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Editorial on the Research Topic:

Mitochondrial Genomes and Mitochondrion Related Gene Insights to Fungal Evolution

Mitochondria are organelles of eukaryotic cells that provide the platform for efficient energy
metabolism, Fe/S-cluster biosynthesis, amino acid metabolism, and moreover, they have been
linked to apoptosis, senescence, virulence, and drug resistance (Olson, 2001; Osiewacz et al., 2010;
Chatre and Ricchetti, 2014; Giordano et al., 2018; Medina et al., 2020).

They originated from an ancestral α-proteobacterial endosymbiont (Margulis, 1970). Several
complementary and alternative hypotheses to this firstly endosymbiotic theory have been proposed
(for review seeMartin et al., 2015 and references therein), which usually indicate withmodifications
the endosymbiosis of an α-proteobacterium within an archaeon. However, the additional
participation of lysogenic viruses to the archaeal progenitor (Bell, 2009) or phage-like infected
α-protebacterial progenitors (Varassas and Kouvelis) may have also contributed to the genesis of
the proto-eukaryote. Mitochondria are semi-autonomous organelles, since they carry their own
mitochondrial (mt) genomes and the components for protein synthesis. However, mitogenomes do
not encode for all molecules necessary for the function and structure of this organelle. Maintenance
of the mitogenome requires nuclear encoded factors that drive DNA replication, repair and
transmission (Freel et al., 2015). Expression of mitochondrial genes is assumed to be regulated
at the post-transcriptional level requiring nuclear encoded general and gene specific factors that
guide transcription, RNA processing, intron splicing, RNA stability and translation (Lipinski et al.,
2010; Varassas and Kouvelis). Mitogenome expression is linked with nuclear gene expression,
establishing extensive inter-compartmental crosstalk that can integrate organellar gene expression
into the cellular context as influenced by physiological, developmental, and environmental cues.
A limited number of studies have shown mitonuclear interactions and more specifically, nuclear
mitochondrial compatibility and co-adaptation, probably, are key components in fungal evolution
and adaptation (Giordano et al., 2018; Steensels et al., 2021). Recently, Clergeot and Olson showed
a link of nuclear and mitochondrial loci that affect radial growth of Heterobasidion parviporum
heterokaryons (agent of root rot and butt rot of conifers); the mt involved gene has been
identified as a unidentified ORF (uORF) (Himmelstrand et al., 2014), correlated to mt plasmids
integrated to the mt genome (Medina et al., 2020). Mitogenomes probably encode uORFs and,
by definition, these have no known function and homologs. These genes potentially evolved by
endogenous events and although these might be viewed as accessory elements (or not essential),
uORFs may have lineage specific functions that allow for fungi to adapt to certain environmental
conditions or act as key drivers of evolution for host-pathogen interactions (Monteiro-
Vitorello et al., 1995; Inoue et al., 2002; Patkar et al., 2012; van de Vossenberg et al., 2018).
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In general, fungal mitogenomes contain genes which encode
products (RNAs or proteins) involved in translation (the
small and large ribosomal subunit RNAs (rns and rnl) and
a set of tRNAs), plus genes encoding protein components
involved in the electron transport chain and oxidative
phosphorylation. This includes parts of Complex I (subunits
of NADH dehydrogenase: nad1 to nad6 and nad4L; except
for members of the Taphrinomycota and Saccharomycetaceae
and Saccharomycodaceae families of the Saccharomycetales),
components of Complex III (cob) and Complex IV (cox1,
cox2, and cox3), plus members of Complex V (ATP synthase
components: atp6, atp8, and usually atp9) (Zardoya, 2020).
Mitogenomes can also encode a ribosomal protein (rps3 or var1)
and the RNA (rnpB gene) component for RNaseP (Lang, 2018).
The above-mentioned genes are designated as the conserved
elements of fungal mitogenomes, even though it was recently
shown that one or more of these genes may be also absent,
arbitrarily in fungi independent to their taxonomic position
(Korovesi et al., 2018; Fonseca et al.). Mitogenomes also include
many accessory genes and elements in their content, besides
the uORFs mentioned above. For example self-splicing introns,
intron encoded ORFs, uORFs and in some members of the
Ascomycota mitochondrial ORFs have been detected that appear
to encode putative N-acetyltransferases and amino-transferases
(Wai et al., 2019). Variability in mitogenome size is in part due
to intergenic spacers, duplications, proliferation of repeats, and
insertions of plasmid components or other elements (Bullerwell
and Lang, 2005; Himmelstrand et al., 2014; Medina et al., 2020)
(Fonseca et al.; Hao). All the above elements render fungal
mitogenomes greatly diverse in content and ranging in size from
12.055 to > 500 kb (James et al., 2013; Liu et al., 2020).

