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Introduction: One of the most frequent neurological conditions in newborns is neonatal seizures, which may indicate severe 
neurological dysfunction. These seizures may have very subtle or very modest clinical indications because patterns like oscillatory 
(spike) trains begin with relatively low amplitude and gradually increase over time. This becomes very challenging and erroneous if 
clinical observation is the primary basis for identifying newborn seizures. In this study, a diagnosis system using deep convolutional 
neural networks is proposed to determine and classify the severity level of neonatal seizures using multichannel neonatal EEG data.
Methods: Datasets from publicly accessible online sources were used to compile clinical multichannel EEG datasets. Various 
preprocessing steps were taken, including the conversion of 2D time series data to equivalent waveform pictures. The proposed 
models have undergone training, and evaluations of their performance were conducted.
Results: The proposed CNN was used to perform binary classification with an accuracy of 92.6%, F1-score of 92.7%, specificity of 
92.8%, and precision of 92.6%. To detect newborn seizures, this model is utilized. Using the proposed CNN model, multiclassification 
was performed with accuracy rates of 88.6%, specificity rates of 92.18%, F1-score rates of 85.61%, and precision rates of 88.9%. The 
results demonstrated that the suggested strategy can assist medical professionals in making accurate diagnoses close to healthcare 
institutions.
Conclusion: The developed system was capable of detecting neonatal seizures and has the potential to be used as a decision-making 
tool in resource-limited areas with a scarcity of expert neurologists.
Keywords: AlexNet, CNN, multichannel EEG, neonatal seizure, severity identification

Introduction
Seizures in newborns are a typical occurrence in intensive care units, affecting 1–7 out of 1000 full-term babies (37 to 42 
weeks gestation), and are more common in preterm neonates (less than 37 weeks gestation) by approximately 57–132 out 
of 1000.1 The frequency of epileptic episodes increases as gestational age (GA) and birth weight decrease from the time 
of birth to the completion of the neonatal life stages.2 Hypoxia-ischemia, hemorrhage, intracerebral infarction, trauma, 
infections, aberrant cerebral development, drug withdrawal, fetal distress, toxicity, and other conditions are among the 
causes of neonatal seizures.2,3

The newborn stage is the most susceptible to seizure development of all life stages, especially in the first 1–2 
days to weeks after delivery. Neonatal seizures can be challenging to recognize since they might be brief or 
fragmentary, the infant’s brain is still developing, and it is unable to produce coordinated reactions shown in older 
children.4,5 Seizures in newborns put them in danger of death, while those who survive are at risk for neurological 
issues, developmental delays, epilepsy in later life, and cognitive impairment.6 As a result, organized approaches for 
deciding the best diagnosis and treatment methodology for neonatal seizure management are critical. Differential 
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diagnosis,7 pathology testing,8 neuroimaging,9 and neurophysiology10 tests are frequently used to diagnose neonatal 
seizures. On the other hand, these diagnostic methods are expensive and time-consuming. The majority of them 
necessitates the knowledge and excellent visual acuity of numerous experts. Medical imaging methods that are 
sophisticated and robust are complex, involve exposure to radioligands, and are available only at centralized health 
facilities.

Recently, EEG-based diagnosis of neonatal seizures has become an alternative tool in neonatal intensive care units 
(NICUs).11 Despite the accessibility of EEG in most NICUs and the expansion of neonatal neurocritical care systems, 
reliable seizure diagnosis and treatment remain difficult. Recording EEG (continuous multichannel EEG) for long hours 
and aEEG (amplitude integrated EEG with video by an expert neurologist (neurophysiologist)) are two common methods 
for detecting and seeing neonatal seizures.12 However, such interpretation is exceedingly labor intensive, time consum-
ing, and costly, and necessitates specialized expertise that is not always accessible in neonatal critical care units 
worldwide, especially in developing countries.

