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Summary

Prefrontal cortex is thought to play a fundamental role in flexible, context-dependent behavior, but 

the exact nature of the computations underlying this role remains largely mysterious. In particular, 

individual prefrontal neurons often generate remarkably complex responses that defy deep 

understanding of their contribution to behavior. Here we study prefrontal cortex in monkeys 

trained to flexibly select and integrate noisy sensory inputs towards a choice. We find that the 

observed complexity and functional roles of single neurons are readily understood in the 

framework of a dynamical process unfolding at the level of the population. The population 

dynamics can be reproduced by a trained recurrent neural network, which suggests a previously 

unknown mechanism for selection and integration of task-relevant inputs. This mechanism implies 

that selection and integration are two aspects of a single dynamical process unfolding within the 

same prefrontal circuits, and potentially provides a novel, general framework for understanding 

context-dependent computations.

Introduction

Our interactions with the world are inherently flexible. Identical sensory stimuli, for 

example, can lead to very different behavioral responses depending on ‘context’, which 

includes goals, prior expectations about upcoming events, and relevant past experiences1, 2. 

Animals can switch rapidly between behavioral contexts, implying the existence of rapid 

modulation, or ‘gating’, mechanisms within the brain that select relevant sensory 

information for decision-making and action. A large attention literature suggests that 

relevant information is selected by top-down modulation of neural activity in early sensory 
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areas3–8, which may take the form of modulation of firing rates3, 5–7, or modulation of 

response synchrony within or across areas4, 5, 8. The top-down signals underlying such 

‘early’ modulations of sensory activity arise, in part, from prefrontal cortex (PFC)2, 5, which 

is known to contribute to representing and maintaining contextual knowledge, ignoring 

irrelevant information, and suppressing inappropriate actions1, 2, 9, 10. These observations 

have led to the hypothesis that early selection may account for the larger effect of relevant as 

compared to irrelevant sensory information on contextually-sensitive behavior.

Here we test this hypothesis with a task requiring context-dependent selection and 

integration of visual stimuli. We trained two macaque monkeys (A and F) to perform two 

different perceptual discriminations on the same set of visual stimuli (Fig. 1). The monkeys 

were instructed by a contextual cue to either discriminate the direction of motion or the color 

of a random-dot display, and to report their choices with a saccade to one of two visual 

targets (Fig. 1a). While monkeys performed this task, we recorded extracellular responses 

from neurons in and around the frontal eye field (FEF) (Extended Data Fig. 1a,f), an area of 

PFC involved in the selection and execution of saccadic eye movements11, 12, the control of 

visuo-spatial attention13, and the integration of information toward visuo-motor 

decisions12, 14.

Surprisingly, we find no evidence that irrelevant sensory inputs are gated, or filtered out, 

prior to the integration stage in PFC, as would be expected from early selection 

mechanisms3–8. Instead, the relevant input appears to be selected late, by the same PFC 

circuitry that integrates sensory evidence towards a choice. Selection within PFC without 

prior gating is possible because the representations of the inputs, and of the upcoming 

choice, are separable at the population level, even though they are deeply entwined at the 

single neuron level. An appropriately trained recurrent neural network model reproduces key 

physiological observations and suggests a new mechanism of input selection and integration. 

The mechanism reflects just two learned features of a dynamical system: an approximate 

line attractor and a ‘selection vector’, which are only defined at the level of the population. 

The model mechanism is readily scalable to large numbers of inputs, suggesting a general 

solution to the problem of context-dependent computation.

Results

The monkeys successfully discriminated the relevant sensory evidence in each context, 

while largely ignoring the irrelevant evidence (Fig. 1c-f, monkey A; Extended Data Fig. 2a-

d, monkey F). To vary the difficulty of the discrimination, we changed the strength of the 

motion and color signals randomly from trial to trial (Fig. 1b). In the motion context, the 

choices of the monkeys depended strongly on the direction of motion of the dots (Fig. 1c), 

while depending only weakly on color in the same trials (Fig. 1d). The opposite pattern held 

in the color context: the now relevant color evidence exerted a large effect on choices (Fig. 

1f) while motion had only a weak effect (Fig. 1e).

As is common in PFC1, 2, 15–18, the recorded responses of single neurons appeared to 

represent several different task-related signals at once, including the monkey’s upcoming 

choice, the context, and the strength of motion and color evidence (Extended Data Figs. 1,3). 
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Rather than attempting to understand the neural mechanism underlying selective integration 

by studying the responses of single PFC neurons, we focus on analyzing the responses of the 

population as a whole. To construct population responses, we pooled data from both single 

and multi-unit recordings, which yielded equivalent results. The great majority of units were 

not recorded simultaneously, but rather in separate sessions. Units at all recording locations 

appeared to contribute to the task-related signals analyzed below (Extended Data Fig. 1) and 

were thus combined. Overall, we analyzed 388 single-unit and 1014 multi-unit responses 

from the two monkeys.

To study how the PFC population as a whole dynamically encodes the task variables 

underlying the monkeys’ behavior, we represent population responses as trajectories in 

neural state space17, 19–25. Each point in state space corresponds to a unique pattern of 

neural activations across the population. Since activations are dynamic, changing over time, 

the resulting population responses form trajectories in state space.

We focus our analyses on responses in a specific low-dimensional subspace that captures 

across-trial variance due to the choice of the monkey (choice 1 or 2), the strength and 

direction of the motion evidence, the strength and direction of the color evidence, and 

context (motion or color). We estimated this task-related subspace in two steps 

(Supplementary Information). First, we used principal component analysis (PCA) to obtain 

an unbiased estimate of the most prominent features (i.e. patterns of activations) in the 

population response. To ‘de-noise’ the population responses, we restricted subsequent 

analyses to the subspace spanned by the first 12 principal components. Second, we used 

linear regression to define the four orthogonal, task-related axes of choice, motion, color, 

and context. The projection of the population response onto these axes yields de-mixed 

estimates of the corresponding task variables, which are mixed both at the level of single 

neurons (Extended Data Fig. 3) and at the level of individual principal components 

(Extended Data Fig. 4c,g, see also26).

This population analysis yields highly reliable average response trajectories (Fig. 2 and 

Extended Data Fig. 4q,r) that capture both the temporal dynamics and the relationships 

among the task variables represented in PFC. In particular, four properties of the population 

responses provide fundamental constraints on the mechanisms of selection and integration 

underlying behavior in our task.

First, integration of evidence during dots presentation corresponds to a gradual movement of 

the population response in state space along the axis of choice (Fig. 2a,f). In both contexts, 

the trajectories start from a point in state space close to the center of the plots (‘dots on’, 

purple point), which corresponds to the pattern of population responses at baseline. During 

the dots presentation the responses then quickly move away from this baseline level, along 

the axis of choice (red line; Fig. 2a,f). Overall, the population response moves in opposite 

directions on trials corresponding to the two different saccade directions (Fig. 2, choice 1 vs. 

choice 2). The projection of the population response onto the choice axis (Extended Data 

Fig. 5b,f) is largely analogous to the ‘choice-predictive’ signals that have been identified in 

past studies as approximate integration of evidence during direction discrimination tasks27.
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Second, the sensory inputs into PFC produce patterns of population responses that are very 

different from those corresponding to either choice, meaning that these signals are separable 

at the level of the population. Indeed, the population response does not follow straight paths 

along the choice axis, but instead forms prominent arcs away from it (Figs. 2a,f). The 

magnitude of each arc along the axes of motion or color reflects the strength of the 

corresponding sensory evidence (see scale), while its direction (up or down) reflects the sign 

of the evidence (towards choice 1 or 2, filled or empty symbols). While the integrated 

evidence continues to be represented along the axis of choice even after dots offset, the 

signals along the axes of motion and color are transient—the arcs return to points near the 

choice axis by the time of dots offset. These signals thus differ from integrated evidence 

both in terms of the corresponding patterns of activation and in their temporal profile. For 

these reasons, we interpret them as ‘momentary evidence’ from the motion and color inputs 

in favor of the two choices. This interpretation is also consistent with the observed 

population responses on error trials, for which the momentary evidence points towards the 

chosen target, but is weaker than on correct trials (Extended Data Fig. 5c,d; red curves).

