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ABSTRACT: We present machine learning models for the
prediction of thermal and mechanical properties of polymers
based on the graph convolutional network (GCN). GCN-based
models provide reliable prediction performances for the glass
transition temperature (Tg), melting temperature (Tm), density
(ρ), and elastic modulus (E) with substantial dependence on the
dataset, which is the best for Tg (R2 ∼ 0.9) and worst for E (R2 ∼
0.5). It is found that the GCN representations for polymers
provide prediction performances of their properties comparable to
the popular extended-connectivity circular fingerprint (ECFP)
representation. Notably, the GCN combined with the neural
network regression (GCN-NN) slightly outperforms the ECFP. It
is investigated how the GCN captures important structural features of polymers to learn their properties. Using the dimensionality
reduction, we demonstrate that the polymers are organized in the principal subspace of the GCN representation spaces with respect
to the backbone rigidity. The organization in the representation space adaptively changes with the training and through the NN
layers, which might facilitate a subsequent prediction of target properties based on the relationships between the structure and the
property. The GCN models are found to provide an advantage to automatically extract a backbone rigidity, strongly correlated with
Tg, as well as a potential transferability to predict other properties associated with a backbone rigidity. Our results indicate both the
capability and limitations of the GCN in learning to describe polymer systems depending on the property.
KEYWORDS: machine learning, graph convolutional network, molecular featurization, backbone rigidity, polymer property prediction,
neural network

1. INTRODUCTION
Machine learning (ML) has been influencing many facets of
materials sciences and chemistry by providing powerful
techniques of leveraging data, which enables rapid prediction
of properties, the discovery of novel molecules, and the route
of synthesis.1,2 An application of ML to polymer systems is
promising because they exhibit interesting physical phenomena
over extensive time and length scales in nonequilibrium glassy
states for which experimental characterization and simulations
are relatively costly and difficult.3,4 This indicates also the
challenges in the application of ML because the power of ML
hinges on a high-quality database.4 The promise of ML
triggered a surge of studies on polymers to predict a range of
physical properties with various learning algorithms,5−9 to
build a database of the prediction models,10 and to augment
the polymer structure database.11 Also, the transfer learning
and generative model were combined to overcome the
problem of limited data such as thermal conductivity and to
discover the novel polymers.12

ML models learn the complex patterns in data through the
suitable representation of the data.13 The conventional

molecular representation is a list of features hand-crafted
based on domain knowledge for the quantitative structure−
activity relationships.14 On the other hand, extended-
connectivity circular fingerprints (ECFPs) are widely used
methods that exploit the graph structures of molecules to
encode the presence of particular substructures of chosen scale
into discrete bit vector representations.15 Deep learning-based
approaches like the graph convolutional network (GCN) are
the state-of-the-art learning method for graph-structured data
and can be used to generate representations of molecules.16

The GCN-based representation is promising compared to the
hand-crafted descriptors or the ECFP representations because
it can be optimized for data domains through the super-
vision.17 Also, the GCN generates continuous representations
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which are desirable for the exploration of chemical space for
the inverse design of molecules.18 There have been
comparative studies using different representations for bench-
mark datasets for small molecules or drug molecules, where the
GCN showed favorable performance compared to other
representations for many cases.14,19−22 However, such bench-
mark studies on the polymers are very limited, and the
application of the GCN to polymers is still elusive. A recent
study explored different kinds of molecular representations
including the ECFP and GCN in conjunction with various
learning algorithms to predict polymeric properties, where the
GNN was found to be much inferior to other representations.8

