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The human papillomavirus 16 (HPV16) has high risk to lead various cancers and afflictions, especially, the cervical cancer.Therefore,
investigating the pathogenesis of HPV16 is very important for public health. Protein-protein interaction (PPI) network between
HPV16 and human was used as a measure to improve our understanding of its pathogenesis. By adopting sequence and topological
features, a support vector machine (SVM) model was built to predict new interactions between HPV16 and human proteins. All
interactions were comprehensively investigated and analyzed. The analysis indicated that HPV16 enlarged its scope of influence by
interacting with human proteins as much as possible. These interactions alter a broad array of cell cycle progression. Furthermore,
not only was HPV16 highly prone to interact with hub proteins and bottleneck proteins, but also it could effectively affect a breadth
of signaling pathways. In addition, we found that the HPV16 evolved into high carcinogenicity on the condition that its own
reproduction had been ensured. Meanwhile, this work will contribute to providing potential new targets for antiviral therapeutics
and help experimental research in the future.

1. Introduction

Human papillomavirus (HPV) has been tantamount to cer-
vical cancer which ranked as the third most common cancer
and the fourth most common cause of cancer death, but its
actual footprint ismuch bigger [1, 2]. Persistent infectionwith
mucosal HPV types, especially with HPV16, can also lead to
the form of penile, vulvar, vaginal, anal, and oropharyngeal
cancer, recurrent respiratory papillomatosis, and certain head
afflictions [3, 4]. Furthermore, some data show that the
actual number of cases of anal and oropharyngeal cancers
is increasing and may have already exceeded (or will soon
exceed) that of cervical cancer. HPVs were divided into five
different genera: Alpha, Beta, Gamma, Mu, and Nu [5, 6].
HPVs were also classified as cutaneous or mucosal according
to their tropism. There are both cutaneous and mucosal

HPV for Alphapapillomavirus. Other genera are cutaneous.
In addition, 12 mucosal HPVs (HPV16, 18, 31, 33, 35, 39, 45,
51, 52, 56, 58, and 59) were classified as high-risk (HR) HPV
types by the International Agency for Research on Cancer
(IARC) in 2009 [7, 8]. More than 96.6% of cervical cancer is
caused by HR HPVs, while about 54.4% is caused by HPV16.
In all HPV-positive noncervical cancers, HPV16 is also the
most commonHPV type detected.TheHPV16 encodes eight
proteins: E1, E2, E4, E5, E6, E7, L1, and L2 [9, 10]. These
proteins are classified as adaptive proteins which have high
carcinogenicity (E5, E6, and E7) and core set (E1, E2, L2, and
L1). The E4 protein is embedded within the E2 protein [11].

HPV16 appears to be extraordinary: how can such a
small amount of proteins do so much [12]? Protein-protein
interaction (PPI) network is a feasible strategy to improve our
understanding of its pathogenesis. Several human-pathogen
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interaction networks have been reported, such as Plasmod-
ium falciparum, Yersinia pestis, hepatitis C virus (HCV), and
Epstein-Barr virus (EBV) [13–16]. Dyer et al. integrated and
compared publicly available human-pathogen PPIs from 190
different pathogens to provide a global view of pathogenesis
strategies [17]. Unfortunately, it is very limited that PPI pairs
between HPV16 and human are obtained by experiment.
Therefore, computational methods to predict PPIs have an
important role [18]. The SVM with 217-dimensional vector
was employed to predict the interactions of HPV16 and
HPV18 proteins with human proteins by Cui et al. at the same
time [19]. But it is easy to lead overfitting for small sample.
In this paper, a new method was employed to represent
protein sequence. A support vector machine (SVM) model
with sequence and topological features was built to predict
new interactions between HPV16 and human proteins. Sub-
sequently, all interactions were filtered and further analyzed
by some strategies.