Mt protein and rRNA coding genes are, usually, interrupted
by introns that based on the RNA secondary structure and
their splicing mechanisms can be assigned to either group I
or group II introns (Michel and Westhof, 1990; Lang et al.,
2007; Prince et al.). Mitochondrial introns are potentially self-
splicing but to achieve splicing competent configurations they
need to recruit protein factors (reviewed in Prince et al.).
Organellar introns can bemobile elements as they encode intron-
encoded proteins (IEPs) that may catalyze the movement of
an intron from an intron-containing allele to cognate alleles
that lack introns, a process referred to as intron homing
or retro-homing, if mediated by reverse transcriptase activity
(Belfort et al., 2002). Mobile introns (and their ORFs) are
often referred to as diversity generating elements and they
can be the major sources of mitogenome size polymorphisms
within a species (Li et al.; Valenti et al.; Yildiz and Ozkilinc).
However, there are examples where size variation and expansion
are linked to repeats and not introns (Hao). In some fungal
lineages, expansion of the mitochondrial genome is linked to
the expansion of intron numbers (Megarioti and Kouvelis, 2020;
Mukhopadhyay and Hausner, 2021), offering a possibility of fine
tuning mitochondrial gene expression by nuclear factors that
are involved in the splicing of group I and II introns (Rudan
et al., 2018; Mukhopadhyay and Hausner, 2021; Lin et al.; Yildiz
and Ozkilinic).

Mt accessory elements, like intergenic regions, where
promoters, GC-clusters and other repetitive elements are located,
show greater diversity and evolve faster, compared to the mt
coding genes, which remain under purifying selection (Raffaele
and Kamoun, 2012; Kolondra et al., 2015; Li et al.; Yildiz and
Ozlilinc). Accessory elements can contribute to mt gene shuffling
and the variable mitogenome reorganization through promoting
recombinational events (Zhang et al.; Hao). This makes
comparative mitogenome analyses essential in deciphering their
evolution and diversity. In addition, this comparative analysis
has been valuable in resolving issues related to fungal taxonomy,
population genetics and diagnostics. On a global scale, fungal
mitogenomes might be too variable to provide resolution to
address some of the deeper phylogenetic issues within the
Mycota (Fonseca et al.). As mentioned above, mitogenome
architecture (gene composition and synteny) is highly variable
among the fungi due to recombination events. These events
are promoted by potential hyphal fusion associated with the
existence of potential heteroplasmy (Zhang et al.). Combined
with repeats promoting intrachromosomal recombination events
and the potential horizontal movements of mobile elements (GC
clusters, group I and II introns, homing endonuclease genes)
plus uniparental inheritance, phylogenies based on mitogenomes
have to be interpreted with caution when trying to address
deeper phylogenetic questions (Aguileta et al., 2014; Stoddard,
2014; Repar and Warnecke, 2017; Mayers et al., 2021; Fonseca
et al.; Hao). With regards to fungal pathogens, mitogenomic
approaches have established potential links with fungicide/drug
resistance and mitogenome features that can be linked to
adaptation to specific hosts (Cinget and Bélanger, 2020; Wai
and Hausner, 2021). On the latter issue, Lin et al. observed that
among Rhizoctonia solani anastomosis groups there was some
correlation between mitogenome gene expression patterns and
the plant host, offering potential insights into fungal pathogens
that have adapted to different hosts.

This special issue provides a cross section of research
highlighting the various aspects of comparative mitogenomics
and the potential of mitonuclear interactions on fungal
adaptation and evolution. Yet, it also shows the need for
more work on this topic, starting from improvements
in accurate mitogenome annotations to the application
of omics and systems biology approaches in unraveling
the complexities of mitonuclear interactions and
regulatory processes.
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