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Abstract

The sparse coding hypothesis has enjoyed much success in predicting response properties of simple cells in primary visual
cortex (V1) based solely on the statistics of natural scenes. In typical sparse coding models, model neuron activities and
receptive fields are optimized to accurately represent input stimuli using the least amount of neural activity. As these
networks develop to represent a given class of stimulus, the receptive fields are refined so that they capture the most
important stimulus features. Intuitively, this is expected to result in sparser network activity over time. Recent experiments,
however, show that stimulus-evoked activity in ferret V1 becomes less sparse during development, presenting an apparent
challenge to the sparse coding hypothesis. Here we demonstrate that some sparse coding models, such as those employing
homeostatic mechanisms on neural firing rates, can exhibit decreasing sparseness during learning, while still achieving
good agreement with mature V1 receptive field shapes and a reasonably sparse mature network state. We conclude that
observed developmental trends do not rule out sparseness as a principle of neural coding per se: a mature network can
perform sparse coding even if sparseness decreases somewhat during development. To make comparisons between model
and physiological receptive fields, we introduce a new nonparametric method for comparing receptive field shapes using
image registration techniques.
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Introduction

A central question in systems neuroscience is whether optimi-

zation principles can account for the architecture and physiology

of the nervous system. One candidate principle is sparse coding

(SC), which posits that neurons encode input stimuli efficiently:

stimuli should be encoded with maximum fidelity while simulta-

neously using the smallest possible amount of neural activity [1,2].

Much evidence suggests that primary visual cortex (V1) forms

sparse representations of visual stimuli [1,3–7]. For example, when

trained with natural scenes, SC models have been shown to learn

the same types of receptive fields (RFs) as are exhibited by simple

cells in macaque primary visual cortex (V1) [1,8].

Throughout this paper, we make reference to the notion of

‘‘sparseness’’. Intuitively, sparseness is related to there being either

a small subset of neurons active at any time (population

sparseness), or to each neuron being active only a small fraction

of the time (lifetime sparseness) [9]. In the Methods section, we

define the precise notions of sparseness that we use in this paper.

In further support of the SC hypothesis, measurements of the

firing rates of V1 neurons in response to videos of natural scenes

show that those rates are low, and that the firing rate distributions

are sharply peaked near zero [7]. Similarly, cell-attached

recordings in auditory cortex show highly sparse levels of activity

[10]. Conversely, other experimenters [11] have observed non-

sparse (dense) neuronal activity in visual cortex, although the

boundary between ‘‘sparse’’ and ‘‘dense’’ activity is open to

interpretation and thus it is unclear how sparse the activity must be

in order to confirm the SC hypothesis [12]. Importantly, however,

it has been observed that stimulating larger portions of the visual

field leads to sparser, and less correlated, V1 neuronal responses

[4–6]. It has been suggested that this effect arises because of

inhibitory recurrent connections between excitatory cells, mediat-

ed by the appropriate interneurons [6].

In simulating the development of a sparse coding model, one

typically [1,3] initializes the receptive fields with random white

noise — so as to not bias the shapes of the RFs learned by the

network — and then presents the network with natural images, in

response to which the RFs get modified. As the model (e.g.,

[1,3,13]) modifies itself in response to the stimuli, neurons

gradually learn features that allow for a better encoding of the

stimuli, so the sparseness is expected to increase over time. This

point was emphasized in recent work [14]. Physiology experi-

ments, however, show something different in the developing visual
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cortex. Recently, Berkes and colleagues measured multi-unit V1

activity in awake young ferrets viewing natural movies, and found

that, as the animals matured, their stimulus-driven V1 activity

became less sparse [14,15] (Fig. 1).

The above discussion hints at a major source of confusion in this

area of research. In particular, sparseness is discussed as both a

relative measure (i.e.: ‘‘Is network A sparser than network B?’’),

and as an absolute descriptor (i.e.: ‘‘Is network A sparse?’’). In this

paper, we will first study relative measures of sparseness, and

observe how these measures change as a result of development in

our recently published SAILnet model [12]; do they increase, or

decrease over time? The absolute sparseness values of the final

(mature) networks – which vary between 0 (not sparse), and 1

(maximally sparse) – will be used to infer whether the final network

is sparse at all. This mirrors the way that Berkes and colleagues

discussed sparseness in the developing ferret.

The ferret sparseness-over-time data appears to contradict the

SC hypothesis. At the same time, that hypothesis has otherwise

been quite successful in explaining some key features of peripheral

sensory systems. It is therefore natural to ask whether sparse

coding models necessarily must exhibit increasing sparseness in

order to learn V1-like receptive fields and perform sparse coding

in the mature state. In this work, we focus primarily on a recently

published variant of sparse coding called SAILnet [12] in which

homeostasis regulates the neuronal firing rates while synaptically

local plasticity rules modify the network structure, leading to V1-

like receptive field formation. We will demonstrate that, depending

on the initial conditions of the simulation, SAILnet can exhibit

either increasing, or decreasing sparseness, while learning RFs that

are in quantitatively good agreement with those observed in V1,

and having a reasonably sparse final state. The choices of

parameter values in the model determine the equilibrium state

to which the network ultimately converges. If the initial conditions

are even sparser than this equilibrium point, sparseness will decrease

during development, and yet the final state can still be sparse in an

absolute sense.