2. Methods

2.1. Data Sources. We collected human PPIs from large-
scale high-throughput screens [20–22] and several interac-
tion databases [23–26], which contained 193,801 interactions
among 13,306 proteins. The Pathway Interaction Database
(PID) is a growing collection of human signaling and regula-
tory pathways curated from peer-reviewed literature [27]. As
a source of reliable information we extracted about 224 dif-
ferent pathways from the PID.Then the interactions between
HPV16 and human proteins were extracted from IntAct [28],
APID [29], and VirHostNet [30]. After removing redun-
dancy, a total of 174 interactions were identified and used as
positive training set (see Table S1 in the supplementary mate-
rial available online at http://dx.doi.org/10.1155/2015/890381).

We collected 254 new nonredundant interaction pairs
from the literature (see Table S2 in the supplementary
material). Finally, the 254 interaction pairs were used as
positive test set. It should be noted thatwhether it was positive
training set or positive test set, the interactions were centered
on E6 protein and E7 protein because of experimental biases.

2.2. Choosing of Negative Set. As a 2-class classification, both
positive set and negative set are needed [31]. Positive set
is interacting pairs and negative set is noninteracting pairs.
Unfortunately, the noninteracting pairs were not readily
available. In the absence of negative set, the following strategy
was adopted to choose negative set. This strategy was based
on such an assumption that proteins locating different sub-
cellular localizations do not interact [32]. First, the all human
proteins of human PPI network were grouped into eight sub-
sets based on the eightmain types of localization—cytoplasm,
nucleus, mitochondrion, endoplasmic reticulum, golgi appa-
ratus, peroxisome, cytoplasm&nucleus and secreted. Then
we totaled subsets of human proteins which were targeted
by a kind of HPV16 protein denoted as ℎ. Therefore, other
proteins that did not appear in those subsets were made as
candidates who did not interact with ℎ. Finally, the same
amounts of proteins with targeted human proteins of ℎ were

randomly picked as negative set of ℎ. For example, eight
human proteins targeted by E5 protein occupied cytoplasm
subset and nucleus subset in positive training set; thus, other
human proteins which did not appear in those two subsets
were made as candidates and eight proteins of candidates
were randomly picked as negative training set of E5 protein.

2.3. Feature Extraction. The sequence compositions of the
protein pair and the topological features of corresponding
human protein were employed to represent protein interac-
tion between HPV16 and human.

In accordancewith Shen et al. [33], a protein sequencewas
represented by three consecutive amino acids. On account
of limited sample, however, another class of amino acids
was used to reduce the dimension of the vector space of
feature vectors. Based on the chemical nature of the side
chain of the amino acid, twenty amino acids were classified
into five categories: {GAVLIMP}, {STCNQ}, {KRH}, {ED},
and {FYW}. The third category and the fourth category were
incorporated into one category, and four categories were
considered in total. So there are 4 × 4 × 4 = 64 possible
amino acid combinations. The frequency of a combination
𝑘 in a protein 𝑖 was defined as 𝑓

𝑖𝑘
= 𝑛
𝑖𝑘
/∑
64

𝑙=1
𝑛
𝑖𝑙
, where

𝑛
𝑖𝑘
was the occurrences of combination 𝑘 in protein 𝑖. An

interaction between a HPV protein 𝑖 and a human protein 𝑗
was represented by their frequency difference, 𝑑

𝑖𝑗
= 𝑓
𝑖
− 𝑓
𝑗
.

The parameter 𝑑
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(1)

where 𝑑
𝑖𝑗𝑘

is the frequency difference of the 𝑘th combination.
The numerical value of 𝑛

𝑖𝑗𝑘
ranges from −1 to 1.

Besides the standardized frequency difference, degree
and betweenness of the human proteins were also used as
features. Ultimately, a 66-dimensional vector was built to
represent each protein pair. Each interaction was labeled +1
and noninteraction was labeled −1.

The classification model for predicting PPIs was based on
support vector machine (SVM) using LIBSVM [34] with the
radial basis function (RBF).

There are three differences between our representation
and that of Cui et al. [19]. First, twenty amino acids were clas-
sified into six classes by Cui et al.: {IVLM}, {FYW}, {HKR},
{DE}, {QNTP}, and {ACGS}. So there are 6 × 6 × 6 = 216
possible amino acid combinations. Second, standardization
was done by

𝑑
𝑖
= {𝑒
(𝑓𝑖−min{𝑓1 ,𝑓2 ,...,𝑓216})/(max{𝑓1 ,𝑓2 ,...,𝑓216}−min{𝑓1 ,𝑓2,...,𝑓216})} − 1.

