell Migration towards the Chemotactic Signals of OAC Tumour 
	Fractalkine Antagonises IL-15-Mediated Increases in Adhesion Molecule Expression 
	The OAC Omental Microenvironment Significantly Decreases NK Cell Adhesion to MAdCAM-1 
	Fractalkine Significantly Reduces IL-15-Mediated Stimulation of Death Receptor Ligand Expression by NK Cells 

	Discussion 
	Conclusions 
	References