Artificial intelligence (AI)-based computer-aided diagnostics can reduce medical professionals’ workloads.13 EEG 
datasets should be used to diagnose neonatal seizures using a computer-aided diagnosis technique, according to several 
studies.14–16 According to Deburchgraeve et al.17 A heuristic model that replicates a human EEG reader is a good option. 
Over 217 hours, multichannel EEG recordings from 21 patients with seizures and 5 patients without seizures were used 
to test the complete approach. To identify and categorize neonatal seizures as suggested by several researchers, a support 
vector machine (SVM) using several feature-based studies has been used.18–20 Similarly, Temko et al21 designed 
a multichannel patient-independent neonatal seizure detection system based on the support vector machine (SVM) 
classifier with an average detection rate of 89%.

The creation of novel EEG classification algorithms that do not require a manual feature extraction stage has benefited 
from advances in deep learning-based research.22–24 Ansari et al.25 Proposed neonatal seizure detection using deep 
convolutional neural networks (CNNs). In this work, the random forest (RF) is used as an automatic feature selection as 
well as a classification tool. It uses a test set of multichannel EEG datasets from 22 babies, resulting in a false alarm rate 
of 0.9 Hr and a neonatal seizure detection rate of 77%. Samanta D et al.26 The proposed “neonatal seizure detection from 
raw multichannel EEG using a fully convolutional neural network”, claimed to improve by 56% compared to feature- 
based algorithms.

Previous studies have produced promising results on the ability to identify newborn seizures using EEG 
recordings. However, the majority of the studies relied on already established characteristics, required precise and 
strong expert labeling for each channel, had a high computational load, and used chaos theory for time-frequency 
analysis. Most of the research has used single-channel EEG signals; therefore, compared to multichannel EEG 
recorded data, some fundamental information on the diagnosis and management of neonatal seizure cases would be 
lost. Preterm neonates were also not included in the study, and a severity level identification study was not done. In 
this study, deep learning based neonatal seizure detection was proposed using binary classification as normal or 
abnormal classes and multiclassification for severity level identification of neonatal seizures as moderate (S_1), mild 
(S_2), or severe (S_3).

Materials and Methods
The system is proposed for applying deep learning to diagnose newborn seizures using multichannel EEG 
recordings. In this study, two CNN models a customized CNN and a pretrained AlexNet were proposed. It was 
trained using scaled raw waveform images made from multichannel EEG datasets that had been segmented. The 
main block diagram of the proposed system is shown in Figure 1 while Table 1 shows the list of materials used in 
this work.

Data Collection
The multichannel neonatal EEG signal used in this study was collected from a publicly available dataset.27 The 
recording was collected using a 10–20 electrode placement system. The data were collected from 79 infants 
admitted to the Helsinki University Hospital NICU, Finland. Signals were sampled at 256 Hz and recorded for an 

https://doi.org/10.2147/PHMT.S427773                                                                                                                                                                                                                                

DovePress                                                                                                                               

Pediatric Health, Medicine and Therapeutics 2023:14 406

Debelo et al                                                                                                                                                          Dovepress

Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


average of 74 minutes. Three experts from different parts of the world independently noted the presence of seizures 
in the EEGs.28 An established definition of a seizure, consisting of persistent, recurrent evolving spike/sharp waves 
or rhythmic waveforms, with a definite beginning and ending, was used to annotate them. Each of the 79 element 
cell arrays in the MAT file that make up the file corresponds to a study neonate identification number. The databases 
annotated by these three specialists are also accessible as CSV files (A, B, and C).

According to the study, by far the common cause for neonatal seizure is hypoxic-ischemic encephalopathy (HIE); 
sometimes it’s called asphyxia. It is responsible for 80% of all seizure in the first two days.29 In Zenodo dataset clinical 
information data (data 3 in .csv format) out of 79 some neonates the severity of HIE or asphyxia were listed by experts as 
moderate, mild, or severe asphyxia. Because the severity of asphyxia is largely related to the severity of neonatal seizures, 
which has a direct impact on neonatal EEG. In order to categorize seizures as moderate, mild, or severe, the initial step is to 
choose neonatal data from clinical records for each category using expert opinions on asphyxia severity (moderate, mild, or 
severe). Second, for neonates selected according to clinical information, expert consent during annotation is also considered.