(2)

Third, a feature element was used to represent the types
of virus proteins and was included in a feature vector.
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2.4. Tissue Specificity Filtering. To ensure utmost biological
relevance, tissue specificity filtering was adopted. It has been
known that HPVs infect epithelial cells in oral mucosa or
skin [6]. In addition, HPVs also lead to recurrent respiratory
papillomatosis, head afflictions, and cancers of the cervix
uteri, vulva, anus, and oropharynx (including base of the
tongue and tonsils) and interact with basal cell and the
immune system [3, 35]. We extracted proteins in those cells,
tissues, and systems from HPRD [26]. Finally, interactions
were filtered by selecting interaction pairs which only contain
those proteins.

2.5. Enrichment and Pathway Participation Coefficient. The
two parameters have been described byWuchty et al. [13, 36]
in detail. But for the sake of completeness, we would describe
the two parameters in brief.

Proteins were grouped according to their degree in inte-
grated human PPI network. Each group where each protein
has at least 𝑘 interactions was represented by 𝑁

≥𝑘
. In each

group the number of human proteins that were targeted
by HPV16, 𝑁

𝑡,≥𝑘
, was calculated. As a null hypothesis, we

randomly sampled protein set from the integrated human
PPI network and then calculated corresponding number of
targeted proteins, 𝑁𝑟

𝑡,≥𝑘
. Finally the enrichment of targeted

proteins was defined as 𝐸
𝑡,≥𝑘
= 𝑁
𝑡,≥𝑘
/𝑁
𝑟

𝑡,≥𝑘
. In addition to

degree, the same calculation was performed for betweenness.
It was noted that 𝐸 > 1 points to an enrichment and vice
versa.

For each protein 𝑖 that was involved in pathways and the
integrated human PPI network, the corresponding pathway
participation coefficient (PPC) in the total set of pathways
𝑃 was defined as PPC

𝑖
= ∑
𝑝∈𝑃
[|Γ(𝑖) ∈ 𝑝/∑

𝑝∈𝑃
Γ(𝑖) ∈ 𝑝|]

2,
where Γ(𝑖) ∈ 𝑝 was the set of interaction partners of 𝑖 in
the pathway 𝑝. If a protein predominantly interacted with
partners that weremembers of the same pathway, PPC tended
toward 1. Otherwise PPC tended to 0.

2.6. GO Term Enrichment. The Gene Ontology (GO) is a
hierarchically organized, controlled vocabulary to consis-
tently describe and annotate gene products [37]. GO term
enrichment was performed using the DAVID Functional
Annotation Chart tool [38, 39]. GO terms are controlled
vocabularies that form a directed acyclic graph (DAG),
whereby individual terms are represented as nodes connected
to more specific nodes by directed edges, such that each term
is a more specific child of one or more parents. Therefore, to
avoid very general and uninformative GO terms, only GO
level 5 terms were considered. The 𝑃 values were corrected
for multiple testing using the Bonferroni procedure and
transformed by taking the −log

10
for easier visualization [40,

41].

3. Results and Discussion

We extracted 174 interactions between HPV16 and human
proteins and integrated a human PPI network including
193,801 interactions. A flowchart of the whole experiment is
shown in Figure 1.

644 interaction pairs
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Figure 1: Flowchart to integrate and analyze PPI network between
HPV16 and human proteins. A candidate interaction was found, if
the human protein had homologs in the human PPI network. This
method provided 3,022 candidate interactions. An SVMmodel was
employed to evaluate candidate interactions and 1,121 interactions
were left. Subsequently, these interactions were filtered if human
proteins with targeted human proteins had the same as cellular
component. 1,015 interactions were obtained; positive training set
and test set were further filtered by tissue specificity. Finally, 877
interactions were obtained and analyzed. Solid lines delineate val-
idated interactions between virus and human proteins, and dotted
lines delineate candidate interactions which would be validated.
Homologous proteins are surrounded by ellipse.

