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Abstract: Nonalcoholic fatty liver disease (NAFLD) is one of the most important chronic liver
diseases worldwide and has garnered increasing attention in recent decades. NAFLD is characterized
by a wide range of liver changes, from simple steatosis to nonalcoholic steatohepatitis, cirrhosis,
and hepatocellular carcinoma. The blurred pathogenesis of NAFLD is very complicated and involves
lipid accumulation, insulin resistance, inflammation, and fibrogenesis. NAFLD is closely associated
with complications such as obesity, diabetes, steatohepatitis, and liver fibrosis. During the progression
of NAFLD, reactive oxygen species (ROS) are activated and induce oxidative stress. Recent attempts
at establishing effective NAFLD therapy have identified potential micronutrient antioxidants that
may reduce the accumulation of ROS and finally ameliorate the disease. In this review, we present
the molecular mechanisms involved in the pathogenesis of NAFLD and introduce some dietary
antioxidants that may be used to prevent or cure NAFLD, such as vitamin D, E, and astaxanthin.
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1. Introduction

Nonalcoholic fatty liver disease (NAFLD) is characterized as the accumulation of triglyceride
(TG)-based fat of more than 5% to 10% of the liver weight in the absence of superfluous alcohol
consumption. NAFLD may progress to end-stage liver disease and has become a worldwide health
concern [1]. By the year 2015, the conservative estimate of the global incidence of NAFLD was 25.24%,
suggesting that more than 1 billion people have NAFLD worldwide [2]. Global epidemiologic research
has suggested that males are more susceptible to developing NAFLD than are females, while a higher
prevalence of NAFLD is often correlated with countries that have a higher economic status [3–5].
Current data show that the prevalence of NAFLD in the US is associated with the prevalence of obesity
(>30%), which means that one-third of adults in the US may have already developed NAFLD [6].
The information explosion and improved global economics in the last few decades have driven societal
modernization, making high-energy Western food popular worldwide; this has become the leading
reason for the increasing prevalence of NAFLD in Eastern and developing countries. Studies in Japan,
Korea, and China have shown that the risk of an NAFLD diagnosis has increased by three- to four-fold
over the past three years, and the rate of NAFLD is similar to that in Western countries, ranging from
15% to 30% [7,8]. These previous studies found that in regions which traditional diets and lifestyles are
maintained, such as rural India and sub-Saharan Africa, the incidence of NAFLD is much lower than
in any of the above-mentioned regions. This indicates that excess calorie intake and more comfortable
lifestyles involving less exercise may be important contributors to the development of fatty liver
disease [9–11].
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NAFLD is characterized by a wide histologic spectrum of liver damage, including, but not
limited to, simple steatosis, nonalcoholic steatohepatitis (NASH), hepatic fibrosis, and cirrhosis [12].
NASH is described as steatosis combined with inflammation and ballooning and has become the
second leading hepatic disease resulting in liver transplantation in the US [13]. According to published
data, approximately one-third of adults in the US who have NAFLD also have NASH, and 30% of these
individuals have the potential to progress to advanced cirrhosis, hepatocellular carcinoma (HCC),
and liver-related mortality [14,15]. On the other hand, NAFLD is frequently associated with obesity
and type-2 diabetes mellitus (T2DM) because they have similar features of metabolic syndrome such
as chronic inflammation and insulin resistance [16]. Hyperglycemia, a typical symptom of T2DM,
and a high body mass index (BMI), the characteristic of obesity, are the representative risk factors for
NAFLD [4,17,18]. Published reports state that 50% to 73% of patients with end-stage liver disease,
such as cryptogenic cirrhosis, have an obese-category BMI or diabetes [19,20]. Importantly, the prevalence
of obese children affected by NAFLD is 10- to 20-fold higher than that of lean children [21,22].

Attempts to cure NAFLD and its subsequent complications have been ongoing for decades.
Researchers worldwide have concentrated on revealing the potential molecular mechanisms of NAFLD
formation and its progression to NASH, cirrhosis, and HCC. Integrative approaches help to clarify the
pathogenesis of NAFLD and include an understanding of the apparent hepatic accumulation of excess
fat and lipids of diverse sources, abstruse crosstalk among daily diet elements, the composition of the
gut microbiota, and the role of epigenetics on the background of weight gain and obesity [23]. However,
the numerous laboratory and clinical studies have made NAFLD a complicated issue. This condition
is not simply a consequence of metabolic syndrome and insulin resistance; it also involves many
complications such as inflammation, chronic kidney disease, and cardiovascular disease. Recent efforts
have focused on identifying novel potential targets that can serve as indirect therapies for NAFLD
during its progression. In this review, we discuss various factors related to the pathogenesis of NAFLD
and introduce some micronutrient antioxidants that may be used in NAFLD prevention and therapy.