Third, context appears to have no substantial effect on the direction of the axes of choice, 

motion, and color, and only weak effects on the strength of the signals represented along 

these axes. When estimated separately during the motion and color contexts, the two 

resulting sets of axes span largely overlapping subspaces (see Supplementary Information, 

Table 1); thus a single set of three axes (the red, black, and blue axes in Fig. 2a-f, estimated 

by combining trials across contexts) is sufficient to capture the effects of choice, motion and 

color on the population responses in either context. A comparison of the population 

responses across contexts (Fig. 2a-c vs. d-f) reveals that a single, stable activity pattern is 

responsible for integrating the relevant evidence in both contexts (the choice axis), while 

similarly stable activity patterns represent the momentary motion and color evidence in both 

contexts (motion and color axes). Surprisingly, motion and color inputs result in comparable 

deflections along the motion and color axes, respectively, whether they are relevant or not 

(compare Fig. 2a to 2d, and 2f to 2c).

Fourth, while the directions of the axes of choice, motion, and color are largely invariant 

with context, their location in state space is not. The responses during the motion and color 

contexts occupy different parts of state space, and the corresponding trajectories are well 

separated along the axis of context (Extended Data Fig. 6a,b).

These properties of the population responses, which are summarized schematically in Fig. 

3a, can be compared to the predictions of current models of context-dependent selection and 

integration (Fig. 3b-d). Here we first focus on three fundamentally different mechanisms of 

selection that could each explain why the motion input, for example, influences choices in 

the motion context (Fig. 3, top row) but not in the color context (Fig. 3, bottom row). In the 

framework of our task the three models predict population responses that differ substantially 

from each other (Fig. 3b-d), and can thus be validated or rejected by our PFC recordings 

(Fig. 3a).

The first model (Fig. 3b) is based on two widely accepted hypotheses about the mechanisms 

underlying selection and integration of evidence. First, it assumes that inputs are selected 
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early3–8, such that a given input drives PFC responses when relevant (gray arrow in Fig. 3b 

top), but is filtered out before reaching PFC when irrelevant (no gray arrow in Fig. 3b, 

bottom). Second, it assumes that the relevant input directly elicits a pattern of activation in 

PFC resembling those corresponding to a choice (the gray arrow in Fig. 3b, top, points 

along the axis of choice), as would be expected by current models of integration28, 29.

Both hypotheses are difficult to reconcile with the recorded PFC responses. While the 

strength of each input is somewhat reduced when it is irrelevant compared to when it is 

relevant, the magnitude of the observed reduction seems too small to account for the 

behavioral effects. For instance, irrelevant motion of high coherence (Fig. 2d black), elicits a 

larger deflection along the motion axis (relative to baseline, magenta dot) than relevant 

motion of intermediate coherence (Fig. 2a, dark gray). Yet the former has almost no 

behavioral effect (Fig. 1e) while the latter has a large behavioral effect (Fig. 1c). The 

analogous observation holds for the color input (Fig. 2c,f and Fig. 1d,f), strongly suggesting 

that the magnitude of the momentary evidence alone does not determine whether the 

corresponding input is integrated. Furthermore, the actual momentary motion input is 

represented along a direction that has little overlap with the choice axis, resulting in curved 

trajectories (Fig. 3a) that differ markedly from the straight trajectories predicted by the early 

selection model (Fig. 3b).

The observed PFC responses also rule out two additional models of selection presented in 

Fig. 3. In the absence of early selection, a motion input might be selected within PFC by 

modifying the angle between the choice and motion axes (i.e. the similarity between patterns 

of neural activity representing choice and momentary motion evidence) across contexts. 

This angle could be modified either by changing the direction of the motion axis between 

contexts while keeping the choice axis fixed (Fig. 3c), or vice versa (Fig. 3d). In both cases, 

the motion input would elicit movement of the population along the axis of choice in the 

motion context (top row), but not in the color context (bottom row) since the motion and 

choice axes have little or no overlap in the color context. At the single neuron level, variable 

axes that change direction across contexts would be reflected as complex, nonlinear 

interactions between context and the other task-variables, which have been proposed in 

some task-switching models30, 31. However, our data (Fig. 2, Fig. 3a) lend little support for 

variable choice (Fig. 3d) or input (Fig. 3c) axes. More generally, the PFC data from monkey 

A rule out any model of integration for which the degree of overlap between the direction of 

the momentary evidence and the axis of choice determines how much the corresponding 

input affects behavior.

The representation of task variables in PFC of monkey F replicates all but one key feature 

observed in monkey A. Most importantly, population responses along the choice and motion 

axes (Extended Data Fig. 7a,d) closely match those observed in monkey A (Fig. 2a,d); thus 

physiological data from both monkeys are consistent in rejecting current models of selection 

and integration of motion inputs (Fig. 3b-d). The color signal in monkey F, however, is 

equivocal. On the one hand, the representation of the color input closely resembles that of a 

choice (Extended Data Fig. 1g,i), as expected from the early selection model described 

above (Fig. 3b). On the other hand, the color input is also weakly represented along the color 

axis in both contexts (vertical displacement of trajectories, Extended Data Fig. 7c,f). For the 
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color input in monkey F, therefore, we cannot with confidence accept or reject the early 

selection model. Finally, as in monkey A, context is represented in monkey F along a 

separate axis of context (Extended Data Fig. 6c,d).

In summary, the population responses in both monkeys are difficult to reconcile with current 

models of selection and integration (see also Extended Data Fig. 8). Rather, the selective 

integration of the motion input in monkeys A and F, and of the color input in monkey A, 

must rely on a mechanism for which the very same input into PFC leads to movement along 

a fixed axis of choice in one context but not another.

To identify such a mechanism, we trained a network of recurrently connected, nonlinear 

neurons32 to solve a task analogous to the one solved by the monkeys (Fig. 4). Notably, we 

only defined ‘what’ the network should do, with minimal constraints on ‘how’ it should do 

it32–34. Thus the solution achieved by the network is not hand-built into the network 

architecture. On each trial, neurons in the network receive two independent sensory inputs 

that mimic the momentary evidence for motion and color in a single random dot stimulus. 

The network also receives a contextual input that mimics the contextual signal provided to 

the monkeys, instructing the network to discriminate either the motion or the color input. 

The network activity is read out by a single linear readout, corresponding to a weighted sum 

over the responses of all neurons in the network (see Supplementary Information). As in 

PFC, the contextual input does not affect the strength of the sensory inputs—selection 

occurs within the same network that integrates evidence toward a decision.

We trained the network35 to make a binary choice on each trial—an output of +1 at the end 

of the stimulus presentation if the relevant evidence pointed leftward, or a −1 if it pointed 

rightward. After training, the model qualitatively reproduces the monkeys’ behavior, 

confirming that the model solves the selection problem at the ‘behavioral’ level (Extended 

Data Fig. 2e-h).