Thermal and mechanical properties of the polymers are
known to strongly depend on the monomer structure,
molecular interactions, and their morphological characteristic,
such as the rubbery or glassy state of the amorphous phase and
crystallinity.23−30 For example, glass transition temperature
was found to increase with the chain rigidity of the
polymers,23−26 where rigid rings in the polymer backbone
increase steric hindrance because of their limited structural
reorganization with high dihedral free energy.30 One of the
thermoplastic classes, polyamides, has higher melting points
compared to high-density polyethylene, where the neighboring
chains are networked to be well packed in an energetically
more stable conformation via hydrogen-bonding between
adjacent chains.31 It should be understood how the polymer
structure affects their macroscopic properties to design the
next generation of functional materials. There have been few
ML studies to understand the relationship between the
molecular feature and property of polymer systems. Recently,
a ML workflow was reported to predict melting points of small
chemicals in which the graph attribution technique was used to
analyze atom-level contributions to the predicted value of
melting point.9

The increase of model complexity in ML has led to
improvement of prediction performance but blurred the
reasoning behind the prediction of the model.13 Interpret-
ability of ML is crucial to understand and improve behaviors of
the model and provides the possibility to discover the new
physical and chemical principles of polymer design.32,33 The
key issue we undertake in this article is how the GCN-based
ML models work on the structural featurization to predict
thermal and mechanical properties of polymers. To address
this issue, we built the GCN-based models for the glass
transition temperature (Tg), melting temperature (Tm), density
(ρ), and elastic modulus (E) and analyze how the learned
structure−property correlations manifest in the representation
spaces. The outline of this paper is as follows: In Section 2, we
give a brief description of the models and methods employed
in this study. The GCN-based models to predict Tg, Tm, ρ, and
E of polyamides are investigated and compared with ECFP-
based ones in Section 3. It is also scrutinized through the
dimensional reduction how GCN representation captures the
structural feature, strongly correlated with the structural
rigidity, and associated polymer properties. Concluding
remarks are offered in Section 4.

2. METHOD

2.1. Data Collection

We collected data for polyamides, which is an important class
of engineering polymers exhibiting high thermal stability and
mechanical strength. The dataset employed in this work

contains a total of 2687 different structures of organic
polyamides of which experimental data were manually
collected from the PoLyInfo database.34 The distributions of
the experimental property data for Tg, Tm, ρ, and E are
displayed in Figure 1 for 1388, 942, 390, and 306

homopolymer structures, respectively. Multiple experimental
values of the property for the single polymer structure were
reduced to their mean value. We excluded the polymers for
which the standard deviations of the reported property values
exceed the value σmax, where the σmax is set to be 30 K for Tg
and Tm. We note that our E dataset shows an imbalance in
their distribution, where the data in the region of high modulus
(E > ∼6 GPa) are significantly scarce with only six polymer
structures as shown in Figure 1d. For the E datasets, we trained
the prediction models either excluding or including those six
polymers.
2.2. Molecular Representations
Different variants of the GCN have been developed to process
the graph data.16 We used the most popular and simple variant
of the GCN devised by Kipf and Welling35 A molecular graph
is represented by G(ν, ε), where ν is the set of nodes (atoms)
and ε is the set of edges, that is, connectivity of atoms. The
attributes of each node (atomic feature) are represented by the
vector xn

l ml for n-th node and are iteratively updated
by the approximated spectral graph convolution Hl+1 =
σ(D̃−1/2ÃD̃−1/2HlWl), where ml is the dimension of the atom
feature vector at the l-th layer, Hl = [x1l , x2l , ..., xNl ]T is a feature
(activation) matrix, N is the number of atoms, Ã = A + I is an
adjacency matrix of the molecular graph added with the self-
connection, =D Aii j ij is a degree matrix and × +W l m ml l 1

is a weight matrix, and σ is an activation function. Figure 2a
shows schematics of the graph convolution process by which
the feature vector of an atom is updated by aggregating
features of neighboring atoms through the convolutional layers.
The weight parameters in Wl for the convolution operation can
be optimized through the training to adapt to data, which is
one of the important advantages of the GCN. In essence, the
convolution operations in the GCN act as a low-pass filter