We will also see that, for appropriately chosen initial conditions,

the same can be true of the canonical SparseNet model of

Olshausen and Field [3]. Thus, the apparent contradiction

between the ferret developmental sparseness data, and SC models

[14] does not necessarily mean that SC is implausible as a theory

for sensory computation. Later in this paper, we discuss plausible

alternatives for sensory coding other than SC models.

Results

Overview of the Sparse and Independent Local network
(SAILnet) model

Since this paper focuses primarily on our SAILnet model (Fig. 2),

we will now provide a brief overview that model, which is

described in detail elsewhere [12] and summarized in the Methods

section. The model consists of a network of leaky integrate-and-fire

(LIF) neurons, which receive feed-forward input from image

pixels, in a rough approximation of the thalamic input to V1. The

neurons inhibit each other via recurrent inhibitory connections,

the strengths of which are learned so as to reduce correlations

amongst the units, consistent with recent physiology experiments

[4–6]. We note that one can modify SAILnet so that interneurons

mediate the inhibition between excitatory cells so as to satisfy

Dale’s law (E-I Net; [16]).

The neurons’ firing thresholds are modified over time so as to

maintain a target lifetime-average firing rate. For our LIF neurons,

this is similar to synaptic rescaling, which has been proposed as a

mechanism to stabilize correlation-based learning schemes

[17,18], and has been observed in physiology experiments [17].

Alternatively, the variable firing threshold can be thought of in

terms of a modifiable intrinsic neuronal excitability, another well-

known homeostatic mechanism [19].

Finally, the feed-forward weights are learned by the network, so

that the neuronal activities form an optimal linear generative

model of the input stimulus, subject to the constraints imposed by

limited firing rates and minimal correlations. The derivation of our

learning rules from this objective function is presented in [12]. All

information needed for the model’s plasticity rules is available

locally at the synapse being modified — updates depend only on

the pre- and post-synaptic activity levels.

SAILnet activity can become less sparse during receptive
field formation, much like ferret V1 development

To study the change in sparseness over time, we ran SAILnet

simulations, starting with randomized feed-forward weights,

recurrent connection strengths, and firing thresholds that were

initialized with Gaussian-distributed white noise. At different times

during the development process, we recorded the simulated

neuronal activity in response to randomly selected batches of

natural images. Following a recent experimental study [14], we

computed from these network activities three sparseness measures,

which are discussed in more detail in the Methods section. Each of

these measures varies between 0 (not sparse at all) and 1 (as sparse

as possible).

The first of these, the ‘‘activity sparseness,’’ Sa, measures the

fraction of units that are inactive in response to a given stimulus,

averaged over different stimuli. If this quantity is near 1, then only

a small subset of units responds to each stimulus. If every unit is

active in response to every stimulus, then Sa~0.

The ‘‘population sparseness’’ [5,14,20], Sp, measures the degree

to which the population response to a given stimulus is restricted to

a small subset of the population, averaged over all stimuli. If only a

small number of units have large activities in response to a given

stimulus, then Sp will be near 1, even if many units have small but

Author Summary

The popular sparse coding theory posits that the receptive
fields of visual cortical neurons maximize the efficiency of
the neural representation of natural images. Models
implementing this idea typically minimize a combination
of the error in reconstructing natural images from neural
activities, and the average level of activity in the model
neurons. In simulations, these models are presented with
natural images and the RFs then develop so as to increase
representation efficiency. After a long developmental
period, the model RFs typically agree well with those
observed experimentally in visual cortex. Since the models
seek to minimize (for a given level of reconstruction error)
the neural activity levels, the average levels of neural
activity might be expected to decrease as the models
develop. In the developing mammalian cortex, visual RFs
are also modified during development, so the sparse
coding hypothesis might appear to suggest that activity
levels should decrease during development. Recent
experiments with young ferrets show the opposite trend:
mature animals tend to have more active visual cortices.
Herein, we demonstrate that, depending on the models’
initial conditions, some sparse coding models can exhibit
increasing activity levels while learning the same types of
RFs that are observed in visual cortex: the developmental
data do not preclude sparse coding.

Sparseness and V1 Development
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non-zero activities. By contrast, Sa would be small in that case,

because there are not many completely inactive units. If the units

all respond equally to every stimulus, then Sp~0. For the same

level of representation error, the formation of efficient represen-

tations demands relatively high values of Sp and Sa, such that only

a small fraction of the available neural resources are utilized in

representing each image.

Finally, the ‘‘lifetime sparseness’’ [5,14,20] measures how much

the responses of individual units tend to be concentrated over a

small subset of stimuli, averaged over units. If the units respond

very selectively, so that they have strong responses to a small

number of stimuli, and weak responses to most stimuli, then Sn will

be near 1. Conversely, if each unit responds equally to all stimuli,

then Sn~0.