2. Pathogenesis of Nonalcoholic Fatty Liver Disease (NAFLD)

The mainstream concept of NAFLD is the “multiple parallel hits” hypothesis, which developed
from the two-hit theory proposed by Day et al. [24] in 1998. The two-hit theory states that a high-fat
diet or diabetes-induced steatosis (the first hit) will make the liver more sensitive to other risk factors
related to oxidative stress and induce severe lipid peroxidation (the second hit). The multiple parallel
hits theory states that NAFLD is a more comprehensive effect of diverse factors, such as endoplasmic
reticulum stress, chemokines and cytokines, and innate immunity, than a simple effect of one or
two factors, which may explain why NAFLD is also observed in lean people [25] (Figure 1).

2.1. Obesity

Many studies have proposed that obese patients have a greater risk of developing NAFLD
(75%–100%) than the general population because their higher serum alanine aminotransferase (ALT)
and aspartate aminotransferase (AST) concentrations reflect liver injury caused by hepatic steatosis [26].
The leading cause of hepatic fat accumulation in the pathogenesis of NAFLD is overactive fatty acid
circulation with transcription factor disorders induced by lipogenesis and fatty acid synthesis, as well
as fatty acid oxidation [27]. Adipocytes, as important mediators of systemic lipid storage and adipokine
release, gather the excessive fatty acids as TGs in tissues, which then influence processes including lipid
metabolism, glucose regulation, and inflammation [28]. The free fatty acids (FFAs) obtained from TG
lipolysis are the central source of fat in patients with NAFLD. Along with several other abnormalities,
such as hyperglycemia, a low high-density lipoprotein cholesterol level, and hypertension, these FFAs
contribute to the development of insulin resistance as a common complication of NAFLD [29]. The risk
of lipolysis in visceral adipose tissue is higher than that in subcutaneous adipose tissue, which causes
patients with visceral fat accumulation-induced central obesity to be universally insulin resistant and
much more likely to develop NAFLD secondary to their increasing FFA content [19].
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steatohepatitis. Hepatic inflammation activates the mitogen-activated protein kinase pathway  
and nuclear factor-κB, resulting in insulin resistance. Insulin resistance also promotes de novo 
lipogenesis, forcing the healthy liver to develop NASH. The inflammation also recruits Kupffer cells 
and polarizes M1 macrophages, activating hepatic stellate cells and finally leading to liver fibrosis. 
TG, triglycerides; TC, total cholesterol; FFA, free fatty acids; MAPK, mitogen-activated protein 
kinase; NF-κB, nuclear factor-κB. 
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adipose tissue [33]. Hypoadiponectinemia, a typical trait of NAFLD, suggests that adiponectin, as an 
antagonist of tumor necrosis factor α (TNF-α), has anti-lipogenic and anti-inflammatory effects that 
can protect the liver from damage by maintaining the balance between pro-inflammatory and 
anti-inflammatory cytokines in hepatocytes [34]. Furthermore, the serum adiponectin concentration 
coupled with the waist-to-hip ratio and AST/ALT ratio could serve as a novel tool with which  
to diagnose advanced fibrosis of NAFLD, suggesting that increasing adiponectin levels may be  
a new therapeutic method for inflammation and fibrosis in patients with NAFLD [35]. Interestingly, 
because adiponectin is secreted mostly by subcutaneous fat rather than visceral fat, 
hypoadiponectinemia may also help to explain why patients with central obesity more commonly 
develop insulin resistance among patients with NAFLD [30] (Table 1). 
  