Figure 1. Data distributions of (a) glass transition temperature (Tg),
(b) melting temperature (Tm), (c) density (ρ), and (d) elastic
modulus (E) of 1388, 942, 390, and 306 polyamides, respectively,
collected from the PoLyInfo database.
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which smooths out the node attributes by averaging them over
neighboring nodes and facilitates the classification of nodes
and graphs.36,37 We set the initial atom feature vector by a
concatenation of one-hot vectors containing information on
the atom types, the number of attached hydrogen atoms,
degree of an atom, implicit valence, and aromaticity. The initial
feature vector consists of 25 binary components, m0 = 25, in
total (see the Supporting Information Table S1 for details of
the atom features), whose dimension can change depending on
the ml in the subsequent convolutional layers.
We used identical convolutional layers to have the same ml

through 1 ≤ l ≤ lfinal.We used the ReLU for the activation
function σ and set the initial weight parameters Wl in the
convolutional layers with the random values using the scheme
proposed by He et al.38 The final graph-level molecular
representation is obtained by the pooling operation which
sums up all the atom feature vectors at the final convolutional
layer as = =X xn

N
n
l m

1
lfinal final, which is invariant under the

permutation of atoms. The molecular representation X is input
to the regression algorithms to predict the target properties as
shown in Figure 2b. The ECFP has been also known as the
Morgan fingerprint to update the features of an atom by
aggregating the information of neighboring atoms iteratively
within a radius r around the atom, in analogy to the GCN.17

Particular substructures are then encoded to the molecular-
level representation in the form of a fixed-length bit vector by
the hash function.15 It should be noted that both the GCN and
ECFP take a monomer structure as an input and are of the
monomer-level representations of the polymers. We used
RDKit39 to process the molecular graph data and to obtain the
ECFP.15

2.3. Model Selection and Assessment

We used LR and a fully connected neural network (NN) for
the property predictions based on the molecular representa-

tions. We use the NN with two hidden layers. The 5-fold cross-
validation (CV) was used to estimate the performance of the
prediction models. We split the data into the 5-fold training/
test sets for which model selections and assessment were
performed instead of training/validation/test sets considering
the relatively small size of data.40 We optimized hyper-
parameters such as the depth and width of the GCN layers, the
width of the NN layers, learning rate, weight decay for L2
regularization, and epochs through the grid search for each
dataset. For the ECFP, the radius and the number of bits were
optimized. We choose the best models based on the loss
function averaged over the 5-fold validation sets for each
dataset. The performance of models was measured by two
metrics such as root-mean-square error (RMSE) and
coefficient of determination R2 to evaluate the best models.
We used Pytorch to build the models and adaptive moment
estimation (ADAM) algorithm for the training.41

3. RESULTS AND DISCUSSION
We begin by presenting the performances of the GCN-based
models, compared to the ECFP-based models. Table 1 and
Figure 3 show the prediction accuracies of our ML models
with different molecular representations and regression
algorithms. We notice that results with NN regression show
clear improvements compared to those with the LR algorithm,
regardless of the molecular representations and the types of
property. Figure 4 shows scatter plots for the GCN combined
with the NN (GCN-NN) and the ECFP combined with NN
(ECFP-NN) models comparing the experimental values and
predicted values. As for the Tg, both the GCN-NN and the
ECFP-NN provide very excellent prediction accuracies to be
RMSE ∼30 K and R2 ∼ 0.9 shown in Figure 3, Figure 4a,e, and
Table 1, while the LR models give rise to RMSE ∼ 35 K. This
indicates that both GCN and ECFP representations desire to
be nonlinearly processed for better fitting of the data. The

Figure 2. Property prediction model based on the GCN. (a) Feature vector of n-th atom xnl is updated iteratively through the l-th convolutional
layer by the graph convolution that aggregates the features of neighboring atoms. (b) Graph-level molecular representation vector X is obtained by
the pooling layer that sums up the feature vectors of all the atoms at the final convolution layer. The vector X is input to the regression algorithms
(linear regression (LR) only shown here) for the property prediction.