Intuitively, all of these measures are somewhat related

(although, see [9] for notable exceptions). At the same time, when

it comes to the efficiency of the neural representation, the more

relevant quantities are the activity sparseness and the population

sparseness, which both have to do with the fraction of neural

resources used to represent each image [9]. Furthermore, the

values of ‘‘lifetime’’ sparseness one obtains will vary with the time

scale over which one performs the measurement. As such, it is a

somewhat more ambiguous quantity than are the activity and

population sparseness measures. Despite these issues, we include

results for the lifetime sparseness for our model in keeping with the

experimental study [14] that motivated this theoretical project.

In order to further facilitate meaningful comparison with the

experiment of Berkes and colleagues, we mimicked a multi-unit

activity measurement by randomly grouping together sets of 8

SAILnet neurons, whose activities were then summed to form a

multi-unit response. These ‘‘multi-unit’’ activities were used for

computing our sparseness measures. This procedure yielded results

(Fig. 3) that were qualitatively similar to the single-unit sparseness

measures (not shown), but with larger changes in sparseness values.

A direct quantitative comparison between our model multi-unit

sparseness data and the ferret data is difficult because it is not clear

how best to estimate the relevant number of neurons to group

together, or even whether all groupings should have the same

number of neurons. Furthermore, in the ferret data, the neurons

grouped together are physically nearby, which means that, due to

retinotopic and orientation maps in V1, they will have similar

receptive fields. The SAILnet model has no such notion of spatial

organization and our random grouping of cells misses that aspect

of the ferret experiment.

Figure 1. V1 developmental data appear to challenge the canonical sparse coding models. Multi-unit activity in primary visual cortex (V1)
of awake young ferrets watching natural movies shows decreasing sparseness over time. The sparseness metrics shown in this figure are defined in
the results section of this paper, and the data are courtesy of Pietro Berkes [14,15]. The plot has a logarithmic horizontal axis. For contrast, one
expects that, in sparse coding models, the sparseness should increase over time. This point was emphasized in recent work [14]. In this paper, we
show that, in sparse coding models sparseness can actually decrease during the learning process, so the data shown here cannot rule out sparse
coding as a theory of sensory coding.
doi:10.1371/journal.pcbi.1003182.g001

Sparseness and V1 Development
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In Fig. 3, we show a random subset of 196 (out of the 250 total)

receptive fields of SAILnet neurons both before and after the

network is trained with natural scenes. We also show the evolution

of our multi-unit sparseness measures during that training process.

Contrary to the idea that sparse coding models must show strictly

increasing sparseness during learning [14], our SAILnet model can

display decreasing sparseness by all three measures while it is

learning localized and oriented receptive fields. We will later show

that the popular SparseNet model of Olshausen and Field [3] can

also exhibit decreasing sparseness over time.

The time course of the sparseness measures depends on the

learning rates (parameter modification step sizes), with smaller

learning rates leading to slower changes in sparseness measures, as

expected (data not shown). The depth of the observed ‘‘under-

shoot’’ also depends on the initial conditions and the learning

rates. The specific activity sparseness values (Sa) depend on the

Figure 2. SAILnet architecture. In our model, described in detail elsewhere [12], leaky integrate-and-fire neurons receive inputs from pixels in
whitened natural images, in a rough approximation of the thalamic input to V1. Inhibitory recurrent connections between neurons, shown in red, act
to decorrelate the neuronal activities. The neurons have variable firing thresholds, which are varied by the neurons so as to maintain a desired long-
term-average firing rate.
doi:10.1371/journal.pcbi.1003182.g002

Figure 3. SAILnet multi-unit activity can become less sparse during receptive field formation. A SAILnet simulation was performed in
which the RFs, firing thresholds, and recurrent connection strengths were initialized with random numbers (see Methods section for details). (A)
These initial RFs are shown for 196 randomly selected model neurons. Each box on the grid shows the RF of one neuron, with white corresponding to
positive pixel values, and black corresponding to negative ones. (B) After training with natural images, these same SAILnet neurons have oriented,
localized RFs. (C) All three of our ‘‘multi-unit’’ sparseness measures decrease during the training period, as has been observed in the visual cortex of
maturing ferrets [14]. We made similar observations when we made measurements of single-neuron sparseness values (data not shown).
doi:10.1371/journal.pcbi.1003182.g003

Sparseness and V1 Development
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chosen threshold: higher thresholds lead to higher sparseness

values.

The receptive fields learned by the model, while displaying

decreasing sparseness, are in good quantitative agreement with a

measured corpus of 250 macaque monkey V1 simple cell receptive

fields, as we will demonstrate in the section on comparisons of

receptive field shapes.

The model discussed in this section and shown in Fig. 3 has

relatively high firing thresholds and a relatively large amount of

lateral inhibition in the initial state. Those properties lead to highly

sparse firing. As the network learns, the homeostatic firing rate

regulation reduces the thresholds and then inhibitory connections

are modified by their own plasticity rules (see Methods section for

details). These have the effect of reducing the model’s sparseness

over time. For contrast, in the next section we will consider a

model that is identical to the one presented here, but with the

following modifications to the initial conditions: the firing

thresholds are initialized at smaller values and there is initially

less lateral inhibition.

For less sparse initial conditions, SAILnet multi-unit
activity becomes sparser during receptive field formation

We find that SAILnet does not require sparseness to decrease

over time; rather, it is compatible with decreasing sparseness. To

demonstrate this point, we repeated our SAILnet simulations and

sparseness measurements with different initial conditions (see

Methods section for details). As discussed in the previous section,

these initial conditions have lower firing thresholds and less lateral

inhibition than in the model shown in Fig. 3.