3.1. Choosing of Negative Training Set and Evaluating ofModel.
The 174 interactions between virus and human proteins were
used as positive training set.The selection of negative training
set was fundamental to the reliability of the prediction
model [33]. Based on a rational assumption, the negative
training set was chosen (see Methods section). The SVM
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with 5-fold cross-validation was employed to optimize the
parameters and check the reliability of randomly selected
negative training set. Repeating such random trials 1,000
times and calculating average accuracy (81.3±1.3%),we chose
a result approaching average accuracy to buildmodel and plot
ROC curve (Figure 2) which allowed for a true positive rate
TPR = 74.71%, a false positive rate FPR = 8.62%, and area
under the curve AUC = 0.8627. Other results were dotted
clouds. It was demonstrated that the method of choosing
negative training set was significantly reliable and robust.

To evaluate expansibility of the model, a positive test
set was collected. Negative test set was selected by the same
method with choosing negative training set. Repeating trials
1,000 times, this model, on average, achieved an accuracy
AC = 80.0 ± 1.8%, TPR = 78.7%, and FPR = 18.2 ± 3.6%.
For comparison, we tested the method of Cui et al. on whole
modeling and evaluating. Our method outperformed the
method ofCui et al., which, on average, achievedAC= 57.25±
1.5%, TPR = 63.4%, and FPR = 47.9 ± 3.1%.

3.2. Inferring and Filtering of Candidate Interactions. To find
candidate interactions, we ran BLAST with the known tar-
geted human proteins as query sequences against the human
proteins in integrated human PPI network. Specifically, we
considered a pair of proteins with homology if their 𝐸-value
was <10−6. A candidate interaction was detected between a
HPV16 protein and homologous protein of targeted human
protein. The final set contained 3022 candidate interactions
between 8 virus and 1,950 human proteins.

The model built by SVM was applied to evaluate can-
didate interactions. The 1,121 interactions between 8 virus
and 701 human proteins were finally obtained. The 701
human proteins were refined further by selecting human
proteins that have the same GO cellular component terms
with homologous human proteins from the positive training
set. 1,015 interactions were obtained by this refinement. To
ensure utmost biological relevance for the 1,015 interactions,
tissue specificity filtering was adopted (see Methods section).
Filtering interactions provided 644 interactions between 8
HPV16 proteins and 405 human proteins. For simplicity of
reference, the filtering result was named as predicted set.
Meanwhile, positive set including training set and test set was
also filtered by tissue specificity. Finally, all filtering results
were combined, providing a total of 877 interactions between
8 virus and 603 human proteins. This set was called as all set.

3.3. Distribution of Targeted Human Proteins Based on Host-
Virus Interaction. Now we paid more attention to the all set.
The frequency of human proteins that interacted with the
same number of viral proteins was calculated. We observed
that most human proteins (69.52%) merely interacted with
a virus protein in Figure 3(a). The positive training set and
the predicted set were addressed by the same calculation
method, and their results illustrated similar trend with all
set. It suggested that HPV16 interacted with human proteins
as much as possible to enlarge its scope of influence by its
limited proteins. In order to provide all necessary cellular
proteins required for viral replication, the virus has to keep
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Figure 2: ROC curve of training set. Negative training sets were
repeatedly chosen 1,000 times. Applying SVM with 5-fold cross-
validation the training sets allowed for a true positive rate TPR =
74.71%, false positive rate FPR = 8.62%, and area under the curve
AUC = 0.8627.

its host cell in cycle [42]. At the molecular level, virus
proteins interact withmany key cell cycle regulatory proteins,
including cyclin-dependent kinase (CDK), cyclin-dependent
kinase inhibitors, and cyclin proteins (Figure 3(b)). Among
them, CDK2 and CDK7 are the most prominent. The two
proteins simultaneously interact with five virus proteins in
all set and the five virus proteins are L2, E4, E5, E6, and
E7. Combination of CDK2 and some cyclins regulates G

1
/S

transition. CDK7 is both a CDK-activating kinase (CAK),
which is able to phosphorylate and activate CDK1, CDK2,
CDK4, and CDK6 within the activation segment (T-loop)
[43–46], and an essential component of the transcription
factor TFIIH, which phosphorylates the C-terminal domain
(CTD) at Ser 5 of the largest subunit of Pol II [47–49]. These
interactions, together with other proteins that bind toHPV16,
alter a broad array of cell cycle progression; for example, they
block cellular proliferation by causing cell cycle arrest in S-
phase [12, 50, 51]. The myosin light chain kinase (MLCK)
is also targeted by five virus proteins. It has been proven
that MLCK plays a role in the regulation of epithelial cell
survival [52] andmodulates hypotonicity-inducedCa2+ entry
and Cl− channel activity in human cervical cancer cells [53].
In addition, HPV16 may be similar to arrest defective-1 that
controls tumor cell behavior by MLCK [54].