Table 1. Prediction Performances of the ML Models for the Glass Transition Temperature (Tg), Melting Temperature (Tm),
Density (ρ), and Elastic Modulus (E) Using Different Molecular Representations and Regression Algorithmsa

featurization regression

Tg Tm ρ E

RMSE R2 RMSE R2 RMSE R2 RMSE R2

GCN LR 34.09 (3.07) 0.87 (0.03) 44.81 (2.25) 0.70 (0.05) 0.073 (0.018) 0.58 (0.22) 0.49 (0.04) 0.47 (0.20)
NN 29.98 (2.16) 0.90 (0.02) 40.37 (2.94) 0.76 (0.05) 0.064 (0.013) 0.70 (0.17) 0.47 (0.06) 0.54 (0.20)

ECFP LR 33.23 (2.88) 0.87 (0.03) 44.28 (2.70) 0.67 (0.05) 0.074 (0.013) 0.64 (0.15) 0.53 (0.06) 0.35 (0.21)
NN 31.11 (1.80) 0.89 (0.01) 44.85 (2.52) 0.69 (0.06) 0.068 (0.014) 0.67 (0.16) 0.51 (0.07) 0.42 (0.21)

aThe values are mean and standard deviations (in the parenthesis) over 5-fold CV splits. The bold case indicates the best performances for each
property dataset. The units of RMSE are K, g/cm3, and GPa for T, ρ, and E, respectively.
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GCN combined with LR (GCN-LR) models show the
performance metrics comparable to those of the ECFP
combined with LR (ECFP-LR) models within the range of
standard deviations. Another noteworthy point is that the
GCN-NN models slightly outperform the ECFP-based models
for all the properties. In particular, as for the Tm dataset, the
GCN-NN model outperforms the ECFP-NN model with a
considerable margin, that is, ∼10% increase in R2. The GCN-
NN model predicts Tm with RMSE ∼40 K smaller by ∼5 K
than the ECFP-NN model. Although the model performances
for the properties such as ρ and E are degraded compared to
those for Tg and Tm, GCN representations hold their
performances better than the ECFP ones. In Figure 3, the
prediction accuracy becomes lower in the order of Tg, Tm, ρ,
and E for all the models, where the R2 scores obtained with
GCN-NN models are 0.90, 0.76, 0.70, and 0.54, respectively.
The prediction accuracy of E is the lowest and significantly
degraded when we extend their dataset into the region up to
∼10 GPa. We turn to this later.
The best models to predict the given properties of

polyamides are GCN-based ones, attributed to the fact that
the GCN learns the representations from data.16,17,35 The
result is in contrast to the recent study8 which presented the

ML prediction models trained on the PoLyInfo datasets with
similar sizes for the Tg (1034 polymers), Tm (641 polymers),
and ρ (318 polymers). They investigated various learning
algorithms such as the random forest, support vector machine,
and the NN regression in conjunction with the ECFP and
GCN where the predictions by their GCN models were
significantly inferior to those by the ECFP-based models.
While the best performing models in the study based on the
ECFP showed performances comparable to our work (R2 ∼
0.85 for Tg, R2 ∼ 0.64 for Tm, and R2 ∼ 0.56 for ρ), the GCN-
based models showed poor performances (R2 ∼ 0.71 for Tg, R2

∼ −0.15 for Tm, and R2 ∼ 0.26 for ρ). The direct comparison
of model performances with their results is not straightforward
because the adopted GCN architecture,42 methods of model
evaluations, and datasets are different in details. However, we
have observed consistently for our datasets that the GCN
representations outperformed the ECFP ones at least with a
small margin provided that the models are properly optimized.
We note that hyperparameters largely affect the performance
and optimal ones vary with datasets. The prediction perform-
ances depending on the hyperparameters such as the number
of nodes and the number of layers are given in Figure 5. The
prediction performances for Tg and Tm show nonmonotonic
behaviors with hyperparameters of the GCN in Figure 5a,b.
The best GCN-NN model for Tg has six convolutional layers
with hundred nodes, while that for Tm has three convolutional
layers in the GCN. On the other hand, the performance of the
ρ prediction model is monotonically degraded with increasing
the model complexity and the best with the single convolu-
tional layer with the hundred nodes. The model for E does not
show a clear trend, and the best one has five convolutional
layers with the three hundred nodes (see the Supporting
Information Figure S1 for the ECFP, and Tables S2 and S3 for
the details of the hyperparameters).
To validate our prediction accuracies of Tg and Tm, we

address how the final prediction performance is affected by
initial uncertainties in the employed dataset. The irreducible
error accounts for the unremovable portion of the prediction
error, originating from the noise of the target value (measured

Figure 3. Bar chart for the comparison of the performances across the
properties measured in the R2 score. The error bar indicates the
standard deviations over 5-fold CV splits.