In this case, the relatively low firing thresholds and relatively

small amount of lateral inhibition lead to the initial network state

being less sparse than the final (equilibrium) state, so sparseness

increases over time (Fig. 4).

Similar to Fig. 3, in Fig. 4 we show a random subset of 196

neuronal receptive fields both before and after the training

procedure and, as we demonstrate below, those RF shapes are in

quantitative agreement with those measured in macaque V1.

We emphasize that, compared to the model discussed in Fig. 3,

which exhibited increasing sparseness, the model discussed here

(and in Fig. 4) differs only in the initial conditions; all other

parameters were the same for the two models. Consequently, after

a long training period, over which the effects of the initial

conditions gradually disappear, these two models have very similar

final sparseness levels and receptive fields. For the models studied

in this paper (Figs. 3 and 4), the final multi-unit sparseness values

(after the final training batch) are (Sn, Sp, Sa)~(0:89, 0:90, 0:85)

for the model in which sparseness increases over time (Fig. 4), and

(Sn, Sp, Sa)~(0:89, 0:90, 0:86) for the model in which sparse-

ness decreases over time.

Theoretical models besides SAILnet can also display both
increasing and decreasing sparseness over time

While our SAILnet model [12] and a recent extension that

obeys Dale’s law [16] are more biophysically realistic than

previous sparse coding models, the increasing or decreasing

sparseness over time we describe above (Figs. 3 and 4) is not

unique to SAILnet.

To explore this issue more fully, we return to the canonical

SparseNet model of Olshausen and Field [3,21]. We first note that,

as in SAILnet, the ‘‘equilibrium’’ sparseness level in SparseNet is

determined by a free parameter in the model (l in [3]).

Furthermore, in the SparseNet model, there is a homeostatic

mechanism that adjusts the magnitudes of the feed-forward

weights so as to keep the units’ activities near some pre-defined

set point. Similar to SAILnet, this process is not instantaneous.

In what follows, we use the SparseNet code of Olshausen and

Field [3,21] ‘‘out of the box,’’ without modifying any parameters

except the initialization of the basis functions — these are

analogous to the feed-forward weights, or receptive fields, of

SAILnet units.

We begin by initializing these basis functions with Gaussian

white noise of variance 1, so that the 16|16 bases have L2 norms

of approximately
ffiffiffiffiffiffiffiffi
256
p

~16. In this case, sparseness increases over

time (Fig. 5a) and the basis amplitudes decrease: the mean L2

norm of these bases is approximately 0.5 once the model

converges, after the training period.

These changes can be understood by recalling that, during

inference — where the activities of the units are determined in

Figure 4. For less sparse initial conditions, SAILnet multi-unit sparseness measures increase during training. A SAILnet simulation was
performed in which the RFs were initially randomized, and the recurrent inhibitory connection strengths and firing thresholds were initialized with
random numbers that were smaller than for the simulation described in Fig. 3 (see Methods section for details). (A) The initial RFs are shown for 196
randomly selected model neurons. As in Fig. 3, each box on the grid depicts the RF of one neuron, with lighter tones corresponding to positive pixel
values, and darker tones corresponding to negative values. (B) After training with natural images, these same SAILnet neurons have oriented,
localized RFs. (C) All three of our multi-unit sparseness measures increase during the training period. Aside from the initial conditions, the network
used to generate these data was identical to the one from Fig. 3: both networks have the same learning rates, the same number of neurons, the same
target mean firing rate, and are trained on the same database of whitened natural images.
doi:10.1371/journal.pcbi.1003182.g004
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response to a given image — the activities are chosen to minimize

the following cost function: E~errorzactivities. The error, as in

SAILnet, is the sum over pixels of the squared error of the

difference between the image and a linear generative model

formed by multiplying each unit’s activity by its basis function.

Thus, if the basis has a small magnitude, then large activations are

needed in order to form a decent linear generative model.

However, these large activations are punished by the ‘‘activities’’

term in the cost function. As a result, some of the units that add

only a modest improvement to the representation are turned off,

or nearly so. If the basis has a large magnitude, then only small

activations are needed to form the linear generative model, and

these small activations are less strongly penalized than are large

activations. As a result, the activation can be more distributed over

the network when the filters have large magnitudes. To

summarize: large basis function magnitudes lead to less sparse

network activity and the basis magnitudes are modified with a

non-zero timescale.

Putting all of this together, if we initialize the bases with

Gaussian white noise of variance 0:01, so that they initially have

L2 norms in the neighborhood of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:01:256
p

~0:16, then the basis

norms increase over time during training. After this model

converges, the mean L2 norm of the bases is again around 0.5.

Consequently, the sparseness decreases over time (Fig. 5b).

As in SAILnet, one way to understand these trends is to recall

that the model parameters dictate the final ‘‘equilibrium’’ state of

the model, but the initial conditions can be chosen independently

of the final state. As such, initial conditions can be chosen to be

either more or less sparse than the equilibrium condition, leading

to sparseness either decreasing or increasing over time.