Figure 1. Hypothetic mechanism of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis
(NAFLD/NASH) progression. Excessive intake of excess calories and fat results in accumulation
of triglycerides, total cholesterol, and free fatty acids, inducing hepatic steatosis. The overload of
liver lipids enhances lipid peroxidation, which induces the production of reactive oxygen species
and steatohepatitis. Hepatic inflammation activates the mitogen-activated protein kinase pathway
and nuclear factor-κB, resulting in insulin resistance. Insulin resistance also promotes de novo
lipogenesis, forcing the healthy liver to develop NASH. The inflammation also recruits Kupffer cells
and polarizes M1 macrophages, activating hepatic stellate cells and finally leading to liver fibrosis.
TG, triglycerides; TC, total cholesterol; FFA, free fatty acids; MAPK, mitogen-activated protein kinase;
NF-κB, nuclear factor-κB.

Adiponectin is an adipose-specific secretory adipokine that can induce FFA oxidation and lipid
transfer to inhibit FFA accumulation with its corresponding receptor in the liver [30]. Adiponectin is
a link between adipose tissue and whole-body glucose metabolism, which can affect hepatic insulin
sensitivity [31]. Recent studies have found that the serum adiponectin level is much lower in patients
with, than without, NAFLD [32]. In addition to the presence of insulin resistance syndrome, metabolic
disturbances appear to be present, as evidenced by excess ectopic fat and dysfunctional adipose
tissue [33]. Hypoadiponectinemia, a typical trait of NAFLD, suggests that adiponectin, as an antagonist
of tumor necrosis factor α (TNF-α), has anti-lipogenic and anti-inflammatory effects that can protect
the liver from damage by maintaining the balance between pro-inflammatory and anti-inflammatory
cytokines in hepatocytes [34]. Furthermore, the serum adiponectin concentration coupled with the
waist-to-hip ratio and AST/ALT ratio could serve as a novel tool with which to diagnose advanced
fibrosis of NAFLD, suggesting that increasing adiponectin levels may be a new therapeutic method for
inflammation and fibrosis in patients with NAFLD [35]. Interestingly, because adiponectin is secreted
mostly by subcutaneous fat rather than visceral fat, hypoadiponectinemia may also help to explain
why patients with central obesity more commonly develop insulin resistance among patients with
NAFLD [30] (Table 1).

Table 1. Major adipokines involved in nonalcoholic fatty liver disease (NAFLD) pathogenesis.

Adipokines Function

Adiponectin Anti-inflammatory, improve insulin sensitivity, prevent lipid accumulation, attenuate fibrosis,
inhibit tumor necrosis factor (TNF-α) synthesis and/or release [36–40]

Leptin Prevent lipid accumulation, amplify inflammation, induce fibrosis, increase TNF-α concentration [41–44]
TNF-α Promote inflammation, induce lipid accumulation and insulin resistance, pro-fibrotic effect [45–48]
Resistin Cause insulin resistance, reduce interleukin 6 (IL-6) secretion, participate in liver fibrogenesis [49–53]

IL-6 Suppress oxidative stress and prevent mitochondrial dysfunction [54–56]
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2.2. Diabetes

2.2.1. Diabetes to NAFLD

As a consequence of obesity and low adiponectin production induced by long-term oversupply
of calories, hyperlipidemia and insulin resistance are frequently found in patients with NAFLD,
considerably strengthening the association between this metabolic syndrome and diabetes. A few
studies have found a strong link between insulin-dependent diabetes mellitus (also known as type-1
diabetes mellitus) and NASH in adolescents [57,58]. Many other studies have focused on the
relationship between T2DM and NAFLD, which is complex and bidirectional [59]. A clinical study
of general health examinations in Japan found that about 29% of middle-aged Japanese adults have
NAFLD and that a substantial proportion of them also had insulin resistance syndrome [60]. With their
impaired glucose metabolism and abnormally elevated TG concentration, patients with concurrent
T2DM and NAFLD have a greater risk of progression to NASH [61,62].

2.2.2. NAFLD to Diabetes

Likewise, another recent study found that NAFLD also increases the risk of developing
T2DM. Using liver ultrasound technology and hepatic biopsy, a study in the US indicated that the
incidence of diabetes is three-fold higher in patients with NAFLD than in the general population [63].
Another salient characteristic of NAFLD is hepatic steatosis, which causes redundant nonesterified
fatty acid as an intrinsic defect and induces peripheral insulin resistance and endocrine over-reaction,
the typical features of T2DM [64]. In patients with NAFLD with aberrant glucose metabolism,
the insulin sensitivity is impaired in adipose tissue, liver, and muscle, but only adipose tissue glucose
intolerance will exacerbate T2DM [65]. Due to the precise relationship between NAFLD and diabetes,
the most effective therapy for NAFLD appears to be the indirect method of improving abnormal
hepatic lipid metabolism by ameliorating glucose dysregulation and enhancing insulin sensitivity [59].