We first analyzed model population trajectories in the subspace spanned by the axes of 

choice, motion, and color, and found that they reproduce the four main features of the PFC 

population responses discussed above (Fig. 5 and Extended Data Fig. 9a-g). First, 

integration of evidence corresponds to gradual movement of the population response along 

the choice axis. Second, momentary motion and color evidence ‘push’ the population away 

from the choice axis, resulting in trajectories that are parametrically ordered along the 

motion and color axes. Third, the direction of the axes of choice, motion, and color are 

largely invariant with context, as are the strength of the motion and color inputs, since these 

are not gated before entering the network. Fourth, the trajectories during motion and color 

contexts are separated along the axis of context (Extended Data Fig. 9f,g). Model and 

physiological dynamics differ strikingly in one respect—signals along the input axes are 

transient in the physiology, but not in the model, yielding PFC trajectories that curve back to 

the choice axis before the end of the viewing interval (compare Fig. 5a,f to Fig. 2a,f). This 

difference suggests that the sensory inputs to PFC are attenuated after a decision is reached. 

Additional differences between the model and the physiological dynamics can be readily 

explained by previously proposed imperfections in the evidence integration process, such as 

‘urgency’ signals36, 37 or instability in the integrator38 (Extended Data Fig. 10).
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We then ‘reversed engineered’ the model33 to discover its mechanism of selective 

integration. The global features of the model activity are easily explained by the overall 

arrangement of fixed points of the dynamics33 (Fig. 5), which result from the synaptic 

connectivity learned during training. Fixed points (red crosses) correspond to patterns of 

neuronal activations (i.e., locations in state space) that are stable when the sensory inputs are 

turned off. First, we find that the model generates a multitude of fixed points, which are 

approximately arranged to form two lines along the choice axis. The two sets of fixed points 

are separated along the axis of context (Extended Data Fig. 9f,g) and never exist together—

one exists in the motion context (Fig. 5a-c), the other in the color context (Fig. 5d-f). 

Second, the responses around each fixed point are approximately stable only along a single 

dimension pointing towards the neighboring fixed points (red lines), while responses along 

any other dimension rapidly collapse back to the fixed points. Therefore, each set of fixed 

points approximates a line attractor39. Finally, two stable attractors (large red crosses), 

corresponding to the two possible choices, delimit each line attractor.

The integration of the relevant evidence is thus implemented in the model as movement 

along an approximate line attractor39. The model population response, however, does not 

move strictly along the line attractor. Like the physiological data, model trajectories move 

parallel to the line attractors (the choice axis) at a distance proportional to the average 

strength of the sensory inputs, reflecting the momentary sensory evidence (Fig. 5a,c,d,f). 

After the inputs are turned off (Fig. 5, purple data points), the responses rapidly relax back 

to the line attractor.

To understand how the relevant input is selected for integration along a line attractor, we 

analyzed the local dynamics of model responses around the identified fixed points33 (Fig. 6). 

To simplify the analysis, we studied how the model responds to brief pulses of motion or 

color inputs (Fig. 6a), rather than the noisy, temporally extended inputs used above. Before a 

pulse, we initialize the state of the network to one of the identified fixed points (Fig. 6a, red 

crosses). Locally around a fixed point, the responses of the full, nonlinear model can then be 

approximated by a linear dynamical system (see Supplementary Information), whose 

dynamics can be more easily understood33.

Both the motion and color inputs (i.e. the corresponding pulses) have substantial projections 

onto the line attractor (Fig. 6a) but, crucially, the size of these projections does not predict 

the extent to which each input will be integrated. For instance, in both contexts the motion 

pulses have similar projections onto the line attractor (Fig. 6a, left panels), and yet they 

result in large movement along the attractor in the motion context (top) but not in the color 

context (bottom).

The selection of the inputs instead relies on context-dependent relaxation of the network 

dynamics after the end of the pulse, which reverses movement along the line attractor caused 

by the irrelevant pulse (Fig. 6a, top right and bottom left) and enhances the effects of the 

relevant pulse (Fig. 6a, top left and bottom right). These relaxation dynamics, while 

counterintuitive, nevertheless follow a very simple rule. For a given context, the relaxation 

always occurs on a path that is orthogonal to a specific direction in state space, which we 

call the ‘selection vector’ (Fig. 6b). The direction of the selection vector, like the direction 
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of the line attractor, is a property of the recurrent synaptic weights learned by the model 

during training (see Supplementary Information). Unlike the line attractor, however, the 

orientation of the selection vector changes with context—it projects strongly onto the 

relevant input, but is orthogonal to the irrelevant one (Fig. 6b). As a consequence, the 

relaxation dynamics around the line attractor are context-dependent. This mechanism 

explains how the same sensory input can result in movement along the line attractor in one 

context but not the other (Fig. 6b).

The line attractor and the selection vector are sufficient to explain the linearized dynamics 

around each fixed point (see Supplementary Information), and approximate well the 

responses of the full model (magenta curves, Fig. 6a). Concretely, the line attractor and the 

selection vector correspond to the right and left zero-eigenvector of the underlying linear 

system. Within a context, these locally defined eigenvectors point in a remarkably consistent 

direction across different fixed points—the selection vector, in particular, is always parallel 

to the relevant input and orthogonal to the irrelevant input (Fig. 6c and Extended Data Fig. 

10q-s). As a result, the two line attractors (Fig. 6c) exhibit relaxation dynamics appropriate 

for selecting the relevant input along their entire length.

Discussion

We describe a novel mechanism underlying flexible, context-dependent selection of sensory 

inputs and their integration towards a choice (see39–41 for related concepts). This mechanism 

is sufficient to explain the selection and integration of motion inputs in both monkeys, and 

of color inputs in monkey A, which are not filtered out by context before they reach PFC.

A randomly initialized, recurrent neural network trained to solve a task analogous to the 

monkeys’ task reproduces the main features of the data, and analysis of the trained network 

elucidates the novel selection mechanism. Integration along line attractors, and its relation to 

the selection vector, has been described before39. However, our model demonstrates for the 

first time how a single non-linear model can implement flexible computations by 

reconfiguring the selection vector and the corresponding recurrent dynamics based on a 

contextual input. Counter-intuitively, in the model the projection of an input onto the line 

attractor does not determine the extent to which it is integrated, a manifestation of ‘non-

normal’ dynamics40, 42, 43 (see Supplementary Information).

Our results show that the modulation of sensory responses is not necessary to select among 

sensory inputs (see also44–46). Consistent with this conclusion, two studies employing tasks 

similar to ours47, 48, as well as our own recordings in area MT of monkey A (data not 

shown), have found no evidence for consistent firing rate modulations in the relevant 

sensory areas. The dynamical process outlined in this paper is fully sufficient for context-

dependent selection in a variety of behavioral paradigms3–8, but it need not be exclusive. 

Multiple selection mechanisms may exist within the brain.

In summary, our results suggest that computations in prefrontal cortex emerge from the 

concerted dynamics of large populations of neurons, and are best studied in the framework 

of dynamical systems17, 19–23, 39, 49. Remarkably, the rich dynamics of PFC responses 
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during selection and integration of inputs can be characterized and understood with just two 

features of a dynamical system—the line attractor and the selection vector, which are 

defined only at the level of the neural population. This parsimonious account of cortical 

dynamics contrasts strikingly with the complexity of single neuron responses typically 

observed in PFC and other integrative structures, which reveal multiplexed representation of 

many task-relevant and choice-related signals1, 2, 15, 16, 25, 50. In light of our results, these 

mixtures of signals can be interpreted as separable representations at the level of the neural 

population15, 17, 25. A fundamental function of PFC may be to generate such separable 

representations, and to flexibly link them through appropriate recurrent dynamics to 

generate the desired behavioral outputs.

