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Abstract

Background

In gene expression studies via RT-qPCR many conclusions are inferred by using reference

genes. However, it is generally known that also reference genes could be differentially

expressed between various tissue types, experimental conditions and animal models. An

increasing amount of studies have been performed to validate the stability of reference

genes. In this study, two rodent-specific Short Interspersed Nuclear Elements (SINEs),

which are located throughout the transcriptome, were validated and assessed against nine

reference genes in a model of Temporal Lobe Epilepsy (TLE). Two different brain regions

(i.e. hippocampus and cortex) and two different disease stages (i.e. acute phase and

chronic phase) of the systemic kainic acid rat model for TLE were analyzed by performing

expression analyses with the geNorm and NormFinder algorithms. Finally, we performed a

rank aggregation analysis and validated the reference genes and the rodent-specific SINEs

(i.e. B elements) individually via Gfap gene expression.

Results

GeNorm ranked Hprt1, Pgk1 and Ywhaz as the most stable genes in the acute phase, while

Gusb and B2m were ranked as the most unstable, being significantly upregulated. The two

B elements were ranked as most stable for both brain regions in the chronic phase by geN-

orm. In contrast, NormFinder ranked the B1 element only once as second best in cortical tis-

sue for the chronic phase. Interestingly, using only one of the two algorithms would have led
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to skewed conclusions. Finally, the rank aggregation method indicated the use of the B1 ele-

ment as the best option to normalize target genes, independent of the disease progression

and brain region. This result was supported by the expression profile of Gfap.

Conclusion

In this study, we demonstrate the potential of implementing SINEs -notably the B1 element-

as a stable normalization factor in a rodent model of TLE, independent of brain region or dis-

ease progression.

Introduction

The reverse transcription quantitative polymerase chain reaction (RT-qPCR) is considered as

the most sensitive, reliable and accurate technique to analyze differential gene expression at

the messenger RNA (mRNA) level [1, 2]. Nevertheless, performing the experimental proce-

dures will introduce a variety of potential errors, amongst which pipetting errors, starting

material quality variations, differences in mRNA extractions, errors in sample quantifications,

altered reverse transcription efficiencies and cDNA sample loading differences [3]. In order to

correct for these variations, a normalization strategy is required (e.g. starting with similar

amounts of cells or input mRNA). The most popular strategy is to use one or multiple endoge-

nously expressed control genes (i.e. reference genes), such as ribosomal RNAs (rRNA) or

mRNAs [4]. Ideally, a reference gene should be abundantly expressed, not co-regulated with

the target gene and have a similar expression across all samples [5]. Many RT-qPCR studies

implement reference genes that are related to structural or basic processes (e.g. Actb or

Gapdh). However, several reference genes have been shown to be differentially expressed

between samples, cell types and experimental conditions [6–8]. In recent years, an increasing

amount of studies have validated and assessed the stability of those genes in specific pathologi-

cal models [9–11]. A reference gene in one animal model may be differentially expressed,

while the same gene will be stably expressed in another model of the same pathology. Also, the

reference gene expression in different tissues of the same model may vary [12–14].

Several research groups reported a new normalization strategy with Expressed Alu Repeats

(EARs) and Expressed Repeat Elements (EREs) as internal control genes, in Homo sapiens and

Danio rerio, respectively [15–18]. Those studies proposed to use these repeat elements, which

are located throughout the transcriptome, as a normalization factor in RT-qPCR analysis. The

EARs or EREs would be less influenced by the up- or downregulation of one or more tran-

scripts, which would make the normalization process more reliable over various experimental

conditions, compared to the use of a single reference gene. This would reduce the workload

and cost in reference gene validation and avoid the loss of valuable biological materials [15–

18].

The rodent genome (e.g. from Rattus norvegicus) does not contain Alu repeats, but B1, B2,

ID and B4 elements (i.e. Alu-like elements) instead, which belong to the class of Short Inter-

spersed Nuclear Elements (SINEs) [19]. The Alu repeats and the B1 elements share their origin

from an initial duplication of the 7SL RNA before the primate-rodent split, 80 million years

ago. These two sequences have been amplified and duplicated independently with accumulat-

ing mutations and have little resemblance to each other or to the original 7SL RNA. The 7SL

RNA-derived SINEs are unique in the genomes of primates, rodents and tree-shrews [20–23].