These data can be utilized as a reference dataset of neonatal seizures, to perform interobserver agreement studies, and 
to develop automated seizure detection algorithms and other EEG-based analyses.27 Figure 2 illustrates the database’s 
general organizational structure.

Preprocessing
Segmenting or windowing, bandpass filtering, downsampling, and minimizing weak signals and/or undesirable channels 
are the key preprocessing stages in this study. With the help of the MATLAB module EEGLAB, these preprocessing 
processes were carried out. Each class’s raw waveform of the preprocessed neonatal EEG is prepared and saved in an 

1.Down-sampling
2.Filtering
3.Channel selection

PreprocessingRaw EEG signal Segmenting

Scaled raw 

Deep Learning 

C
lassification

Seizure

Normal

S_1

S_2

S_3
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Figure 1 The overall methodology of the developed system.

Table 1 The Materials Used in This Work

Hardware Software

● Laptop Computer

– TOSHIBA, Satellite C855, 4GB RAMand 500GB HDD

● MATLAB V2021 with

– EEGLabV2021

– Biosignal interface
– AlexNet Architecture

● 32GB USB and 1TB hard disc ● EDF Browser V2021, Nicolet EEG Viewer V2021
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image (.jpg) format. The images were then resized to a set number of pixels to fit the input size of the pretrained AlexNet 
models and the customized CNN models. Figure 3 details the overall preprocessing block diagram.

Signal/Channel Selection and Bad Signal Removal
Neonatal EEG has in Zenodo dataset has 19 channels but, along with 19 channels there are respiratory and EKG (ECG) 
channels. Because respiratory and ECG channels have spike waves, artefacts, and noises that have an effect on 
visualization during scaled image preparation for the proposed model training and testing processes. In order to 
concentrate on 19 channels (bi-polar and referential electrodes), channel selection therefore entails the removal of 
respiratory and ECG channels.

Bandpass Filtering
The multi-channel EEG signal is band-pass filtered between 0.1 Hz and 15 Hz in the proposed work because newborn 
seizures occur between 0.1 and 12 Hz in frequency.30

EEG (79 Neonates)

Experts [1 - 3] Independent 
annotation (for Seizure [1] 
or Normal [0] class)

Data_2

1. (.mat) and 
2. (.csv) (A, B, and C)

Clinical data

Data_3 
(.csv)

79 neonates EEG 

Data_1

(.edf)

Experts [1 - 3] Clinical 
interpretation (for 
Moderate (S_1), Mild 
(S_2), or Sever (S_3)

Figure 2 The overall structure of dataset and annotation.27

Input 
 

Bandpass Signal/Channel Down sampling 

2D image generation Signal segmenting  

Figure 3 The overall preprocessing of the algorithm.

https://doi.org/10.2147/PHMT.S427773                                                                                                                                                                                                                                

DovePress                                                                                                                               

Pediatric Health, Medicine and Therapeutics 2023:14 408

Debelo et al                                                                                                                                                          Dovepress

Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


Down Sampling
To simplify the CNN network and account for the differences in neonatal seizure characteristics, the 256 Hz multichannel 
EEG signal was down-sampled to 32 Hz. This was necessary due to the very low amplitude (<100μV/cm) and low 
frequency (0.1 to 12 Hz) of neonatal seizures compared to adults.30,31

Signal Segmenting
The raw continuous EEG data is divided into predetermined time periods using one of the signal processing techniques 
called signal segmentation. EEG signals were first captured at 256 Hz sampling rate. EEG shows sudden, repetitive, 
stereotyped, evolving waveforms that last at least 10 seconds and have a clear beginning, middle, and end as seizures.32

In this work each of these segments includes 10 seconds of EEG data prepared using manual segmentation from all 
available channels. The manual segmentation of multichannel EEG signal has been performed based on expert annotated 
data.