Methods

Methods are provided in the Supplementary Information.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Behavioral task and psychophysical performance
a, Task structure. Monkeys were instructed by a contextual cue to either discriminate the 

motion or the color of a random-dot stimulus, and indicate their choice with a saccade to one 

of two targets. Depending on context, monkeys were rewarded for choosing the target 

matching the prevalent direction of motion (motion context) or the prevalent color (color 

context) of the random-dots. Context was indicated by the shape and color of the fixation 

point; offset of the fixation point was the ‘go cue’, signaling the monkey to indicate its 

choice via the operant saccade. b, Stimulus set. The motion and color coherence of the dots 

was chosen randomly on each trial. We slightly varied the coherence values on each day, to 

equate performance across contexts and sessions (numbers in parentheses: average 

coherences (%) across sessions for monkey A). c-f, Psychophysical performance for monkey 

A in the motion (top) and color contexts (bottom), averaged over 80 recording sessions 

(163,187 trials). Performance is shown as a function of motion (left) or color (right) 

coherence in each behavioral context. The curves are fits of a behavioral model.
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Figure 2. Dynamics of population responses in PFC
The average population response for a given condition and time is represented as a point in 

state space. Responses from correct trials only are shown from 100ms after dots onset (dots 

on, purple circle) to 100ms after dots offset (dots off) in 50ms steps, and are projected into 

the three-dimensional subspace capturing the variance due to the monkey’s choice (along 

the choice axis), and to the direction and strength of the motion (motion axis) and color 

(color axis) inputs. Units are arbitrary; components along the motion and color axes are 

enhanced relative to the choice axis (see scale bars in a,f). Conditions (see color bars) are 

defined based on context (motion context, top; color context, bottom), on the location of the 

chosen target (choice 1 vs. choice 2) and either on the direction and strength of the motion 

(gray colors) or the color input (blue colors). Here, choice 1 corresponds to the target in the 

response field of the recorded neurons. The direction of the color input does not refer to the 

color of the dots per se (red or green), but to whether the color points towards choice 1 or 

choice 2 (see Supplementary Information, section 6.4, for a detailed description of the 

conditions). a, Effect of choice and the relevant motion input in the motion context, 

projected onto the axes of choice and motion. b, Same data as in a, but rotated by 90° 

around the axis of choice to reveal the projection onto the axis of color. c, Same trials as in 

b, but re-sorted according to the direction and strength of the irrelevant color input. d-f, 
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responses in the color context, analogous to a-c. Responses are averaged to show the effects 

of the relevant color (e,f) or the irrelevant motion input (d). For relevant inputs (a,b and e,f), 
correct choices occur only when the sensory stimulus points towards the chosen target (3 

conditions per chosen target); for irrelevant inputs (c,d), however, the stimulus can point 

either towards or away from the chosen target on correct trials (6 conditions per chosen 

target).
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Figure 3. Models of selective integration inconsistent with PFC responses
Schematic representation of population responses observed in PFC (a) and expected by 

several models of selective integration (b-d). The models differ from the PFC responses 

with respect to the relative directions and context dependence of the choice axis (red lines) 

and the inputs (thick gray arrows; only motion input shown). The relevant input is integrated 

as movement along the choice axis towards one of two choices (red crosses). A motion 

input towards choice 1 ‘pushes’ the responses along the direction of the gray arrow (towards 

choice 2: opposite direction). Same conditions as in Fig. 2a (motion context, top) and Fig. 2d 

(color context, bottom). As in Fig. 2a and d, a single two-dimensional subspace (which 

contains the choice axis and motion input) is used to represent responses from both contexts. 

a, Idealized schematic of the actual PFC trajectories shown in Fig. 2a,d. Both the choice axis 

and motion input are stable between contexts. The motion input pushes the population 

response away from the choice axis. b, Early selection model. When relevant (top), the 

motion input pushes the population response along the choice axis. When irrelevant 

(bottom), the motion input is filtered out before reaching PFC (no thick gray arrow) and thus 

exerts no effect on choice. All trajectories fall on top of each other in both contexts, but the 

rate of movement along the choice axis increases with motion strength only in the motion 

context (insets show enlarged trajectories distributed vertically for clarity). c, Context 

dependent input direction. Motion input direction varies between contexts, while the choice 

axis is stable. Inputs are not filtered out before PFC; rather they are selected based on their 

projection onto the choice axis. d, Context-dependent output direction. Similar selection 

mechanism to c, except that the choice axis varies between contexts, while the motion input 

is stable. The effects of the motion input on PFC responses in both monkeys (schematized in 

a) and the effects of the color input in monkey A are inconsistent with predictions of the 

three models in b-d (respectively, Fig. 2a,d; Extended Data Fig. 7a,d; Fig. 2f,c).
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Figure 4. A neural network model of input selection and integration
PFC is modeled as a network of recurrently connected, nonlinear, rate neurons that receive 

independent motion, color, and contextual inputs. The network is fully recurrently 

connected, and each unit receives both motion and color inputs as well as two inputs that 

indicate context. At each time step, the sensory inputs are drawn from two normal 

distributions whose means correspond to the average strengths of the motion and color 

evidence on a given trial. The contextual inputs take one of two values (0 or 1), which 

instruct the network to discriminate either the motion or the color input. The network is read 

out by a single linear readout, corresponding to a weighted sum over the responses of all 

neurons (red arrows). We trained the network (with back-propagation35) to make a binary 

choice, i.e. to generate an output of +1 at the end of the stimulus presentation if the relevant 

evidence pointed towards choice 1, or a −1 if it pointed towards choice 2. Before training, all 

synaptic strengths were randomly initialized.
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Figure 5. Model dynamics and fixed points analysis
a-f, Dynamics of model population responses, same conventions as in Fig. 2. Responses are 

projected into the three-dimensional subspace spanned by the axes of choice, motion, and 

color (defined here based on the model synaptic weights, see Supplementary Information, 

section 7.6). Movement along the choice axis corresponds to integration of evidence, and the 

motion and color inputs deflect the trajectories along the corresponding input axes. Fixed 

points of the dynamics (red crosses) were computed separately for motion (a-c) and color 

contexts (d-f) in the absence of sensory inputs (see Supplementary Information, section 7.5). 

The fixed points are ‘marginally stable’ (i.e. one eigenvalue of the linearized dynamics is 

close to zero, while all others have strongly negative real parts; see Supplementary 

Information). The locally computed right zero-eigenvectors (red lines) point to the 

neighboring fixed points, which thus approximate a line attractor in each context. After the 

inputs are turned off (dots off, purple data points and lines) the responses relax back towards 

the line attractor. Each line attractor ends in two ‘stable’ attractors (i.e. all eigenvalues have 

strongly negative real parts, large crosses) corresponding to model outputs of +1 and −1 (i.e. 

choice 1 or 2).
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Figure 6. Selection and integration by recurrent dynamics
a, Average model population response to short (1ms) pulses of motion (left) and color inputs 

(right) during motion (top) and color contexts (bottom). Motion or color inputs (solid lines) 

are initiated when the system is steady at one of the identified fixed points (red crosses), and 

subsequent relaxation back to the line attractor is simulated (dots: 3ms intervals) and 

averaged across fixed points. The size of the pulses approximately corresponds to the length 

of the scale bars in Fig. 5. Selection of the relevant input results from the context-dependent 

relaxation of the recurrent dynamics after the pulse, and is well approximated by the 

linearized dynamics around the fixed points (magenta lines). Responses are projected into 

the two-dimensional subspace spanned by the direction of the pulse and the locally 

computed line attractor (the right zero-eigenvector of the linearized dynamics). b, 