3.4. Statistical Implications of Targeted Host Proteins Based
on Human PPI Network. We calculated the enrichment of
targeted human proteins as a function of the degree of human
proteins (see Methods section). With an average over 1,000
randomizations, we observed that whether it was all set,
predicted set, or positive training set, HPV16 preferred to
interact with hub proteins (proteins interacting with a large
number of partners) in the integrated human PPI network
(Figure 4(a)). Subsequently, we calculated the enrichment
of targeted proteins as a function of the betweenness and
consistent trend has shown that bottleneck proteins (pro-
teins that are central to many paths in the network) were
more affected by virus (Figure 4(b)). Testing the significance
that HPV16 tended to interact with hub and bottleneck
proteins, we used Fisher’s exact test, allowing us to find a
statistically significant tendency that HPV16 is indeed highly
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Figure 3: Characteristics of PPI network between HPV16 and human. (a) Whether it was training positive set, predicted set, or all set, a
majority of host proteins interacted with a small amount of virus proteins. (b) A network between five virus proteins and some human
proteins about cell cycle and phosphorylation cascade. The more virus proteins human protein is targeted by, the darker the node color is.



6 BioMed Research International

0.5

1

1.5

2

2.5

3

3.5

4

En
ric

hm
en

t

Positive training set
Predicted set

All set

10
0

10
1

10
2

Degreehuman PPI

(a)

0

1

2

3

4

5

6

7

8

9

10

11

Betweennesshuman PPI

En
ric

hm
en

t

Positive training set
Predicted set

All set

10
0

10
1

10
2

10
3

10
4

10
5

(b)

Positive training set Predicted set All set
Degree

Betweenness
2 × 10

−3

1 × 10
−7

1 × 10
−14

1 × 10
−27

8 × 10
−21

1 × 10
−37

(c)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

PPC

Fr
eq

ue
nc

y

Positive training set
Predicted set

All set
Random set

(d)

Figure 4: Characteristics of targeted human proteins. (a) The enrichment of targeted human proteins as a function of their degree was
calculated. It indicated that hub proteins appeared to be primarily targeted. (b) Analogously, HPV16 tended to interact with bottleneck
proteins. (c) 𝑃 values of Fisher’s exact tests indicated that HPV16 is highly prone to interact with hub proteins and bottleneck proteins.
(d) Considering all set, most proteins have low pathway participation coefficients, which indicated that HPV16 reached into a breadth of
signaling pathways. Such a result was shown by positive training set and predicted set.

prone to interact with hub proteins and bottleneck proteins
(Figure 4(c)).

We speculated that virus interacted with human proteins
asmuch as possiblewhile tending to influencemany signaling
pathways to mediate the infection. PPC was adopted to mea-
sure this tendency (see Methods section). Focusing on the
positive training set, we observed that most human proteins
occurred in a variety of pathways through its interaction
partners in integrated human PPI network (Figure 4(d)).The
predicted set and the all set showed more enforced maxima
around low values of PPC. As a comparison, we randomly
selected a subset of equal size with human proteins in all set
from integrated humanPPI network and repeated 1,000 times
to calculate average value of PPC. Ignoring the last bar, we
found that the random set obeyed the normal distribution,
but the all set was linear relationship. Such results strongly
indicated that the HPV16 effectively affected a breadth of
signaling pathways [13, 55, 56].

3.5. Functional Analysis of Targeted Host Proteins. GO
term enrichment was employed to perform the compre-
hensive functional analysis for human proteins of the all

set. The main advantage of this approach is that we can
make use of term-term relationships, in which joint terms
may contain unique biological meaning for a given study
[57].