The prevalence of some other fatal diseases is also heightened in populations with these
two complications. In patients with diabetes, for instance, the highest standardized mortality ratio
is associated with liver cirrhosis; hepatic cirrhosis also elevates the risk of death from cardiovascular
disease in patients with diabetes [66]. A former study demonstrated that more than 34% of patients
with diabetes have NAFLD and that the combination of these two diseases enhanced the risk of
death from malignancy [67]. Frequently, NAFLD also increases the risk of developing microvascular
diseases such as chronic kidney disease in patients with T2DM. The increased γ-glutamyltransferase
concentrations caused by NAFLD may be associated with some severe subclinical renal disease and
the risk of T2DM [68]. A recent study in Italy involving a large number of participants estimated that
the prevalence of chronic kidney disease in diabetic patients with NAFLD is 60% higher than that in
their counterparts without NAFLD [69].

2.3. Inflammation

The morphological mitochondrial alterations in patients with NAFLD, including cholesterol and
FFA accumulation, induce oxidative stress and the formation of reactive oxygen species (ROS) [70].
These ROS, in turn, instigates lipid peroxidation, which leads to the generation of aldehyde
byproducts such as malondialdehyde, triggering TNF-α-regulated liver damage [71]. Thus, the
TNF-α-induced increase in inflammatory activity against a background of abnormal lipid metabolism
and resultant lipotoxicity is considered to lead to the whole spectrum of NAFLD pathologies [25,72].
The stress-related protein kinase cascade Jun N-terminal kinase (JNK) is induced by TNF-α
and phosphorylates the proto-oncogene c-Jun, stimulating epidermal growth factor to accelerate
proliferation. Oxidant-sensitive transcription factors such as nuclear factor-κB (NF-κB) are then
also invigorated by ROS, up-regulating the expression of cytokines including interleukin-6 (IL-6)
and IL-1β [73]. Growing evidence suggests that activation of JNK, NF-κB, and proinflammatory
cytokines is central to interposing insulin resistance through inhibition of insulin receptor signaling
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and suppression of organ insulin sensitivity [74,75]. Therefore, as the antagonist of adiponectin,
the TNF-α-induced activation of proinflammatory cytokines and hypoadiponectinemia with glucose
intolerance can assist in distinguishing patients with NASH from those with simple steatosis [76].

The immune system is typically involved in the progression of NAFLD. The activation
of cytochrome P450 isoenzymes in association with TNF-α mitochondrial effects promotes
whole-organism fatty acid oxidation. This causes oxidative stress secondary to increased ROS, which
thereafter induces immune responses in patients with NAFLD. These reactions are associated with the
formation of advanced disease [77]. Immune cells, including T lymphocytes (T cells), natural killer T
cells (NKT cells), and macrophages, impact on NAFLD progression to NASH. Some former reports
have reported that CD8+ T-cell infiltration is present in the epididymal adipose tissue of obese mice fed
a high-fat diet, which induces adipose tissue inflammation and systemic insulin resistance. In contrast,
collaboration of CD4+ T cells with CD3+ T cells can potently reduce obesity and insulin resistance
syndromes that cause atherosclerotic plaques, which may be therapeutically beneficial in patients with
diabetes [78,79]. In addition, as the components of adaptive immunity, NKT cell numbers are low in
mice with obesity-induced liver injury, suggesting that NKT cells may play pathophysiologic roles in
steatosis and fat-induced inflammation [80,81].

Resident macrophages and infiltrating monocytes are essential ingredients of innate immunity.
These cells are associated with inflammation and subsequent tissue renovation through clearing
necrotic/apoptotic cells, recruiting and activating myofibroblasts, and regulating the secretion of
anti-inflammatory cytokines and growth factors such as IL-10 and TGF-β [82,83]. In tissues, monocytes
and macrophages are distinguished by their substantial diversity and plasticity. Mononuclear
phagocytes can respond to environmental irritations by acquiring different functional phenotypes,
while macrophages can be divided into classically-activated macrophages (M1 macrophages) and
alternatively-activated macrophages (M2 macrophages) with IL-4 stimulation according to the presence
of Toll-like receptor ligands such as lipopolysaccharides, which are directly affected by microbial
stimuli [84,85]. Previous in vitro and in vivo studies have concluded that the imbalance of polarization
between M1/M2 phenotypic macrophages will induce chronic inflammation, various infections,
systemic allergies, cancer, obesity, and diabetes, as well as NAFLD [84,86]. A promising therapy
for NAFLD was recently identified: specific macrophage-targeted treatment. This therapy can help
to restrain the polarization of M1 macrophages/Kupffer cells (KCs) and/or induce the protective
phenotype of M2 macrophages/KCs [87,88].