Explanation of how the same input pulse (left) leads to evidence integration in one context, 

but is ignored in the other (right). Relaxation towards the line attractor (small arrows) is 

always orthogonal to the context-dependent selection vector, and reverses the effects of the 

irrelevant pulse. c, Global arrangement of the line attractor (red) and selection vector (green) 

at each fixed point. Inputs are selected by the selection vector, which is orthogonal to the 

contextually irrelevant input (note input axes, right), and integrated along the line attractor.
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Extended Data Figure 1. Recording locations and task-related patterns of population activity in 
PFC
a, Recording locations (red dots) in monkey A are shown on anatomical magnetic resonance 

images in imaging planes that were oriented perpendicularly to the direction of electrode 

penetrations. Electrodes were lowered through a grid (1mm spacing) positioned over the 

arcuate sulcus (AS). Recordings covered the entire depth of the AS and extended rostrally 

onto the prearcuate gyrus and cortex near and lateral to the principal sulcus. b-e, 

Representation of 4 task variables in the population response. Each multi-colored square 

corresponds to a recording location (red dots) in a. Within each square, each pixel 

corresponds to a unit recorded from that grid position, such that each square represents all 

the units recorded at the corresponding location. The color of a pixel indicates the de-noised 

regression coefficient of choice (b), motion coherence (c), color coherence (d), and context 

(e) for a given unit (color bars; gray: no units). These coefficients describe how much the 

trial-by-trial firing rate of a given unit depends on the task variables in b-e. The position of 

each unit within a square is arbitrary; we therefore sorted them according to the amplitude of 

the coefficient of choice, which accounts for the diagonal bands of color in b (top-left to 

bottom-right, high to low choice coefficient). The positions of the pixels established in b are 

maintained in c-e, so that one can compare the amplitude of the coefficient for each task 

variable for every unit recorded from monkey A. Each of the four panels can be interpreted 

as the pattern of population activity elicited by the corresponding task variable. The four 

task variables elicit very distinct patterns of activity and are thus separable at the level of the 

population. Importantly, the coefficients were de-noised with principal component analysis 

(see Suppl. Information, section 6.7) and can be estimated reliably from noisy neural 

responses (Extended Data Fig. 4i-l). Differences between activation patterns therefore 

reflect differences in the properties of the underlying units, not noise. f-j, Recording 

locations and task-related patterns of population activity for monkey F. Same conventions as 
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in a-e. Recordings (f) covered the entire depth of the AS. The patterns of population activity 

elicited by a choice (g), by the motion evidence (h), and by context (j) are distinct, meaning 

that the representations of these task variables are separable at the level of the population. 

The representations of choice (g) and color (i), however, are not separable in monkey F, 

suggesting that color inputs are processed differently in the two monkeys (see main text).
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Extended Data Figure 2. Psychophysical performance for monkey F and for the model
a-d, Psychophysical performance for monkey F, for motion (top) and color contexts 

(bottom), averaged over 60 recording sessions (123,550 trials). Performance is shown as a 

function of motion (left) or color (right) coherence in each behavioral context. As in Fig. 1c-

f, coherence values along the horizontal axis correspond to the average low, intermediate 

and high motion coherence (a,c) and color coherence (b,d) computed over all behavioral 

trials. The curves are fits of a behavioral model (see Suppl. Information, section 4). e-h, 

‘Psychophysical’ performance for the trained neural-network model (Figs. 4–6) averaged 

over a total of 14,400 trials (200 repetitions per condition). Choices were generated based on 

the output of the model at the end of the stimulus presentation—an output larger than zero 

corresponds to a choice to the left target (choice 1), and an output smaller than zero 

corresponds to a choice to the left target (choice 2). We simulated model responses to inputs 

with motion and color coherences of 0.03, 0.12, and 0.50. The variability in the input (i.e. 

the variance of the underlying Gaussian distribution) was chosen such that the performance 

of the model for the relevant sensory signal qualitatively matches the performance of the 

monkeys. As in Fig. 1c-f, performance is shown as a function of motion (left) or color 

(right) coherence in the motion (top) and color contexts (bottom). Curves are fits of a 

behavioral model (as in a-d and in Fig. 1c-f). In each behavioral context, the relevant 

sensory input affects the model’s choices (e, h), but the irrelevant input does not (f, g), 

reflecting successful context-dependent integration. In fact, the model output essentially 

corresponds to the bounded temporal integral of the relevant input (not shown) and is 

completely unaffected by the irrelevant input.
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Extended Data Figure 3. Mixed representation of task variables in PFC
a-d, Example responses from 6 well-isolated single-units in monkey A. Each column shows 

average normalized responses on correct trials for one of the single-units. Responses are 

aligned to the onset of the random-dot stimulus, averaged with a 50ms sliding window, and 

sorted by one or more task-related variables (choice, motion coherence, color coherence, 

context). The green lines mark time intervals with significant effects of choice (a), motion 

coherence (b), color coherence (c), or context (d) as assessed by multi-variable, linear 

regression (regression coefficient different from zero, p<0.05). Linear regression and 

coefficient significance are computed over all trials (correct and incorrect, motion and color 

context; Supp. Information, section 6.3). The horizontal gray line corresponds to a 

normalized response equal to zero. a, Responses sorted by choice (solid: choice 1; dashed: 

choice 2) averaged over both contexts. b, Responses during motion context, sorted by choice 

and motion coherence (black to light-gray: high to low motion coherence). c, Responses 

during color context, sorted by choice and color coherence (blue to cyan: high to low color 

coherence). d, Responses sorted by choice and context (black: motion context; blue: color 

context). As is typical for PFC, the activity of the example units depends on many task 

variables, suggesting that they represent mixtures of the underlying task variables. e-f, De-

noised regression coefficients for all units in monkey A (e) and monkey F (f). The data in 

Extended Data Fig. 1 are re-plotted here to directly compare the effects of different task 

variables (choice, motion, color, context) to each other. Each data point corresponds to a 

unit, and the position along the horizontal and vertical axes is the de-noised regression 

coefficient for the corresponding task variable. The horizontal and vertical lines in each 

panel intersect at the origin (0,0). Scale bars span the same range (0.1) in each panel. The 

different task variables are mixed at the level of individual units. While units modulated by 

only one of the task variables do occur in the population, they do not form distinct clusters 

but rather are part of a continuum that typically includes all possible combinations of 

selectivities. Significant correlations between coefficients are shown in red (p<0.05, 

Pearson’s correlation coefficient r).
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Extended Data Figure 4. Targeted dimensionality reduction of population responses, and 
reliability of task-related axes and population trajectories
a, Fraction of variance explained by the first 20 principal components (PCs) of the responses 

in monkey A. PCs are computed on correct trials only, on condition-averaged responses. 

Conditions are defined based on choice, motion coherence, color coherence, and context. 