For all targeted human proteins, significant enrichment
was observed in the processes of phosphorylation, me-
tabolism, signaling, cell death and apoptosis, gene expres-
sion, and positive or negative regulation terms (Figure 5(a)).
This observation was also reflected on the functions which
include kinase activity, receptor activity, promoter, DNA
binding, and so on (Figure 5(b)). MAPK is a particularly
important component in protein kinase phosphorylation
cascade. It can enter the nucleus and phosphorylate ser-
ine/threonine residues of substrate proteins which contain
transcription factors of regulating the cell cycle and cell
differentiation. Notably, viral proteins strongly interacted
with members of the MAPK family (MAPK1, 3, 6, 7, 8, 9,
11, and 14). Besides MAPK family, partial members of
MAP2K andMAP3K family were also targeted (Figure 3(b)).
HPV16 controls phosphorylation cascade so that cell behav-
iors including cell proliferation and differentiation, cell sur-
vival, and apoptosis are broken.
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Figure 5: GO term enrichment of all targeted human proteins. (a) Enriched GO biological process terms. (b) Enriched GO molecular
function terms. Here only fifteen most significant terms are shown. Bonferroni collected 𝑃 values were transformed by −log
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abbreviations are used: “reg” is “regulation of,” “pos” is “positive,” “neg” is “negative,” “proc” is “process,” “macro” is “macromolecule,” and
“bsyn” is “biosynthetic.”

Five proteins (E1, E2 (and E4), L1, and L2) are encoded
by all known PVs. There is a hypothesis that the ancestral
papillomavirus did not contain adaptive proteins and only
need the core set to meet the basic requirements of a viral
infection [11]. In the process of evolution, HPV16 produced
all of the adaptive proteins. It was surprising that the top
four of biological process enrichment of all adaptive proteins
were the same as core set’s top four, and then processes
involving apoptosis and death were enriched for core set
(Figures 6(a) and 6(c)). This showed that HPV16 would
evolve carcinogenicity, but only on the condition that its
own reproduction had been ensured. The E4 protein has
the functions of adaptive proteins and core set (Figure 6)
but prefers the latter. In other words, as a part of the
proteins encoded by all known PVs E4 must first guarantee
viral reproduction and then together with adaptive proteins
enhance the carcinogenicity of HPV16.

4. Conclusions

Significant challenges currently impair experiments to get
a more complete map of interactions between HPV16 and
human proteins, facilitating computationalmethods to detect
potential interactions. Sequence features are popular because
of its simplicity and availability. SVM has been shown to
perform well in multiple areas including detecting remote
protein homologies, evaluating microarray expression data,
and checking new interactions [33, 58, 59]. On the basis of
facts above we predicted new interactions between HPV16
and human proteins. The predicted set and other known
interactions were integrated and filtered, providing a total of
877 interactions between 8 virus and 603 human proteins.

According to the interactions between the virus and human
proteins, we plotted the distribution of targeted host proteins.
The distribution showed that the virus enlarged its scope
of influence by interacting with host proteins as much as
possible. HPV16 alters a broad array of cell cycle progression
by a number of PPIs. Utilizing integrated human PPI network
the enrichment of targeted host proteins as a function of their
degree or betweenness was calculated. Results suggested that
HPV16 was highly prone to interact with hub proteins and
bottleneck proteins, perhaps because these proteins control
critical processes in the human cell [17]. PPC was used as
a measure of diversity. In the light of their distributions,
targeted human proteins effectively mediated the diversity
of influenced signaling pathways which helps virus mediate
the infection. GO term enrichment was utilized to perform
the comprehensive functional analysis. We found that cell
behaviors of host cell were broken; the HPV16 produced
many other functions by evolution, but it was based on the
premise that its own reproduction has been guaranteed.

The integration and analysis of virus-host interactions
boosts our knowledge about the function of HPV16 proteins
and relations between virus and human proteins. These
results improve our understanding of HPV16 pathogenesis
and provide potential new targets for interfering with either
HPV16 or human at key points in the infection. Our results
may point to important areas of research to guide further
experimental studies.
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