Comparing SAILnet receptive fields to those observed in
macaque V1

In many theoretical studies (e.g., [1,12,22,23]), one learns a

sparse coding dictionary for natural stimuli, then compares the

shapes of the resultant basis functions to the shapes of the

physiologically measured receptive fields.

Typically, this comparison is either done by eye (as in [22]), or

by fitting both the model RFs and the experimentally measured

ones to some parameterized shape functions, and then comparing

(again, typically by eye) the distributions of the resultant shape

parameters for both the model and the data [1,12,23]. More

rigorously, one can quantitatively compare the distributions of

these shape parameters (Rehn, Warland, and Sommer, CoSyNe

2008 abstract) between the model and the experimental data,

although that method fails if one has too few RFs with which to

perform the comparison.

The by-eye comparisons are not very quantitative, even if they

first involve fitting parameterized shape models, and any fitting of

parameterized shape models is vulnerable to failures of the shape

function: any RFs whose shapes are not well described by the

parameterized function will yield nonsense best fit parameter

values.

To get around these difficulties, we introduce a novel method

for directly comparing the shapes of theoretical and experimental

receptive fields, using image registration. In this technique, we

assume that receptive fields may differ by a translation, rotation,

and/or global size rescaling, yet still have the same shape. For

example, consider an equilateral triangle within a bounding box. A

shifted, rotated, and resized version of that shape is still an

equilateral triangle.

We apply this intuition to the comparison between our model

receptive fields, and a set of 250 macaque V1 receptive fields

courtesy of D. Ringach. We do this by taking each experimentally

measured V1 receptive field and then for each model RF we find

the combination of translation, rotation, and overall rescaling that

gives the best match between the experimental and transformed-

model RF. We quantify the match by the R2 value (square of the

correlation coefficient) between the pixel values of the model and

the experimental RF. Choosing the R2-maximizing RF is similar

to seeking the model RF that can account for the largest fraction of

the variance of the experimental RF, but allows for an overall

multiplicative constant in front of the model RF. Specifically, the

R2 value tells us the fraction of the experimental RF variance that

could be explained by a linear function of the best model RF (i.e.,

possibly including an additive constant to all pixel values and an

overall amplitude change).

Once we have done this for all model RFs, we take the one

whose best transform yields the largest R2 and take that as the

best-fit model RF for the given experimental RF. In this way, we

answer the question: Once we account for possible translations,

rotations, and size rescalings, how much of the variance in the

experimental RF pixel values can be accounted for by the library

of model RFs? R2 values near 1 indicate that the experimental RF

is reproduced perfectly by the theoretical model, while values near

0 indicate that it is not. We then repeat this procedure for all of the

RFs in the experimental dataset, yielding one R2 value per

Figure 5. SparseNet can also display either increasing or decreasing sparseness during learning. To check that our conclusions apply to
other models besides SAILnet, we performed simulations with the publicly available SparseNet code of Olshausen and Field [3,21]. (A) When the basis
functions are initialized with large-amplitude white noise (see text for details), the sparseness increases over time contrary to the ferret data shown in
Fig. 1. (B) However, when the bases are initialized with small-amplitude white noise, the sparseness decreases over time.
doi:10.1371/journal.pcbi.1003182.g005

Sparseness and V1 Development
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experimental RF. Below, we discuss the averages over these R2

values.

Looking at the macaque RFs in Fig. 6A, it is clear that the

region of support of the RF is often smaller than the size of the

image window over which the RF is measured, and any noise

outside of the region of support (or within it, for that matter) will

be unaccounted for by the image registration process, thus

lowering the apparent goodness-of-fit. To attempt to quantify this

level of noise and to give a solid benchmark with which to assess

our experiment-vs.-model comparison, we repeat the image

registration fitting described above, but instead of using model

RFs as comparators, we compare each experimental RF against

the corpus of other experimental RFs. In other words, we do a leave-

one-out analysis where we try to fit each macaque RF and, for that

fit, we take the 249 other macaque RFs and pretend that they are

‘‘model’’ RFs. We then find the largest R2 value possible for the

best transformation of each of the 249 comparison RFs and use

that number to quantify how well we could realistically expect to

fit the macaque RF. We term this maximal R2 value for the

macaque-to-macaque comparison the fraction of variance in the

data that is ‘‘explainable’’ by our image-registration technique

(although not necessarily captured by the dictionary of shapes

learned by our sparse coding model).

In using this technique to estimate the noise level, we essentially

assume that the RF shapes are repeated in the experimental data

(which one can see in Fig. 6), and use that intuition to ask, ‘‘How

much of the data variance is due to noise rather than the RF

properties themselves?’’

In Fig. 6, we show the experimental RFs, the best-transformed

(translation, rotation, and overall size rescaling) model RFs learned

with either increasing or decreasing sparseness values, and the

quantitative comparisons between the RF shapes (average R2

values for how well the macaque RFs can be explained by the

model RFs).

The macaque-to-macaque comparisons (Fig. 6E) show that, on

average, 85% of the variance in the RF pixel values can be

explained using other RFs from the macaque V1 dataset. We term

this the ‘‘explainable’’ variance and it sets an upper bound on how

well we could expect our model RFs to match the macaque RFs.