Each time point of the average response for a given condition contributes an ‘independent’ 

sample for the PC analysis, and variance is computed over conditions and times. b, Fraction 

of variance explained by the first 12 PCs. The total explainable variance (100%) is 

computed separately at each time, and reflects response differences across conditions. c, The 

four ‘task-related axes’ of choice, motion, color, and context expressed as linear 

combinations of the first 12 PCs. The four axes span a subspace containing the task-related 

variance in the population response (e.g. Fig. 2 and Extended Data Fig. 6) and are obtained 

by orthogonalizing the de-noised regression vectors for the corresponding task variables (see 

Suppl. information, section 6.7; de-noised regression coefficients are shown in Extended 

Data Figs. 1 and 3 e,f). The vertical axis in c corresponds to the projection of each axis onto 

a given PC (i.e. the contribution of that PC to each axis). All four axes project onto multiple 

PCs and thus the corresponding task variables are mixed at the level of single PCs. d, 

Fraction of variance explained by the task-related axes of choice, motion, color, and context 

(solid lines), as in b. The 4 axes explain a larger fraction of the variance than the PCs at 

many times but, unlike the PCs, they do not explain the variance common to all conditions 

that is due to the passage of time (not shown). A possible concern with our analysis is that 

the time courses of variance explained in d could be misleading if the task-related axes, 

which we estimated only at a single time for each variable, are in fact changing over time 
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during the presentation of the random dots. Under this scenario, for example, the “humped” 

shape of the motion input (solid black trace) might reflect a changing ensemble code for 

motion rather than actual changes in the strength of the motion signal in the neural 

population. To control for this possibility, we also computed time-varying ‘task-related 

axes’ by estimating the axes of motion, color and context separately at each time throughout 

the 750ms dots presentation. The fractions of variance explained by the time-varying axes 

(dashed lines) and by the fixed axes (solid lines) have similar amplitudes and time courses. 

Thus the effects of the corresponding task variables (during the presentation of the random 

dots) are adequately captured by the subspace spanned by the fixed axes (see Suppl. 

Information, section 6.8). e-h, Same as a-d, for monkey F. As shown in Extended Data Figs. 

1g,i and 3f (top-right panel) the de-noised regression coefficients of color and choice are 

strongly correlated. As a consequence, the axis of color explains only a small fraction of the 

variance in the population responses (h, blue; see main text). i-l, Reliability of task-related 

axes in monkey A. To determine to what extent variability (i.e., noise) in single unit 

responses affects the task-related axes of choice, motion, color, and context (e.g. Fig. 2 and 

Extended Data Fig. 6), we estimated each axis twice from two separate sets of trials (trial 

sets 1 and 2 in i-l). For each unit, we first assigned each trial to one of two subsets, and 

estimated de-noised regression coefficients for the task variables separately for the two 

subsets. We then obtained task-related axes by orthogonalizing the corresponding de-noised 

coefficients (see Suppl. Information, section 6.9). Here, the orthogonalized coefficients are 

computed both with (black) and without (gray) PCA based de-noising. The horizontal and 

vertical lines in each panel intersect at the origin (0,0). Scale bars span the same range (0.1) 

in each panel. Data points lying outside the specified horizontal or vertical plotting ranges 

are shown on the corresponding edges in each panel. i, Coefficients of choice. Each data 

point corresponds to the orthogonalized coefficient of choice for a given unit, computed 

from trials in set 1 (horizontal axis) or in set 2 (vertical axis). j-l, same as i for the 

orthogonalized coefficients of motion (j), color (k), and context (l). m-p, Orthogonalized 

regression coefficients for monkey F, as in i-l. Overall, after de-noising the orthogonalized 

coefficients are highly consistent across the two sets of trials. Therefore, the observed 

differences in the activation pattern elicited by different task variables (Extended Data Fig. 

1) are not due to the noisiness of neural responses, but rather reflect differences in the 

properties of the underlying units. q-r, Reliability of population trajectories. To assess the 

reliability of the trajectories in Fig. 2, we estimated the task-related axes and the resulting 

population trajectories (same conventions as Fig. 2) twice from two separate sets of trials (as 

i-l, see Suppl. Information, section 6.9). As in the example trajectories shown in q (trial set 

1) and r (trial set 2), we consistently obtained very similar trajectories across the two sets of 

trials. To quantify the similarity between the trajectories from the two sets, we used 

trajectories obtained from one set to predict the trajectories obtained from the other set (see 

Suppl. Information, section 6.9). On average across 20 randomly defined pairs of trial sets, 

in both monkeys the population responses from one set explain 94% of the total variance in 

the responses of the other set (95% for the example in q and r). These numbers provide a 

lower bound on the true reliability of trajectories in Fig. 2, with are based on twice as many 

trials as those in q and r.
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Extended Data Figure 5. Population responses along individual task-related axes
a-e, Responses for monkey A. The average population responses on correct trials are re-

plotted from Fig. 2, together with responses on a subset of incorrect trials (red curves). Here 

the responses are represented explicitly as a function of time (horizontal axis) and projected 

separately (vertical axes) onto the axes of choice (b), motion (c), color (d), and context (e). 

As in Fig. 2, correct trials are sorted based on context (motion: top sub-panels; color: bottom 

sub-panels; see key in a), on the direction of the sensory evidence (filled: towards choice 1; 

dashed: towards choice 2) and strength of the sensory evidence (black to light-gray: 

strongest to weakest motion; blue to cyan: strongest to weakest color), and based on choice 

(thick: choice 1; thin: choice 2). Incorrect trials (red curves) are shown for the lowest motion 

coherence (during motion context, top-left in b-e) and the lowest color coherence (during 

color context, bottom-right in b-e). Vertical scale bars correspond to 1 unit of normalized 

response, and the horizontal lines are drawn at the same level in all four sub-panels within b-
e. a, Key to the condition-averages shown in each panel of b-e, as well as to the 

corresponding state-space panels in Fig. 2. b, Projections of the population response onto the 

choice axis. Responses along the choice axis represent integration of evidence in both 

contexts. c, Projection onto the motion axis. Responses along the motion axis represent the 

momentary motion evidence during both motion (top-left) and color contexts (bottom-left) 

(curves are parametrically ordered based on motion strength in both contexts), but not the 

color evidence (right, curves are not ordered based on color strength). d, Projection onto the 

color axis. Responses along the color axis represent the momentary color evidence in the 

motion (top-right) and color contexts (bottom-right) (ordered), but not the motion evidence 

(left, not ordered). e, Projection onto the context axis. Responses in the motion context (top, 

all curves above the horizontal line) and color context (bottom, all curves below the 

horizontal line) are separated along the context axis, which maintains a representation of 

context. f-i, Responses for monkey F, same conventions as in b-e. The responses in f-i are 

also shown as trajectories in Extended Data Fig. 7g-l. The drift along the choice axis in 

Extended Data Fig. 7g-l is reflected in the overall positive slopes in f.
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Extended Data Figure 6. Effect of context on PFC dynamics
a-b, Responses from monkey A. Same conditions and conventions as in Fig. 2, but for 

activity projected into the two-dimensional subspace capturing the variance due to choice 

(along the choice axis) and context (context axis). Components along the choice axis are 

enhanced relative to the context axis (see scale bars). The population response contains a 

representation of context, which is reflected in the separation between trajectories in the 

motion and color contexts along the axis of context. The contextual signal is strongest early 

during the dots presentation. a, Effects of context (motion context vs. color context), choice 

(choice 1 vs. choice 2), and motion input (direction and coherence, gray colors). b, Same 

trials as in a, but averaged to show the effect of the color input (blue colors). c-d, Responses 

from monkey F, same conventions as in a-b. As in Extended Data Fig. 7a-f, we subtracted 

the across-condition average trajectory from each individual, raw trajectory (see Suppl. 