Chemokines are a family of cytokines that activate leukocytes and play important roles during the
progression of inflammation [16]. Many published reports have investigated the effects of chemokines
in acute inflammation and chronic monocyte- or lymphocyte-predominant inflammation [89].
For instance, the expression of monocyte chemoattractant protein 1 (MCP-1), also known as C-C
chemokine ligand 2 (CCL2), is up-regulated in adipose tissue secondary to macrophage infiltration [90].
Combined with its receptor, C-C chemokine receptor type 2 (CCR2), the MCP-1–CCR2 system is closely
associated with hepatic steatosis and insulin resistance in obese patients [91,92]. Our former study
also revealed that CCR5 inhibition may become a novel therapeutic target for patients with glucose
intolerance and T2DM through the regulation of macrophage recruitment and the response of M1/M2
macrophage polarization to inflammation [93].

2.4. Fibrosis

As a crucial response to chronic injury and macrophage activation, fibrosis indisputably plays
a key role during the progression of NAFLD to NASH [94]. In the course of hepatic fibrosis,
the trans-differentiation of hepatic stellate cells (HSCs) into myofibroblasts (known as activated
HSCs) produces extracellular matrix components and causes extensive scarring with the formation
of abundant dying necrotic cells and debris [95,96]. The KCs and recruited macrophages then guide
phagocytosis of the dying necrotic cells and debris; this can induce the formation of TGF-β which
also accelerates fibrosis [97–99]. Furthermore, monocytes and macrophages expressing chemokine
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receptors, including CCR2 and CCR5, are thought to be involved in the activation and migration of
HSCs through TGF-β to promote liver fibrosis [100,101].

3. Micronutrients and NAFLD/Nonalcoholic Steatohepatitis (NASH)

In addition to the established treatment involving sustained weight loss by increased physical
training and diet control, there is no consensus on the most effective pharmacological therapies
for NAFLD/NASH because the detailed pathophysiology of NAFLD remains incompletely
understood [102–104]. One popular approach involves the use of components for secondary therapy
of complications, such as hepatic fat accumulation, insulin resistance, inflammation, and fibrosis.
For example, pioglitazone and metformin, common treatments for glucose intolerance, can enhance
insulin sensitivity in patients with NAFLD/NASH; however, other histological features, such as
fibrosis, are not significantly influenced [105,106]. Pirfenidone, a therapeutic agent used for fibrosis,
can reduce the serum ALT and AST concentrations and has anti-fibrotic and anti-inflammatory
properties that help to reverse liver injury [107,108]. Not only do these potential treatments require
the development of an additional therapeutic plan but their molecular mechanisms during treatment
also remain unclear. Thus, most recommendations encourage the consumption of micronutrients,
which have anti-oxidative and anti-inflammatory effects, to prevent and treat NAFLD [109,110].

3.1. Vitamin D

Previous studies reported that the serum vitamin D levels of the patients with NAFLD/NASH
were lower than those without diseases, suggesting that NAFLD might cause vitamin D deficiency in
these patients [111,112]. Rhee et al. [113] observed that subjects with higher plasma vitamin D level
showed a remarkably decreased risk of NAFLD to low level groups. However, recent research
found the connection between NAFLD and vitamin D in both adult and children populations,
that vitamin D concertation is inversely associated with NAFLD/NASH and fibrosis, independent
of metabolic syndrome, insulin resistance, liver fat accumulation or severity of NASH [114–116].
As a secosteroid associated with calcium homeostasis, the functions of vitamin D on immune
modulation, cell differentiation and proliferation, and the inflammatory response have already be
confirmed [117]. For instance, vitamin D deficiency would activate Toll-like receptors, resulting in
severe liver inflammation and induction of oxidative stress. Vitamin D supplements could reverse
the inflammation caused by NAFLD-related hepatic injury by inhibiting monocyte activation and
TNF-α and IL-1 expression. [118,119]. Further studies are still needed to identify whether vitamin D
has benefits on NAFLD/NASH therapy.