Figure 4. Scatter plots for the ground truth and prediction using (a−d) GCN-NN and (e−h) ECFP-NN models for Tg, Tm, ρ, and E, respectively;
5-fold validation data points are colored by each fold, while training data points are colored by gray.
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values of Tg and Tm) around the true value in the data. The
irreducible errors in our Tg and Tm datasets are estimated by
∼30 K which is the maximum value of the standard deviations
of the measured values over the polymers. The uncertainties of
datasets arise from not only the method of experimental
measurements but also the complex polymer properties
associated with morphological characteristics, crystallinity,
cross-linking, chain length, and molecular weight. For example,
the Tg is not considered to be a thermodynamic state variable
and highly depends on various experimental processing
conditions such as a cooling rate, but the detailed information
is not available within the database. It might be possible for the
models to make more sophisticated predictions in the presence
of an available database of relationships between the Tg and
cooling rates. It is recently pointed out that improvements of
the machine prediction accuracies should be intertwined with

the database that provides retrieval of relevant information.4,43

Eventually, the important factors beyond what is considered
here should be included and reflected as a feature to improve
the model performance for the polymer design.
The prediction performances of all the models for E indicate

considerable difficulties in learning the mechanical property.
The size of the E dataset (306 polymers) is the smallest
compared to the other datasets, which can be thought of as a
reason for the degraded performance because it is generally
improved with increasing the data size.44 To check the effect of
the dataset size, we trained the GCN-NN models with the
reduced size of data of Tg (random sampling of 306 polymers)
and observed the R2 scores consistently larger than ∼0.8. The
result indicates that the size of data is not the major factor,
which is also corroborated by the performances (R2 ∼ 0.7) of
the ρ models with a similar data size (390 polymers). On the
other hand, it can be attributed to irreducible errors in the
dataset arising from the divergence in the experimental
measurements. Moreover, when we include the six data points
into datasets with high E beyond ∼6 GPa in Figure 1d, the
RMSE of the GCN-NN (ECFP-NN) model dramatically
decreases from ∼0.47 (0.51) GPa to ∼1.0 (1.0) GPa with
negative R2 scores. Different fabrication processes of polymer
materials can dramatically change morphological features and
properties. For example, the elastic moduli of rigid aromatic
poly(p-phenylene terephthalamide) and poly(m-phenylene
isophthalamide) are in the wide range of 10−180 GPa and
3−90 GPa, respectively.34 This reveals the possibilities of
higher irreducible errors from the deviations in the measured
values for high-modulus polymers. Another reason could be
that the imbalance in the data distribution of E leads to
performance degradation. For the classification tasks, imbal-
anced learning provides several strategies that balance either
the data distribution itself or the cost functions for the rare
observations on a minor class.45,46 However, the study for the
regression task is yet an emerging field.47

The limitation of the GCN in describing various levels of
structural information required to learn the structure−property
correlations could be an important factor. For instance, the

Figure 5. Prediction performances of the GCN-NN models
depending on the hyperparameters of GCN for (a) Tg, (b) Tm, (c)
ρ, and (d) E datasets, respectively. The best models are marked by
magenta circles.