Information, section 6.10). The underlying raw population responses are shown in Extended 

Data Fig. 5f-i, and confirm that the representation of context is stable throughout the dots 

presentation time (Extended Data Fig. 5i).
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Extended Data Figure 7. Dynamics of population responses in monkey F
a-f, Response trajectories in the subspace spanned by the task related axes of choice, motion, 

and color. Same conventions as in Fig. 2. Unlike in Fig. 2, here we subtracted the across-

condition average trajectory from each individual, raw trajectory (see Suppl. Information, 

section 6.10). The raw trajectories are shown in panels g-l and the corresponding projections 

onto individual axes in Extended Data Fig. 5f-i. Three key features of the population 

responses are shared in monkey A (Fig. 2) and monkey F. First, movement along a single 

choice axis (a and f, red arrows) corresponds to integration of the relevant evidence in both 

contexts. Second, in both contexts the momentary motion evidence elicits responses along 

the axis of motion, which is substantially different from the axis of choice (a and d). Third, 

the motion evidence is strongly represented whether it is relevant (a) or irrelevant (d). Thus, 

the processing of motion inputs in both monkeys is inconsistent with current models of 

selection and integration (Fig. 3b-d). Unlike in monkey A, responses along the color axis in 

monkey F (f and c) reflect the momentary color evidence only weakly. The effects of color 

on the trajectories in monkey F resemble the responses expected by the early selection 

model (Fig. 3b). g-l, Raw population responses. Population trajectories were computed and 

are represented as in Fig. 2. The trajectories in a-f were obtained by subtracting the across-

condition average from each individual trajectory shown above. Overall, the responses have 

a tendency to move towards the left along the choice axis. An analogous, though weaker, 

overall drift can also be observed in monkey A, and contributes to the asymmetry between 

trajectories on choice 1 and choice 2 trials (Fig. 2). Because choice 1 corresponds to the 

target in the response field of the recorded neurons (see Suppl. Information, section 6.2), the 

drift reflects a tendency of individual firing rates to increase throughout the stimulus 

presentation time. By the definition of choice 1 and choice 2, a similar but opposite drift has 

to occur in neurons whose response field overlaps with choice 2 (whose responses we did 

not record). In the framework of diffusion-to-bound models, such a drift can be interpreted 

as an urgency signal, which guarantees that the decision boundary is reached before the 

offset of the dots (Reddi and Carpenter, 2000; Churchland, Kiani and Shadlen, 2008).
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Extended Data Figure 8. Simulations of models of selective integration inconsistent with PFC 
responses
We simulated population responses mimicking the observed PFC responses (a-c) and 

alternative responses expected based on the three models of context-dependent selection 

described in Fig. 3b-d (d-l) (see Suppl. Information, section 8). These simulations are based 

on a diffusion-to-bound model, unlike the simulations of the recurrent neural network 

models in Figs. 5,6 and in Extended Data Figs. 9 and 10e-s. Here, single neurons represent 

mixtures of three time-dependent task variables of a diffusion-to-bound model, namely the 
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momentary motion and color evidence and the integrated relevant evidence. At the level of 

the population, these three task variables are represented along specific directions in state 

space (arrows in a,d,g,j; red, integrated evidence; black, momentary motion evidence; blue, 

momentary color evidence). The four simulations differ only with respect to the direction 

and context-dependence of the three task variables. We computed state space trajectories 

from the population responses using the targeted dimensionality reduction techniques 

discussed in the main text and in the Suppl. Information. The resulting simulated population 

responses reproduce the schematic population responses in Fig. 3. a-c, Simulated population 

responses mimicking the observed PFC responses (Fig. 2). a, Response trajectories in the 

2d-subspace capturing the effects of choice and motion (left) or choice and color (right) in 

the motion (top) and color (bottom) contexts. Same conditions and conventions as in Fig 

2a,c and Fig. 2d,f. The three task variables are represented along three orthogonal directions 

in state space (arrows). b, Regression coefficients of choice, motion, and color for all 

simulated units in the population. For each unit, coefficients were computed with linear 

regression on all simulated trials (top) or separately on trials from the motion or color 

context (bottom, context in parentheses). Scale bars represent arbitrary units. Numbers in the 

inset along each axis represent averages of the absolute value of the corresponding 

coefficients (±sem, in parentheses). c, Estimated strengths of the motion (top) and color 

(bottom) inputs during motion (black) and color (blue) contexts. Input strength is defined as 

the average of the absolute value of the corresponding regression coefficients. d-f, same as 

a-c, for simulated population responses expected from context-dependent early selection 

(Fig. 3b). When relevant, momentary motion (top) and color (bottom) evidence are 

represented along the same direction as integrated evidence (arrows in d). g-i, same as a-c, 

for simulated population responses expected from context-dependent input directions (Fig. 

3c). Integrated evidence is represented along the same direction in both contexts (red arrows 

in g). The relevant momentary evidence (motion in the motion context, top; color in the 

color context, bottom) is aligned with the direction of integration, while the irrelevant 

momentary evidence is orthogonal to it (black and blue arrows in g). j-l, same as a-c, for 

simulated population responses expected from context-dependent output directions (Fig. 3d). 

The momentary motion and color evidence are represented along the same directions in both 

contexts (black and blue arrows in j). The direction of integration (red arrows in j) is 

aligned with the motion evidence in the motion context (top), and with the color evidence in 

the color context (bottom).
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Extended Data Figure 9. Model population responses and validation of targeted dimensionality 
reduction
a-e, Model population responses along individual task-related axes, same conventions as in 

Extended Data Fig. 5. Here we defined the task-related axes directly based on the synaptic 

connectivity in the model (see Suppl. Information, section 7.6; and panels h-j), rather than 

using the approximate estimates based on the population response (as for the PFC data, e.g. 

Fig. 2). The same axes and the resulting projections underlie the trajectories in Fig. 5. The 

model integrates the contextually relevant evidence almost perfectly, and the responses 

along the choice axis (b) closely match the output of an appropriately tuned diffusion-to-

bound model (not shown). Notably, near perfect integration is not a core feature of the 

proposed mechanism of context-dependent selection (see main text, and Extended Data Fig. 

10). f-g, Effect of context on model dynamics, same conditions and conventions as in 

Extended Data Fig. 6. Network activity is projected onto the two-dimensional subspace 

capturing the variance due to choice (along the choice axis) and context (context axis). Same 

units on both axes (see scale bars). As in Fig. 5, fixed points of the dynamics (red crosses) 

and the associated right zero-eigenvectors (i.e. the local direction of the line attractor, red 

lines) were computed separately for motion (top) and color contexts (bottom) in the absence 

of sensory inputs. The line attractors computed in the two contexts, and the corresponding 

population trajectories, are separated along the context axis. f, Effects of context (motion 

context, color context), choice (choice 1, choice 2), and motion input (direction and 

coherence, gray colors) on the population trajectories. g, Same trials as in f, but re-sorted 

and averaged to show the effect of the color input (blue colors). The context axis is 

approximately orthogonal to the motion and color inputs, and thus the effects of motion and 

color on the population response (Fig. 5) are not revealed in the subspace spanned by the 

choice and context axes (f and g). h-j, Validation of targeted dimensionality reduction. To 

validate the dimensionality reduction approach used to analyze population responses in PFC 

(see Suppl. Information, sections 6.5–6.7), we estimated the regression vectors of choice, 

motion, color, and context from the simulated population responses (Fig. 5 and panels b-g) 

and compared them to the exactly known model dimensions that underlie the model 

dynamics (see definitions below). Here we estimated the regression vectors in three ways: 
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by pooling responses from all model units and all trials (as in the PFC data, e.g. Fig. 2 and 

Extended Data Fig. 6), or separately from the motion- and color-relevant trials (contexts). 