For comparison, the model RFs account for, on average, 77% of

Figure 6. Registration-based receptive field comparisons show a quantitative match between SAILnet and macaque V1 RF shapes.
(A) For illustration purposes, we show 100 of the 250 macaque V1 receptive fields (courtesy of D. Ringach) against which we compared our SAILnet
model neuronal RFs. To estimate the fraction of the variance in the pixel values of these RFs that could realistically be explained, we performed
registration-based RF fitting for each macaque RF, using all other macaque RFs as comparators. The best-fit matches to the RFs in panel A are shown
in panel B, and the distribution of R2 values obtained with the macaque-vs-macaque fitting shows that, on average, approximately 85% of the
variance in the macaque RF pixel values can be explained by other macaque RFs (E). For the SAILnet model that experienced increasing sparseness
during training, the best-fit RF matches are shown in panel C, and the distribution of corresponding R2 values shows that, on average, approximately
77% of the variance in the macaque RFs can be explained by these SAILnet model neuronal RFs (E). Similarly, for the SAILnet model that experienced
decreasing sparseness during training (D), approximately 77% of the variance in the macaque RFs can be explained by model neuronal RFs. For both
of the SAILnet networks shown (C,D), there are a few macaque RFs for which the image registration fails completely. We include these in our
goodness-of-fit statistics; they correspond to the cells with R2 values near zero. There is no clear trend in the shapes of macaque RFs that cause this
failure. For either increasing, or decreasing sparseness during training, the model neuronal RFs can, on average, account for approximately
77=85&90% of the explainable variance in the measured macaque RFs. The error bars on the bars in panel (E) correspond to the standard deviation
of the R2 values over the sample of experimental RFs. There is a statistically significant, although small in magnitude, difference between the quality
with which the macaque RFs fit each other (E), and the quality with which either model fits the data (pv0:001 for either model, using a paired t test;
n = 250). There is no statistically significant difference between the quality with which the two models fit the macaque RFs (pw0:4, paired t test;
n = 250).
doi:10.1371/journal.pcbi.1003182.g006
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the variance in the RF pixel values, regardless of whether the

learning of those RFs was accompanied with either increasing or

decreasing sparseness. The difference between the average

explained variance for the two different models (those of Figs. 3

and 4) is not statistically significant (pw0:4, paired t test; n~250),

while the differences between each of the model’s mean R2 values

and that of the macaque-vs-macaque comparison are statistically

significant (pv0:001, paired t test; n~250).

Because the model RFs can explain an average of roughly 90%
(77=85) of the explainable variance in the RF data, regardless of

whether the model experienced increasing or decreasing sparse-

ness during training, we conclude that the model RFs are in

quantitatively good agreement with the experimental RFs,

independent of whether the learning of shapes was accompanied

with increasing or decreasing sparseness.

Generally, larger networks have a greater diversity of receptive

field shapes (this can be easily seen by comparing the RFs shown in

this paper to those in [12]), and will thus tend to perform better in

our image-registration comparisons. The networks studied in this

paper were relatively small, in order to allow us to study the

evolution of networks with many different initial conditions. Thus,

we expect that even better model-to-experiment RF matches are

possible if one were to study larger networks. On the other hand,

the macaque V1 database to which we compared our model

contains only 250 receptive fields, so a ‘‘fair’’ comparison to a

larger simulated network would require more experimental data,

or the selection of a random subset of the simulated RFs.

Our quantitative non-parametric RF comparison method could

be used to compare many different theories to experimental data,

and thus to ascertain which ones provide the best fit. That

comparison is beyond the scope of this paper.

Discussion

Main contributions of this work
We have demonstrated that a computational model (SAILnet

[12]) can learn V1-like receptive fields while simultaneously

exhibiting either a decrease, or an increase, in the sparseness of

neuronal activities. In both cases, the sparseness of the final

(mature) network state is high enough to be reasonably considered

‘‘sparse.’’ We further showed that these same trends in sparseness

over time can be achieved with the less biophysically realistic

SparseNet model, despite the fact that it does not incorporate the

same form of homeostasis as SAILnet.

In order to quantify the similarity between experimentally

measured V1 receptive fields and the receptive fields learned by

our SAILnet model, we have further introduced a novel non-

parametric RF comparison tool based on image registration

techniques.

Since sparseness can decrease during development, with the

mature network state still performing sparse coding, the type of

active sparseness maximization disproven by recent experiments

[14] is not necessary to produce observed V1 receptive field

shapes, nor is it required to learn a sparse representation of natural

scenes. The trends in sparseness over time can be so strongly

affected by the initial conditions of the network that those trends

are not very informative about the objective function being

optimized. Thus, developmental data, such as those shown in

Fig. 1, cannot strictly rule out the general notion that V1 simple

cell receptive fields develop so as to form sparse, efficient,

representations of natural scenes.

Is it fair to compare the sparseness trends experienced
by developing animals with those exhibited by sparse
coding models?

One possibility that requires consideration is that the

sparseness data of Berkes and colleagues [14] should not be

compared at all with theoretical models when assessing the

hypothesis that V1 performs sparse coding. Recall that the

sparse coding models criticized by Berkes and colleagues showed

increasing sparseness during receptive field formation, and that their

claim was that, since the ferret data instead showed decreasing

sparseness during development, the sparse coding models do not

provide a good description of V1.