Figure 6. (a) Schematics of the GCN-NN model for Tg prediction. The high-dimensional representations by the GCN layer and GCN-NN layer
are reduced to two-dimensional subspaces spanned by the PC1 and PC2 for the analysis. Distributions of (b) experimental Tg values and (c−e)
fraction of rotatable bonds of polymers in the PoLyInfo dataset on the representation spaces. Polymers are mapped by (b, c) GCN without training
(random weight), (d) trained GCN, and (e) trained GCN-NN to get their representations.
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properties of polymers are strongly influenced by intermo-
lecular interactions, polymer chain conformations, and
associated morphologies, including the orientational ordering
as well as the intermolecular π-π stacking of the polymers.27 A
crystalline form is necessary for the polyamide like poly(p-
phenylene terephthalamide) to acquire high strength through
the dense π-π stacking between conjugated rings, and the
crystallinity can be significantly affected by the experimental
fabrication process.28,29 Our ML models have a limitation in
describing the morphological characteristic because the present
GCN representation only contains the information limited in
the monomer. Also, the GCN cannot account for the
stereochemistry which requires information on the three-
dimensional configurations of the atoms and the techniques to
process the molecular graph.48−50 For the data domains for
which the factors like the morphology at the mesoscopic scales
or the stereochemistry come into play, the GCN-based ML
models should be extended to consider such three-dimensional
information to learn the structure−property relationships.
To gain more insights into the GCN-based prediction

models, we analyze how the GCN captures the structural
features relevant to the property predictions. The high-
dimensionality and nonlinearity of the GCN make a direct
interpretation of the meaning of representations almost
infeasible. To alleviate the problem, we need to associate the
data points in the representation space with a proxy label that
provides semantic information. As a representative structural
feature, the fraction of rotatable bonds in the monomer is
chosen to account for the atomic scale rigidity arising from the
π bondings,51 based on the fact that the fraction of rotatable
bonds is related to the flexibility of the backbone chain which
plays an important role in determining various physical
properties.23−26,30 Another important reason is that the
rotatability of bonds is a structural feature defined solely
from the information on the neighboring atoms within the
monomer structure. The GCN might be able to classify them
by aggregating the information of neighboring atoms, such as
the types of atoms and the number of attached hydrogen
atoms. We used RDKit39 to obtain the quantities for all the
polymers in the datasets.
We explore the characteristic of the GCN representation

spaces with the Tg dataset because of the well-known
correlation between the Tg and backbone rigidity. The effect
of supervision of the GCN-NN models with the Tg dataset on
the structural featurization is investigated by tracing the
evolution of representation spaces. Figure 6a shows schematics
of analysis of the GCN-NN model using the principal
component analysis to examine the high-dimensional repre-
sentation spaces with few hundred vector components (100
components for the GCN representation and 300 components
for the latent representation through the NN layer). In Figure
6b−e, the distributions of the polymers are projected on the
two-dimensional subspace spanned by the first two principal
components PC1 and PC2, respectively. Figure 6b,c shows the
distributions of experimental Tg values and the fraction of
rotatable bonds, respectively, in the GCN representation space
before the training with the Tg dataset. Figure 6d displays the
distribution of the fraction of rotatable bonds in the trained
GCN representation space followed by their distributions in
the latent space (Figure 6e) of the NN layers in the trained
GCN-NN model. Note that the latent space corresponds to
the activations in the final layer of NN layers before the
regression in the GCN-NN model as shown in Figure 6a.

Figures 6b,c shows GCN representations without any
supervision, for which the weight parameters are randomly
initialized.38 The existence of gradients in the maps of both Tg
and backbone rigidity indicates that polymers tend to be
organized in their spaces. The organization is ascribed to the
structure of GCN in which the graph convolution operation is
designed to capture a great deal of molecular features to
predict Tg prior to any learning. This is in analogy with the
convolutional NN which shows good performances over
various tasks on the image based on its architectural design
even without training.52 Their gradients in the maps of GCN
representation spaces are anticorrelated to each other in Figure
6b,c. The organization of the data distribution in the
representation space will facilitate the subsequent regression
task to predict Tg. As we employ the GCN-NN models of
which only the NN layers are allowed to be trained by fixing
weight parameters for the GCN by the initial random values,
the prediction performance for Tg is degraded compared to
that of the fully trained GCN-NN model but still reliable to be
RMSE ∼38 K and R2 ∼ 0.83, respectively. The effect of
training on the GCN layers becomes more significant for Tm,
where the RMSE dramatically increases from ∼40 to ∼53 K
without training of GCN layers. Although the distribution is
not unique because of the randomness of the weight
parameters of the GCN, the PC1 is consistently observed to
account for the majority (∼85%) of the total variance. A
noteworthy point is that the directions of the gradient in Tg
and the fraction of rotatable bonds are not aligned to the PC1.
We show how the training processes affect the GCN layers