Orthogonalization of the regression vectors yields the task-related axes of the subspace of 

interest (e.g. axes in Fig. 2). Most model dimensions (motion, color, and context inputs, and 

output) were defined by the corresponding synaptic weights after training. The line attractor, 

on the other hand, is the average direction of the right zero-eigenvector of the linearized 

dynamics around a fixed point, and was computed separately for the motion and color 

contexts. h, The three regression vectors of motion (black arrows), plotted in the subspace 

spanned by the choice axis (i.e. the regression vector of choice) and the motion axis (i.e. the 

component of the regression vector of motion orthogonal to the choice axis). In the color 

context, the motion regression vector closely approximates the actual motion input (black 

circle—the model dimension defined by synaptic weights). During the motion context, 

however, the motion regression vector has a strong component along the choice axis, 

reflecting the integration of motion evidence along that axis. The motion regression vector 

estimated from all trials corresponds to the average of the vectors from the two contexts; 

thus all three motion regression vectors lie in the same plane. i, The three regression vectors 

of color (blue arrows) plotted in the subspace spanned by the choice and color axes, 

analogous to h. The color regression vector closely approximates the actual color input (blue 

circle) in the motion context, but has a strong component along the choice axis in the color 

context. Components along the motion (h) and color (i) axes are scaled by a factor of 2 

relative to those along the choice axis. j, Dot products (color bar) between the regression 

vectors (horizontal axis) and the actual model dimensions (vertical axis), computed after 

setting all norms to 1. The choice regression vector closely approximates the direction of the 

line attractor in both contexts (squares labeled ‘1’). As shown also in h and i, the input 

regression vectors approximate the model inputs (defined by their synaptic weights) when 

the corresponding inputs are irrelevant (squares 2 and 4, motion and color), while they 

approximate the line attractor when relevant (squares 3 and 5). Thus the motion input is 

mostly contained in the plane spanned by the choice and motion axes (h), and the color input 

is mostly contained in the plane spanned by the choice and color axes (i). Finally, the single 

context regression vector is aligned with both context inputs (squares 6), and closely 

approximates the difference between the two (not shown).
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Extended Data Figure 10. Urgency and instability in the integration process
a-d, Choice predictive neural activity (top) and psychometric curves (bottom) predicted by 

several variants of the standard diffusion-to-bound model (see Suppl. information, section 

7.7). a, Standard diffusion-to-bound model. Noisy momentary evidence is integrated over 

time until one of two bounds (+1 or −1; choice 1 or choice 2) is reached. The momentary 

evidence at each time point is drawn from a Gaussian distribution whose mean corresponds 

to the coherence of the input, and whose fixed variance is adjusted in each model to achieve 

the same overall performance (i.e. similar psychometric curves, bottom panels). Coherences 

are 6, 18, and 50% (the average color coherences in monkey A, Fig. 1b). Average integrated 

evidence (neural firing rates, arbitrary units) is shown on choice 1 and choice 2 trials (thick 

vs. thin) for evidence pointing towards choice 1 or choice 2 (solid vs. dashed), on correct 

trials for all coherences (light gray to black, low to high coherence), and incorrect trials for 

the lowest coherence (red). The integrated evidence is analogous to the projection of the 

population response onto the choice axis (e.g. Extended Data Fig. 5b, top-left and bottom-

right). b, Urgency model. Here the choice is determined by a race between two diffusion 

processes (typically corresponding to two hemispheres), one with bound at +1, the other 

with bound at −1. The diffusion in each process is subject to a constant drift towards the 

corresponding bound, in addition to the drift provided by the momentary evidence. The 

input-independent drift implements an ‘urgency’ signal, which guarantees that one of the 

bounds is reached within a short time. Only the integrated evidence from one of the 

diffusion processes is shown. The three ‘choice 1’ curves are compressed (in contrast to a) 

because the urgency signal causes the bound to be reached, and integration toward choice 1 
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to cease, more quickly than in a. In contrast, the ‘choice 2’ curves are not compressed since 

the diffusion process that accumulates evidence toward choice 1 never approaches a bound 

on these trials. c, Same as a, but here the diffusion process is subject to a drift away from the 

starting point (0) towards the closest bound (+1 or −1). The strength of the drift is 

proportional to the distance from the starting point, and creates an ‘instability’ at the starting 

point. d, Same as b, with an instability in the integration as in c for both diffusion processes. 

The asymmetry between choice 1 and choice 2 curves in b and d resembles the asymmetry 

in the corresponding PFC curves (Extended Data Figs. 5b,f, upper left). e-j, Neural network 

model with urgency. This model is based on a similar architecture as the model in Fig. 4. 

Unlike the neural network in Fig. 4, which was trained solely based on the model output on 

the last time bin of the trial, here the network is trained based on the output it produces 

throughout the entire input presentation. The network was trained to reproduce the 

integrated evidence (i.e. the decision variable) for one of the two diffusion processes (i.e. 

one of the two ‘hemispheres’) in a diffusion-to-bound model with urgency (b, see Suppl. 

Information, section 7.7). Similar conventions as in Fig. 5. The urgency signal is controlled 

by an additional binary input into the network. Here, the urgency and sensory inputs are 

turned off as soon as a bound is reached. The network generates only a single, stable fixed 

point in each context, corresponding to the decision boundary (large red cross). The model 

also implements a series of points of relatively slow dynamics (small red crosses) 

approximately lying on a single curve. The axes of slow dynamics at these slow points (red 

lines) are locally aligned. Notably, responses at these slow points have a strong tendency to 

drift towards the single, stable fixed point (the decision boundary), and thus the curve of 

slow points does not correspond to an approximate line attractor. This drift implements the 

urgency signal and causes an asymmetry in the trajectories, which converge on a single 

point for choice 1, but have endpoints that are parametrically ordered by coherence along the 

choice axis for choice 2. As discussed below (panel r), this model relies on the same 

mechanism of selection as the original model (Fig. 5, see main text). k-p, Neural network 

model with instability. Trajectories show simulated population responses for a model (same 

architecture as in Fig. 4) that was trained to solve the context-dependent task (Fig. 1) only 

on high-coherence stimuli and in the absence of internal noise (see Suppl. Information, 

section 7.7). Same conventions as in Fig. 5. In the absence of noise, prolonged integration of 

evidence is not necessary for accurate performance on the task. As a consequence, the model 

implements a saddle point (blue cross) instead of an approximate line attractor. Points of 

slow dynamics (small red crosses, obscured by the red lines) occur only close to the saddle 

point. The right-zero-eigenvectors of the linearized dynamics around these slow points (red 

lines) correspond to the directions of slowest dynamics, and determine the direction of the 

axis of choice. When displaced from the saddle point, the responses quickly drift towards 

one of the two stable attractors (large red crosses) corresponding to the choices. For a given 

choice, trajectories for all coherences therefore end in the same location along the choice 

axis, in contrast to the responses in the original model (Fig. 5). Despite these differences, the 

original model (Fig. 5) and the network model with instability (k-p) rely on a common 

mechanism of context-dependent selection (see panel s). q-s, Dynamical features (key, 

bottom) underlying input selection and choice in three related neural network models. All 

models are based on a common architecture (Fig. 4) but are the result of different training 

procedures. q, Dynamical features of the model described in the main paper (Figs. 5–6), re-
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plotted from Fig. 6c. r, The urgency model (e-j). s, The instability model (k-p). In all 

models, the developing choice is implemented as more or less gradual movement along an 

axis of slow dynamics (specified by the locally computed right-eigenvectors associated with 

the near-zero eigenvalue of the linearized dynamics, red lines). The inputs are selected, i.e. 

result in movement along the axis of slow dynamics, depending on their projection onto the 

selection vector (the locally computed left-eigenvectors associated with the near-zero 

eigenvalue). In this sense, the three models implement the same mechanisms of context-

dependent selection and choice.
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