Proposed Models
Pretrained AlexNet
AlexNet is a deep CNN architecture created by Alex Krizhevsky in collaboration with S. Ilya and H. Geoffrey.28 The 
architecture was created in 2012 and represented a significant step forward in CNN development. The use of several 
GPUs for training and using an enhanced version of the image are two of the main benefits of adopting the AlexNet 
architecture. Key developments were the ReLU activation function, overlapping pools, and dropout. Therefore, employ-
ing these techniques reduces the difficulty of neuronal adaptation and enables the model to identify different aspects. The 
first phase in learning new proposed works is transfer learning, which is carried out using the existing network. Using 
transfer learning to fine-tune the network is typically quicker and less difficult than starting from scratch. We must 
replace the last three fully linked layers, the softmax layer, and the classification layer to use the current AlexNet 
network. A 227 * 227-pixel input image is required by the model. The proposed AlexNet architecture for binary 
classification is shown in Figure 4.

Customized Deep CNN
To identify seizures in newborns, a deep convolutional neural network (CNN) trained entirely from scratch was 
developed in this section. Five convolutional layers, 3 * 3-fold filters, and 1 * 1-fold stride make up the completed 
CNN. The network computed the final output probabilities for each class using the ReLU activation function, maximum 
pooling layer, and fully connected layer. A softmax layer was utilized to normalize the fully linked layer’s outputs, and 
the cross-entropy loss function was employed for learning. Gradient descent with momentum and a learning rate was set 
at 0.001 for training the suggested deep CNN. The maximum number of epochs is set at 30. Figure 5 shows the structure 
of customized Deep CNN.

Figure 4 The proposed AlexNet architecture for binary classification.
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Materials
The performances of the proposed models were evaluated using a confusion matrix that calculates FNtrue positive/TP, 
true negative/TN, false positive/FP and false negative/FN values. Furthermore, calculating and finding the values of F1- 
Score, Recall, Precision, Specificity, and Accuracy are also performance measurement tools used in this work.

Results
Preprocessing
The neonatal multichannel EEG signal was bandpass filtered in this proposed experiment between 0.1 Hz and 15 Hz. The 
deep CNN networks’ complexity was reduced throughout training time by downsampling the multi-channel EEG to 32 
Hz.21 The Nyquist sampling theorem was used to conduct downsampling. The sampling frequency should be at least 
twice as high as the signal’s maximum frequency. By establishing nominal sample ranges, this theory assists in 

Figure 5 The proposed customized Deep CNN architecture for multi classification.

Table 2 The Training, Test, and Validation Image Data for Binary 
Classification

Train Data Validation Data Test Data

Public dataset Seizure 1209 242 242

Normal 1201 240 240

Total 2410 482 482

Grand total 3374

Table 3 The Training, Test, and Validation Image Data for Severity 
Classification

Train Data Validation Data Test Data

Public dataset S_1 329 82 52

S_2 273 68 30

S_3 208 52 22

Total 810 202 104

Grand total 1116
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preventing aliasing.33 Furthermore, removing bad signals and/or unwanted channels, EEG signal segmenting to 10 sec, 
and scaled color image generation were the next preprocessing steps performed in this study. During preprocessing stages 
for the neonatal EEG in the case with a small number of channels, we used zero vectors to prepare homogeneous input 
images with identical sizes.

Input Data Distribution for the Proposed Models
To train the proposed models, the preprocessed continuous EEG data were segmented or windowed, and then the raw 
waveform was saved in the .jpg image format. The image was rescaled to 256-by-256 for the custom CNN and 227-by 
-227 for the pretrained AlexNet models. The number of image data to train, validate, and test the proposed models during 
binary and severity classification is described in Table 2 and Table 3 respectively.