The B2 element is rodent-specific and has a tRNA-like region with an unknown affiliation,
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combined with a unique 120 bp sequence. A neuronally expressed BC1 gene is believed to be

the origin of the ID elements [24]. In contrast, the B4 element resembles a fusion of a B1 and

an ID element. The B elements, as well as the Alu repeats, are dispersed throughout the tran-

scriptome, with the highest density in the intronic regions and at 16 kb upstream to the start

position of specific protein-coding transcripts. In contrast, they are under-represented in

exonic regions [25–27].

Previous RT-qPCR studies tried to obtain a better understanding of the molecular mecha-

nisms of epilepsy, without or with a limited reference gene validation study [28–31]. In the

present study, we have evaluated the stability of nine well-accepted reference genes and two

SINEs (B1 and B2 elements) in the systemic kainic acid (KA) post status epilepticus (SE) rat

model of Temporal Lobe Epilepsy (TLE). The expression stability of the transcripts was deter-

mined in the hippocampus and the cortex during the acute phase (day 10 post-SE) and chronic

phase (day 80 and 120 post-SE) of disease progression (i.e. epileptogenesis). The RT-qPCR

results were analyzed with geNorm [32], NormFinder [33] and rank aggregation [34] algo-

rithms. As a validation strategy, normalization using the geNorm and NormFinder results was

compared to normalization using the B elements or every single reference gene in the context

of evaluation of the relative expression of glial fibrillary acidic protein (Gfap) mRNA. To our

knowledge, this is the first large-scale RT-qPCR study which validated the robustness of B ele-

ments in a rodent model.

Materials and methods

Animals

Male Sprague-Dawley rats (Harlan Laboratories B.V., the Netherlands) weighing 242.6 ± 15.1

g (9 weeks) were treated according to the guidelines of the European Communities Council

Directive (2010/63/EU). The Animal Experimental Ethical Committee of Ghent University

Hospital (ECD 16/06) approved the study protocol. The animals were conventionally housed

in a temperature-controlled (20–23˚C) and humidity-controlled (50%) environment under a

12h/12h light/dark cycle, where food and water intake was ad libitum.

The rats were randomly distributed for KA administration (n = 19) and controls (n = 12).

In order to induce SE, rats received 2–6 times KA (5 mg/kg; Tocris Bioscience, Bristol, UK) by

intraperitoneal (i.p.) injections according to the protocol of Hellier et al., 1998. Seizure activity

of all rats was continuously monitored visually and electrographically. The KA treatment was

repeated hourly until the animals displayed a stable self-sustained SE for�3 h (i.e., >10 behav-

ioral seizures per hour). Animals that exhibited excessive motor or excessive lethargic behavior

were no longer injected with KA to avoid mortality [35, 36]. The rats treated with KA were

sampled after 10 (T10, n = 6), 80 (T80, n = 7) or 120 days (T120, n = 6). The control rats were

treated with vehicle (saline, i.p.) and were sampled after 10 (acute phase control, n = 6) or 120

days (chronic phase control, n = 6). The animals were anesthetized via 5% isoflurane (Affygi-

lity Solutions, Broomfield, CO, USA) followed by decapitation and hippocampi and cortices

were dissected on an ice-cold plate, the left and right parts were stored separately at -80˚C

until RNA isolation.

RNA extraction and cDNA synthesis

Total RNA was isolated from left hippocampi and cortices with the RNeasy Plus Universal

Mini Kit (Qiagen, Hilden, Germany), according to the manufacturer’s instructions. The absor-

bance at 230 nm, 260 nm, 280 nm and total RNA concentration were measured with the Nano-

Drop 1000 Spectrophotometer (ThermoFisher Scientific, Wilmington, DE, USA). The 260/

280 nm ratio was used as RNA purity measure and all samples had values over 2.0. The
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integrity of the RNA was assessed by the analysis of the ratio of 28S to 18S rRNAs after agarose

gel electrophoresis. Total RNA samples (15 μg) were treated with the Heat&Run gDNA

removal kit (ArticZymes, Tromsø, Norway) to avoid amplification of genomic DNA during

the reverse transcription.