In order for this comparison to be ‘‘fair,’’ one must ensure that

receptive fields undergo significant change during the develop-

mental period over which Berkes and colleagues measured

sparseness. Indeed, other experimenters have observed that the

orientation and direction selectivity of the neurons in ferret V1

increase [24,25] during the same developmental period over which

Berkes and colleagues observed decreasing sparseness levels, and

that the mature state of the visual cortex for both ferrets and cats is

sensitive to visual experiences in this period [25–28]. Combining

these observations, we note that sparseness in ferret V1 seems to

decrease while the visual cortical maps and receptive fields are

being refined by experience, in apparent contradiction to the SC

hypothesis. The largest contribution of this paper is to resolve that

apparent contradiction.

Of course, there could always be other reasons — beyond the

scope of this paper — why the developmental data fail to be

relevant to the sparse coding hypothesis. We leave that question

for future work.

For the sake of completeness, we note that Rochefort and

colleagues have observed that spontaneous slow-wave activity in the

anesthetized mouse visual cortex becomes sparser immediately

after eye-opening [29]. At first glance, this might appear to

contradict the ferret data of Berkes and colleagues [14]. However,

since the ferret data is stimulus-evoked activity and the mouse data

is spontaneous activity, it is not clear that a comparison between

these datasets is meaningful. Because the spontaneous activity is

not very easily related to the sparse coding hypothesis, which does

not have much to say about activity in the absence of sensory

input, we have focused on the ferret data (stimulus-evoked activity)

in this paper.

Prior work on homeostasis and learning
We are not the first to propose that homeostasis might underlay

experience-dependent modification of the nervous system. Indeed,

Marder and others have strongly and persuasively argued that

neural systems might have a desired operating point such that

when perturbed they use homeostatic mechanisms to return to

that desired functional state [18,19]. Moreover, Miller and others

have shown that homeostatic activity regulation can facilitate

learning in model-neuronal systems [30–32].

Finally, recent work by Perrinet [30] also used homeostatic

activity regulation in learning sparse codes, so that model may also

show either increasing or decreasing sparseness over time, for

appropriately chosen initial conditions.

Concluding remarks
We have demonstrated that the mature network state can

perform sparse coding regardless of whether learning is accom-

panied by an increase or decrease in sparseness. At the same time,
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sparse coding is not the only principle that has been proposed in

order to understand V1 function. Of particular interest in this

regard is a recent study by Berkes and colleagues [15]. In that

work, the authors showed that both stimulus-evoked and

spontaneous (in the absence of any stimulus) activity in V1

became more similar as the animals aged, suggesting that V1

might be learning a Bayesian prior on the statistics of the

environment. They further observed that part of this change in

activity distributions came about due to increases in the

correlations between V1 neurons with age. This observation is

contrary to the redundancy reduction arguments often used to

support efficient coding models, such as traditional sparse coding

models and SAILnet. Thus, there is some evidence that sparse

coding may not be the best theory of V1 function, and that others,

such as that advanced in [15], may be better in some regards.

Moreover, it is not clear how the sparse coding hypothesis could

account for many of the properties of V1 complex cells despite its

success for simple cells, and differences in the level of activity

between awake and anesthetized V1 may pose additional

challenges for sparse coding models. However, sparse coding

models have successfully accounted for the shapes of V1 simple

cell receptive fields, while the Bayesian-type optimality models

have yet to do so. There is thus much room for further advances in

our understanding of sensory coding, and measurements that can

rule out theoretical models are key to that advancement. Our

results show that the decrease in sparseness during development,

which has been argued to rule out sparse coding in V1 [14], is not,

on its own, sufficient to make that claim.

Methods

Sparseness measures used in this work
There are many different ways to measure sparseness. In this

work, we follow the experimental study of Berkes and colleagues

[14] and use the following three measures.

First, the ‘‘activity sparseness’’ (Sa), which is the fraction of units

inactive in response to any given stimulus:

Sa~1{na=N, ð1Þ

where na is the number of units whose activities rose above some

threshold number of spikes in response to the stimulus, and N is

the total number of units for which data were recorded. We set the

threshold to 4 spikes for the multi-unit sparseness data shown

herein. We performed this measurement by averaging over 500
different input stimuli. The activity sparseness Sa is very similar to

the L0 norm – which is actually a pseudo-norm – of the unit

activities; low L0 norms correspond to high Sa values.

In addition, we recorded two other sparseness measures,

originally due to Treves & Rolls [20] (TR), and subsequently

modified by Vinje & Gallant [5]. First, let us consider what we will

call the ‘‘TR population sparseness’’ measure [15], Sp,

Sp~ 1{

PN
i~1 DAi D=N

� �2

PN
i~1 DAi D2=N

2
64

3
75| 1{

1

N

� �{1

, ð2Þ

where Ai is the activity of unit i. Note that Sp is assessed in

response to a single image, although for our purposes, we will

average this measure over 500 different image stimuli, to infer

the average TR population sparseness. Similarly, we will define

the ‘‘TR lifetime’’ sparseness of a given unit, Sn, the same way

(Eq. 2), but with the replacement that Ai represents the unit’s

activity in response to a given image i, and N will be the

number of different image stimuli (500) for which activities are

recorded. Similar to the TR population sparseness Sp, we will

average these values over the entire population for our

measurement.