Figure 6 The training curves of accuracy and loss during binary classification using AlexNet (a) and custom CNN (b).
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Results of Binary Classification
Before beginning the training approach, a total of 1209 image data points for the normal classes and 1201 pictures 
for the seizure classes were prepared for this classification activity (seizure or normal classes). The data were split 
into 80% for training and 20% for the validation set, and data equivalent to the validation set were also prepared as 
the test set. During binary classification using AlexNet, out of 242 validation images in the normal class, 218 image 
data were correctly classified as normal types, while 24 images were wrongly classified as seizure class. Similarly 
from the total validation set of 240 image data in the seizure class, 229 were classified as seizure and 11 images 
were incorrectly classified as normal. Finally, the average test accuracy of the model for binary classification was 
calculated using the average of the performances of the two classes. As a result, an accuracy rate of 92.7%, 
aprecision rate of 92.9%, a recall rate of 92.6%, an F1-score rate of 92.7%, and a specificity rate of 92.9% were 
achieved. However, using custom CNN, out of 242 validation data in the normal class, 215 image data were 
correctly classified as normal types, while 27 images were wrongly classified as seizure class. Similarly, from the 
total test set of 240 image data in the seizure class, 222 were correctly and 18 images were incorrectly classified. As 
a result, an accuracy rate of 90.66%, a precision rate of 90.65%, a recall rate of 90.75%, an F1-score rate of 90.7%, 
and a specificity rate of 90.65% were achieved. Figure 6 shows the curves of accuracy and loss during binary 
classification using AlexNet, Figure 6a shows the accuracy and loss curve of training and validation during binary 
classification using AlexNet, and Figure 6b shows the accuracy and loss curve of training and validation during 
binary classification using custom CNN. As shown in Figures 7a and b, the confusion matrix is used to describe the 
binary classifier performance for both AlexNet and custom CNN, while Table 4 summarizes the rates of accuracy, 
F1-score, sensitivity, and specificity.

Multiclass Classification
Figure 7 shows the curves of accuracy and loss during multiclassification, Figure 8a shows the accuracy and loss curve of 
training and validation during multiclassification using the AlexNet model, and Figure 8b shows the accuracy and loss 
curve of training and validation during multiclassification using the custom CNN model.

A confusion matrix is provided in Figure 9a to show how the AlexNet model for multiclassification performed during 
training. Seventy-three of the 82 images in the S_1 class were properly identified as S_1 types, whereas 7 images were 

Figure 7 Confusion matrix of binary classification using AlexNet (a) and custom CNN (b).
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predicted to belong to the S_2 class and 2 to the S_3 class. Fifty-five of the 68 images in the S_2 class were correctly 
identified as belonging to that category, whereas 10 were incorrectly assigned to the S_1 class and three to the S_3 class. 
Forty-six of the 52 images in the S_3 classes were accurately categorized as S_3, whereas 2 were incorrectly categorized 
as S_1 and 4 as S_2 classes.

On the other hand, the training result of the custom CNN model for multiclassification is indicated using a confusion 
matrix shown in Figure 9b. Out of the 82 images in the S_1 class, 74 images were correctly classified as S_1 types, while 
7 of the images were predicted as S_2 and 1 image as S_3 classes. Out of 68 images in the S_2 class, 56 images were 
correctly classified as S_2 types, while 10 images were wrongly classified as S_1 classes and 2 images as S_3 classes. 

Table 4 The Overall Results of Neonatal Seizure Detection (Binary Classification)

Precision Rate Recall Rate F1-score Rate Specificity Rate Accuracy Rate

Seizure AlexNet 96.8 89.3 92.9 96.5 92.6

Custom CNN 92.5 92.3 90.82 89.0 90.66

Normal AlexNet 88.4 96.5 92.27 89.29 92.6

Custom CNN 88.8 89.2 90.51 92.2 90.66

Figure 8 The training curves of accuracy and loss of multiclassification using AlexNet (a) and custom CNN (b).
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Out of 52 images in S_3 classes, 49 images were correctly classified as S_3, while 1 image was wrongly classified as S_1 
and 2 images as S_2 classes.

From the results found using the confusion matrix, the precision, recall, specificity, F1-score, recall rate, and test 
accuracy results were calculated. Table 5 shows the severity of classification results using the custom CNN model.

Discussion
The major aim of this study was to classify neonatal seizures into normal or abnormal/seizure classes and to determine 
the severity level of resulting seizures. To achieve this, two different classifying models were developed: custom CNN 
and AlexNet. Better results were achieved by training a fine-tuned AlexNet for binary classification and custom CNN for 
severity classification. To classify the severity level of neonatal seizures, the first step was classifying a given image of 
a neonatal EEG data segment into (normal or seizure). This was achieved by using the developed binary class classifying 
model. The binary classifying models’ performance was tested using the test dataset, and a remarkable result was 
achieved with an average accuracy rate of 92.6%, a precision rate of 92.6%, a recall rate of 92.9%, an F1-score rate of 
92.59%, and a specificity rate of 92.9%. After binary class classification, the identified seizure type was further classified 

Figure 9 The confusion matrix of multiclassification using AlexNet (a) and custom CNN (b).