3.2. Vitamin E

As a common antioxidant, vitamin E has been used as a therapeutic component for NAFLD
by inhibiting ROS production during the development of steatohepatitis. One study showed that,
compared with the control group, 43% of patients with NASH showed clinical improvement with
significant reductions in their ALT and AST levels and lobular inflammation after treatment with
vitamin E [105]. Similar effects were reported in a clinical study in which vitamin E ameliorated NASH
by decreasing the ALT concentration and histological activity, and promoted weight control [120].
More generally, vitamin E is often used with other therapeutic methods, such as comprehensive
weight reduction programs, leading to weight loss and normalized serum enzyme concentrations in
obese children with NASH [121]. A prospective, double-blind, randomized, placebo-controlled trial
observed that six months of combination treatment with vitamins E and C alleviated fibrosis in patients
with NASH without improvement in the necroinflammatory activity or ALT concentration [122].
Nevertheless, some studies have shown that vitamin E is not superior to placebo in ameliorating
NAFLD or, even worse, that daily supplementation of vitamin E may increase the risk of prostate
cancer [106,123].
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3.3. Astaxanthin

Astaxanthin is a xanthophyll carotenoid that is abundant in many microorganisms and marine
animals including yeast, salmon, shrimp, and crayfish, as well as a special green microalga,
Haematococcus pluvialis [124]. As a novel natural antioxidant, astaxanthin is cultivated at an industrial
scale for its health effects, including anticancer activity, immune modulation, and cardiovascular
disease prevention. It is also much more effective than vitamin E at protecting mitochondria from
lipid peroxidation in liver cells [124–127]. In addition to its anti-diabetic and anti-inflammatory effects,
astaxanthin can prevent the up-regulation of glutamate transaminase activity and thiobarbituric
acid reactive substances from carbon tetrachloride-induced lipid peroxidation as well as increase
the levels of glutathione and superoxide dismutase in rat liver [128]. Moreover, astaxanthin can
protect against diet-induced obesity by blocking increases in body weight and adipose tissue,
reducing lipid accumulation, and ameliorating oxidative stress-induced insulin resistance through
enhancement of insulin signals and inhibition of extracellular signal-regulated kinase (ERK) and
JNK phosphorylation [129,130]. Moreover, astaxanthin can reduce the cellular accumulation of ROS
and block TGF-β signaling, suppressing activation of the Smad3 pathway in HSCs, consequently
preventing the development of liver fibrosis [131,132].

In our previous study, we examined the preventative and therapeutic effects of astaxanthin,
both in vivo and in vitro [133]. Astaxanthin was more effective than vitamin E in reducing liver lipid
accumulation, ameliorating insulin resistance, and protecting against inflammation and fibrosis in
mice with lipotoxicity-induced NASH. For instance, astaxanthin decreased the concentrations of TG,
total cholesterol, nonesterified fatty acids, ALT, and AST, preventing the transformation of simple
steatosis to NASH in obese mice. Additionally, astaxanthin inhibited activation of the JNK/p38
mitogen-activated protein kinases (MAPK) pathway and NF-κB, reduced the production of T cells and
macrophages, and induced an M2-dominant shift in macrophages/KCs to reverse inflammation and
glucose intolerance. Moreover, astaxanthin significantly attenuated hepatic fibrosis by down-regulating
the expression of fibrogenic genes and decreasing the hydroxyproline content. On the other hand,
compared with placebo, astaxanthin treatment reduced the severity of steatosis and tended to alleviate
lobular inflammation, resulting in marked improvement of hepatic steatosis. Overall, considering the
above-described benefits, astaxanthin may become a promising agent in the prevention or treatment of
NAFLD/NASH (Figure 2).