The concentrations and purities were verified again, as described above. Only 1.5 μg of the

total RNA was converted to cDNA using Oligo(dT)18 primers (Cell Signaling, Danvers, MA,

USA) and M-MLV Reverse Transcriptase (Promega, Madison, WI, USA), according to the

manufacturer’s protocol. The absence of DNA contamination was controlled for each individ-

ual sample by omitting the reverse transcriptase (RT) from the procedure (i.e. minus RT sam-

ples). The minus RT and the plus RT samples of the control and the KA-treated samples of a

similar disease progression stage (i.e. acute or chronic phase) were reverse transcribed simulta-

neously. After 1:20 dilution of the samples, a 10 μl fraction of every cDNA was pooled together

in order to determine the PCR efficiency for every primer set. All samples were stored at -80˚C

until further analysis.

Primer design and real-time PCR

Nine commonly used reference genes were chosen based on their differences in cellular or sig-

naling pathways (Table 1). The primers for the nine reference genes and Gfap were found in

literature [9, 14]. The primers for the B1 and B2 elements were designed based on the available

consensus sequences [20, 37]. The optimal primers were chosen from the regions with the

highest consensus sequences and specificity was controlled in silico through the UCSC genome

browser (Santa Cruz, CA, USA). All primers were synthesized by Sigma Aldrich (St. Louis,

MO, USA).

Real-time PCRs were performed in white 96-well plates using the LightCycler 480 Instru-

ment (Roche Diagnostics, Mannheim, Germany). In a reaction volume of 15 μl, 5 μl of the syn-

thesized cDNA sample was pipetted. Thereby, the synthesized cDNA was diluted 1:40 for the

reference genes and Gfap and 1:8000 for the B elements, to 3.75 ng and 0.019 ng of total cDNA

respectively. The primer concentrations were 250 nM. Finally, 7.5 μl iQ SYBR Green Supermix

(Bio-Rad Laboratories, Hercules, CA, USA) and 1.75 μl DEPC H2O was added to the reaction

volume. The two-step amplification protocol of the real-time PCRs was as follows: initial dena-

turation at 95˚C for 5 minutes and 40 cycles of 95˚C for 15 seconds and 60˚C for 45 seconds.

A light signal was acquired at the end of each cycle at 60˚C. The specificity of product forma-

tion was confirmed by a melting curve analysis (55˚C to 95˚C in increments of 0.11˚C/s). The

Cq values were determined in technical triplicates with the LightCycler software v1.1.5 (Roche

Applied Science, Mannheim, Germany) according to the second derivative method.

The PCR efficiencies were determined by technical duplications of a three- or five-point

serial dilution of pooled cDNA, B elements or reference genes respectively. All the PCR effi-

ciencies of the primer sets were between 90 and 110% (Table 2), demonstrating the robustness

and reproducibility of the performed RT-qPCR assay.

Gene expression stability analysis and reference gene validation

The stability of the reference genes and B elements was assessed by geNorm (https://genorm.

cmgg.be) and NormFinder (https://moma.dk/normfinder-software) [32, 33]. In order to per-

form the geNorm analysis, the Cq values were imported into the qBaseplus software version

3.0 (Biogazelle, Ghent, Belgium) [38]. This algorithm calculates the gene stability measure M,

which is the average pairwise variation of a particular gene with all other genes. The genes are

ranked according to the calculated M value from the least stable (highest M value) to the most

stable (lowest M value). The NormFinder algorithm estimates the stability through a model-
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based approach by comparing the overall gene expression variation and the gene variation

between sample subgroups. This results in a stability value and ranks the genes based on their

stable expression. The Cq values used in both algorithms were efficiency adjusted.

All the ranked gene lists obtained by the geNorm and NormFinder analyses were used in

the rank aggregation R package called “RankAggreg” [34]. The weighted rank aggregation was

applied to determine the most stable reference genes across the different disease stages, brain

regions and algorithms. Thereby, we used the Cross-Entropy (CE) Monte Carlo algorithm,

Table 1. Name and function of genes and short interspersed nuclear elements.