in Figure 6c,d. As we train the GCN, the polymers are
redistributed such that the directions of gradients the fraction
of rotatable bonds rotate. Accordingly, the PC1 and PC2
account for ∼36 and ∼18% of the total variance of data,
respectively. A notable thing is that the directions of the
gradients tend to be aligned to the principal axis PC1. One can
speculate that the change of distribution in the representation
space would be coupled to the improvement of prediction
performances of the GCN-NN model with the training of
GCN layers (RMSE ∼ 30 K in Table 1), compared to that
without the training of the GCN layer (RMSE ∼ 38 K). In the
GCN-NN models, the GCN representations will be further
processed through the subsequent NN layers resulting in the
latent representations as shown in Figure 6e. It is also found
that the directions of the gradients continue to be aligned to
the principal axis PC1. Better performance of the GCN-NN
models compared to the GCN-LR models implies that the
latent space representation through the NN layer would have
improved linearity with respect to Tg, compared to the GCN
representation. We note that the ECFP also shows similar
behaviors in the organization through the ECFP space and
their latent space, obtained with the ECFP-NN model (Figure
S2). In particular, the gradients of Tg and rotatable bonds are
aligned to the PC1 axis in the latent space representation
through the NN layer.
The GCN is found to have an inherent capability of

organizing the polymers by the structural rigidity which can be
further improved through the training. To check the reliability
of the organization over the unexplored region, we revealed an
extensive region of the representation space by mapping
100,000 polymers provided by the PI1M dataset.11 The PI1M
database provides an extensive dataset of polymer structures
without any property labels, obtained by a generative model
trained with the PoLyInfo database over the various polymer
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classes. Figure 7 shows the distributions of the fraction of
rotatable bonds on the three representation spaces using the
untrained GCN (Figure 7a), trained GCN (Figure 7b), and
the latent space through the NN layers (Figure 7c),
corresponding to those in Figure 6c−e. Note that the same
principal axes are used for more comprehensive visualization.
Although no structures overlap with our Tg dataset, the data
distributions for the PI1M clearly show that the GCN indeed
organizes the polymer by the backbone rigidity with gradients
whose directions are shown to be similar to those in Figure
6c−e. This confirms that the GCN reliably captures the
backbone rigidity with a generalization capability beyond the
training data. Therefore, our GCN models might be trans-
ferred to predict other properties governed by the structural
feature associated with a backbone rigidity.
To examine how different structural features other than the

rotatable bonds manifest in the representation space, we
consider four more features such as the fractions of sp3 carbon
atoms, aromatic rings, amide bonds, and hydrogen bonds in
the monomer structures, where the number of hydrogen bonds
corresponds to the sum of the numbers of hydrogen bond
acceptors and donors (see Supporting Information Table S4
for details of the structural features). We calculated the
Pearson correlation coefficients R between the PC1 and
structural features on the representation spaces studied in
Figures 6 and 7. The Pearson correlation coefficients for
different features are shown in Figure 8a. The coefficient is
largest for the rotatable bonds which increases from R ∼ −0.52
with the GCN without training to R ∼ −0.87 with the trained
GCN and −0.90 through the NN layers in the GCN-NN
model. The fraction of aromatic rings and sp3 carbon atoms
show relatively lower correlations as the R ∼ 0.76 and ∼0.61 in
the absolute values, respectively, for the trained models. Figure
8b,c shows correlation plots for the Tg and the rotatable bonds
with the PC1 on the GCN representation space after the GCN
training, where the PC1 shows strong correlations for both Tg
(R ∼ 0.88) and rotatable bonds (R ∼ −0.87) (see the
Supporting Information Figures S3−S5 for the correlation
plots for all the structural features). The existence of a vector
component in the representation space, linearly correlated with
the given structural features, further supports that our GCN
models extract a backbone rigidity relevant to the prediction of
target property Tg.
Finally, we show the extent of the correlations between the