3.4. Other Micronutrients

Apart from vitamin D, E, and astaxanthin, some other vitamins and carotenoids are also taken
into account in the treatment of NAFLD. For instance, the liver is a crucial storage reservoir of
vitamin B12, and hepatic overexpression of ROS is associated with acute hepatitis, cirrhosis, and HCC.
Maternal vitamin B12 deficiency will increase the chance that offspring develop adiposity and T2DM,
which can be normalized after vitamin B12 supplementation [134,135]. β-Cryptoxanthin is a marker
of the antioxidant milieu provided by the satsuma mandarin (Citrus unshiu Marc.), and its shortage
in blood may induce lipid peroxidation and oxidative DNA damage [136]. Our previous studies
also revealed that β-cryptoxanthin prevents progression of NAFLD by reducing fat accumulation,
reversing insulin resistance, activating M2-dominant polarization in macrophages/KCs, and suppressing
oxidative stress and fibrosis in mouse models of lipotoxicity-induced NASH [137,138].
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MAPK pathway and NF-κB activation and induces a strong shift of M2 macrophage polarization, 
which ultimately reverses hepatic steatosis, inflammation, and insulin resistance. Most importantly, 
as a result of M1/M2 transformation, astaxanthin can reduce hepatic stellate cell (HSC) activation and 
ameliorate hepatic fibrosis. Black arrow: ↑: induction, ↓: inhibition, →: no change; Red arrow: ↓: 
inhibition compared with vitamin E, ↑↑/↓↓: more significant induction/inhibition effect compared 
with vitamin E. 
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substances, also have therapeutic potential according to some reports. Obeticholic acid can 
ameliorate NAFLD/NASH by increasing insulin sensitivity and reducing liver enzyme levels and 
fibrosis [139]. Silymarin, which is an extract of the milk thistle plant (Silybum marianum), can 
attenuate hepatic lipid metabolism and oxidative stress in mice with NAFLD [140]. 
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Increasing attention has been focused on NAFLD, which may become the most universal and 
severe chronic liver disease worldwide in the next few decades. The pathogenetic mechanisms of 
NAFLD are complex and associated with various complications, such as obesity, T2DM, hepatitis, 
and fibrosis. Current research has shown that overproduction of ROS and changes in the contents 
of some central factors including adiponectin, chemokines, TNF-α and TGF-β may be the main 
promoters of NAFLD development. Novel preventative and therapeutic strategies include the 
development of micronutrient antioxidants that resist oxidative stress and normalize various 
factors. Maintaining physical exercise habits with healthy dietary supplements, including these 
micronutrients, for example, the Mediterranean diet, which contains silymarin phytosome complex 
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Figure 2. A brief comparison of NAFLD/NASH prevention and therapy between astaxanthin and
vitamin E. First, astaxanthin is more effective than vitamin E in improving steatosis by suppressing
lipid accumulation. Second, astaxanthin is superior to vitamin E with respect to suppressing the
MAPK pathway and NF-κB activation and induces a strong shift of M2 macrophage polarization,
which ultimately reverses hepatic steatosis, inflammation, and insulin resistance. Most importantly,
as a result of M1/M2 transformation, astaxanthin can reduce hepatic stellate cell (HSC) activation
and ameliorate hepatic fibrosis. Black arrow: ↑: induction, ↓: inhibition, →: no change; Red arrow: ↓:
inhibition compared with vitamin E, ↑↑/↓↓ : more significant induction/inhibition effect compared
with vitamin E.

Other micronutrients such as obeticholic acid and silymarin, which are derived from natural
substances, also have therapeutic potential according to some reports. Obeticholic acid can ameliorate
NAFLD/NASH by increasing insulin sensitivity and reducing liver enzyme levels and fibrosis [139].
Silymarin, which is an extract of the milk thistle plant (Silybum marianum), can attenuate hepatic lipid
metabolism and oxidative stress in mice with NAFLD [140].

4. Conclusions

Increasing attention has been focused on NAFLD, which may become the most universal and
severe chronic liver disease worldwide in the next few decades. The pathogenetic mechanisms of
NAFLD are complex and associated with various complications, such as obesity, T2DM, hepatitis,
and fibrosis. Current research has shown that overproduction of ROS and changes in the contents
of some central factors including adiponectin, chemokines, TNF-α and TGF-β may be the main
promoters of NAFLD development. Novel preventative and therapeutic strategies include the
development of micronutrient antioxidants that resist oxidative stress and normalize various factors.
Maintaining physical exercise habits with healthy dietary supplements, including these micronutrients,
for example, the Mediterranean diet, which contains silymarin phytosome complex and vitamin E,
can be a promising method for the management of NAFLD [141,142]. Further studies are necessary
to obtain better knowledge of the pathophysiology of NAFLD and, therefore, the potential role of
micronutrients in the prevention and treatment of NAFLD.
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