SAILnet model details
The SAILnet model [12] consists of a network of leaky

integrate-and-fire neurons that receive feed-forward input from

image pixels (a rough approximation of the thalamic input to V1),

and inhibit each other through recurrent connections. The feed-

forward weight from pixel i (with value Xi) to neuron j (Qij ) and

the inhibitory recurrent connections between neurons j and k=j
(Wjk) are learned by the network. In response to a given image,

neuron j emits some number nj of spikes, which can be zero.

Homeostasis, enforced via modifiable firing thresholds hi forces the

neurons to all have the same lifetime-average firing rate of

SniT~p spikes per image. After the image presentation, the

network parameters are updated via

DWjk~a njnk{p2
� �

DQij~bnj Xi{njQij

� �
Dhj~c nj{p

� �
,

ð3Þ

where the (positive) constants a, b and c define the rates at which

the parameters are learned. In order for them to remain

inhibitory, after each update, the recurrent connections are

rectified so that Wjk? Wjk

	 

z

.

SAILnet simulation details
For all simulations shown herein, the feed-forward weights Qij

were initialized with Gaussian white noise, and the learning rates

were set to a, b, cð Þ~ 1, 0:01, 0:01ð Þ. We used 250 neurons

which viewed 16|16 pixel image patches, hence the neuronal

representation was approximately critically sampled (1| over-

complete) with respect to the number of pixels. The target firing

rate was set to p~0:1 spikes per neuron per image in all cases. In

all cases, the L2 norm of the feed-forwards weights to each neuron

was 1 in the initial condition.

For the data shown in Fig. 4, the initial recurrent connection

strengths Wij were drawn randomly from a normal (Gaussian)

distribution with zero mean and unit variance, the firing

thresholds hi were initialized to 0:5 Vi, and the model neuronal

activity became more sparse during training.

For the results shown in Fig. 3, the initial recurrent connection

strengths were drawn randomly from a lognormal distribution (the

negative of their logarithms were drawn from a normal

distribution with zero mean and unit variance), the firing

thresholds were drawn uniformly over ½2,5�, and the model

neuronal activity became less sparse during training.

We note that in all cases, the specific shape of the sparseness vs.

time plot depends on the choice of initial conditions. However, for

a large class of initial conditions, the sparseness will decrease over

time, and for another large class of initial conditions, it will

increase (data not shown). Thus, our qualitative conclusion is not

particularly sensitive to the exact numerical values described

above.

SparseNet simulation details
The SparseNet results were generated using code publicly

distributed by Bruno Olshausen (http://redwood.berkeley.edu/

bruno/sparsenet/). The code was used ‘‘out of the box’’, without
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modifying the parameter values. For the data shown in Fig. 5a,

then bases (matrix A in the code) was initialized with Gaussian

white noise of variance 1. For the data shown in Fig. 5b, matrix A

was initialized with Gaussian white noise of variance 0.01.

In both cases, 256 units were used, and the model was trained

on 16|16 pixel image patches: the model is 1| overcomplete

with respect to the number of input pixels.

Registration-based RF comparisons
To perform the quantitative comparison of receptive field

shapes, we used the image registration tool in MatLab [33]. This

package allowed us to quickly and easily compute the optimum

combination of translation, rotation, and stretch – called a

‘‘similarity’’ transform in MatLab – to match each physiology

RF with an RF from the appropriate comparison class (either

model data or other experimentally measured RFs). For the

optimizer, we used the ‘‘monomodal’’ option.

Our data consists of 250 Macaque V1 receptive fields, measured

using reverse-correlation methods in the lab of Dario Ringach

[34]. These data are either 32|32, 64|64, or 128|128 pixel

images, showing the extent to which the neuron responds to each

pixel. In order to standardize these data for the comparison, and

because many of the RFs occupy only a tiny fraction of the image,

we pre-process those RFs that are larger than 32|32 pixels, as

follows. First, we find the peak absolute pixel value in the image –

nominally, this is somewhere in the region of support of the ‘‘real’’

RF –, and we cut out a 32|32 pixel region surrounding that peak.

We then perform our image registration fitting on these standard-

sized RFs.

For each macaque RF, we performed an exhaustive search over

all model RFs, wherein we found the best similarity transform to

match each model RF to the macaque RF, then took the best-

matching model RF (with the appropriate best similarity

transform), as the fit. The R2 value between this best-fit

transformed-model RF and the data RF was used to quantify

the goodness of fit.

To generate a benchmark to assess how good a ‘‘good’’ R2 value

is for this problem, we repeated our fitting process, but instead of

fitting the data to SAILnet model RFs, we fit each macaque RF

with the corpus of other macaque RFs. In so doing, we could

estimate the fraction of data variance that could be explained in a

best-case scenario.

The ratio between these numbers – the data-vs.-model R2 value

and the data-vs.-data R2 value – gives us an estimate of the

fraction of explainable variance that is captured by the model.
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