thermomechanical properties and the fraction of rotatable
bonds in our datasets in Figure 9. In Figure 9a, the Tg with
relatively large data points most clearly shows the anti-
correlation with the fraction of rotatable bonds among all the
properties, where their correlation with backbone rigidity has
been studied.23−26,30 Therefore, training the GCN with the Tg

dataset could induce the organization in the representation
space to better capture the correlations for the prediction. The
strength of the correlations becomes relatively lower for the Tm
and ρ datasets and nearly diminishes for E datasets. The Tm is
also known to increase with the backbone rigidity,53 but
systematic experimental studies on the effect of the backbone
rigidity on ρ are limited. While the rigidity would frustrate the
dense packing during cooling,23 the aging of the glass will
result in volume relaxations compensating the nonequilibrium
effect.54 Although the incorporation of conjugated rings into
the backbone chain to enhance the rigidity is a generic strategy
to increase the elastic moduli of polymer materials,28,29 the
diminished correlations in the E dataset are consistent with the
fact that interchain interactions through the crystallization are
also critical. As the correlation between the backbone rigidity
and the target property decreases, the prediction performance
of our GCN models is also reduced. It is feasible for the GCN
model to automatically extract a backbone rigidity of polymers
for high prediction performance of their properties.

Figure 7. Distributions of the fraction of rotatable bonds of polymers in the PI1M dataset on the representation spaces obtained by the GCN-NN
model for Tg prediction. Polymers are mapped by (a) GCN without training (random weight), (b) trained GCN, and (c) trained GCN-NN to get
representations.

Figure 8. (a) Pearson correlation coefficients between PC1 and
various structural features. Data for the GCN (w/o train), GCN (w/
train), and GCN-NN (w/ train) correspond to those in Figures S3−
S5, respectively. Plots for the correlations of the PC1 with (b) Tg and
(c) rotatable bonds using the trained GCN representation are shown.
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4. CONCLUSIONS
We studied the ML models based on the GCN representations
to predict thermal and mechanical properties of polymers such
as Tg, Tm, ρ, and E. Performances of the GCN-based models
were comparable to those of the ECFP-based models, and both
the representations perform better with nonlinear NN
regression rather than LR. The GCN-based models showed a
high accuracy of predictions with the R2 score ∼0.9 for the Tg
data which exhibit strong anticorrelations with the backbone
rigidity of the polymers. On the other hand, the prediction
performance was significantly degraded to be R2 score ∼0.5 for
the E data without any noticeable correlations with the rigidity.
Our results indicate the applicability of GCN representations,
which extracts the bonding characteristics based on the
information limited in the monomer structure, depending on
the data domains. The GCN representation space exhibits a
prominent organization of polymer data by the backbone
rigidity. The organization of the data points in the
representation space is optimized by training with Tg datasets
for the prediction, which can be ascribed to their correlation,
and is shown to be extended beyond the regions occupied by
the polymers in the training set. This work provides an insight
into how the GCN learns and predicts the polymer properties
as well as a transferability to other properties associated with a
backbone rigidity. Our ML models also have a limitation in
describing the morphological characteristic because our
polymer featurizations are conducted at the monomer level.
For practical polymer design by ML, the featurizations for
polymers should be directed toward reflecting the information
beyond the monomer features and capturing the complex
polymer properties. Improvements of the machine prediction
accuracies should be accompanied by developing the database
that provides retrieval of relevant information. In the future, it
is also worthwhile to extend this study into developing transfer
learning models to predict other properties with limited data.
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