Table 5 The Overall Result of Severity Classification

Precision Rate Recall Rate F1-Score Rate Specificity Rate Accuracy Rate

AlexNet S_1 89.0 85.9 87.4 86.18 86.1

S_2 80.9 83.3 82.08 91.02 86.1

S_3 88.5 90.2 89.34 99.35 86.1

Custom CNN S_1 90.2 87.1 88.6 86.18 88.6

S_2 82.4 86.2 84.3 91.02 88.6

S_3 94.2 94.2 94.2 80.35 88.6
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into its subtypes (severity levels). After model training for seizure severity classification, the performance was measured 
using a confusion matrix, accuracy, precision, recall, and specificity. An average test accuracy of 88.1%, precision of 
88.06%, recall of 83.67%, F1 score of 85.61%, and specificity of 92.18% were achieved.

Generally, based on the test results, the final model of this research work is prepared by taking the best performing 
networks. As a result, AlexNet performs better during binary classification, and the network will be used as the final 
binary classifier. The custom CNN performs better results during multiclassification; therefore, it will be used as the final 
multiclassifier. In other words, the network of binary classification by pretrained AlexNet and multiclassification by 
custom CNN is taken as the final model of this work. The performances of the final AlexNet and custom CNN models 
are summarized in Table 6.

Comparing the result of this research with the studies conducted utilizing the Zenodo dataset34,35 as a reference point, 
as illustrated in Table 7, we can conclude that the developed system can classify neonatal EEG datasets in the form of 
images with better classification accuracy. Furthermore, the developed system has overcome the gap in further 
classification of neonatal EEG (seizure classes) into severity levels (S_1, S_2, and S_3).

Conclusion
AlexNet, a pretrained CNN, and a customized CNN that was trained from scratch are the two models that are used to 
detect neonatal seizures and categorize the severity levels of seizures. During training, AlexNet performed better in 
binary classifications (normal or seizure), whereas custom CNN performed better in multiclass or severity level 
classifications (S_1, S_2, S_3). Moreover, in the case of binary classification, the system can classify a given image 
or segment of the EEG waveform into its class normal or seizure with an accuracy of 92.7% and in the case of severity- 
level classification with an average accuracy of 88.6%. As a result, this developed system can be employed as a decision 
support system in the diagnosis of neonatal seizures, which will have a significant impact by assisting neurologists or 
other medical practitioners, especially in low-resource nations where both expertise and funds are limited.

Table 6 Summary of the Performance of AlexNet for Binary Classification and Custom 
CNN for Multiclass Classification

Precision Recall F1-score Specificity Accuracy

Binary Classification 92.9 92.59 92.9 92.7 92.59

Severity Level Identification 88.93 89.0 85.3 89 88.6

Table 7 Comparing This Work to Earlier State of the Art

Author Dataset Method Year Number of 
Class

Title Accuracy

A.H. Ansari et al25 Cork CNN 2019 2 (Binary) Neonatal seizure detection using deep CNN Binary 
77%

Gordon Lightbody 
et al14

Cork and 
Zenodo

FCNN 2021 2 (Binary) Neonatal seizure detection from raw 
multichannel EEG using a FCNN

Binary 
93.4%

Amr Zeedan 
et al36

Zenodo Feed- Forward 
and LSTM Neural 

Networks

2022 2 (Binary) EEG-Based Seizure Detection Using Feed- 
Forward and LSTM Neural Networks Based on 

a Neonates Dataset

Binary 
87.7%

This work Zenodo CNN 2022 2 and 3 (Both 

binary and 

Severity)

Neonatal Seizure Detection and Severity 

Identification Using Deep Convolutional Neural 

Networks

Binary 

92.7% 

Severity 
88.61%
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