Symbol Gene name Function

Actb Actin beta Cytoskeletal structural protein

B1

element

B1 short interspersed nuclear element Wide-spread class or repeat element through the mammalian genome and descended

from 7SL RNA

B2

element

B2 short interspersed nuclear element Wide-spread class or repeat element through the mammalian genome with a tRNA-like

region followed by a unique 120 bp region

B2m Beta-2 microglobulin Beta-chain of major histocompatibility complex class I molecules

Gapdh Glyceraldehyde-3-phosphate dehydrogenase Glycolytic enzyme

Gusb Glucuronidase beta Hydrolyzes and degrades glycosaminoglycans

Hprt1 Hypoxanthine guanine phosphoribosyl transferase 1 Purine synthesis in salvage pathway

Pgk1 Phosphoglycerate kinase I Glycolytic enzyme

Rpl13a Ribosomal protein L13A Structural component of the large 60S ribosomal subunit

Tbp TATA box binding protein General RNA polymerase II transcription factor

Ywhaz Tyrosine 3-monooxygenase/tryptophan 5-monooxygenase

activation protein, zeta polypeptide

Signal transduction by binding to phosphorylated serine residues on a variety of

signaling molecules

https://doi.org/10.1371/journal.pone.0210567.t001

Table 2. Primer sequences and amplicon characteristics for the Rattus norvegicus used in the study.

Symbol 5’-3’ sequence Reference Amplicon Length (bp) PCR efficiency (%)

Actb AGCCTTCCTTCCTGGGTATG
GAGGTCTTTACGGATGTCAAC

NM_031144.2 92 91.1

B1 Element ACGCCTTTAATCCCAGCACTC
GAACTCACTCTGTAGACCAGGCTG

Veniaminove et al., 2007 81–83 98.9

B2 Element CCACATGGTGGCTCACAAC
CCAGAAGAGGGCATCAGATC

Dunnen et al., 1987 51–64 98.7

B2m CGAGACCGATGTATATGCTTGC
GTCCAGATGATTCAGAGCTCCA

NM_012512 118 92.5

Gapdh CCCATTCTTCCACCTTTGATGCT
CTGTTGCTGTAGCCATATTCAT

NM_017008.3 104 95.0

Gfap AACCGCATCACCATTCCTGT
CATCTCCACCGTCTTTACCAC

NM_017009.2 123 97.7

Gusb CCGTGGAACAGGGAATGAG
CTCAGGTGTTGTCATCGTCA

NM_017015.2 121 98.9

Hprt1 CTCATGGACTGATTATGGACAGGAC
GCAGGTCAGCAAAGAACTTATAGCC

NM_012583 123 92.4

Pgk1 ATGCAAAGACTGGCCAAGCTAC
AGCCACAGCCTCAGCATATTTC

NM_053291 104 95.8

Rp113a GGATCCCTCCACCCTATGACA
CTGGTACTTCCACCCGACCTC

NM_173340 132 95.2

Tbp TGGGATTGTACCACAGCTCCA
CTCATGATGACTGCAGCAAACC

NM_001004198 131 90.3

Ywhaz GATGAAGCCATTGCTGAACTTG
GTCTCCTTGGGTATCCGATGTC

NM_013011 117 92.9

https://doi.org/10.1371/journal.pone.0210567.t002
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which generates random lists. The starting list was converged towards the best optimal list

through an iteration procedure with the weighted Spearman’s foot-rule distance, resulting in a

consensus list of ranks.

According to literature, patients and different animal models of TLE show significant upre-

gulation in Gfap mRNA expressions [10, 14, 39–41]. For that reason, Gfap mRNA expression

was chosen to evaluate the impact of the different kind of normalization strategies. The Gfap
expression was evaluated with the most stable combination of references genes according to

the two algorithms or to the eleven references independently, using the 2ΔΔCT method [38].

The Cq values of each individual reference gene and the Gfap expression values, which

were determined by different normalization methods, in the hippocampus and cortex were

imported into GraphPad Prism version 6.00 for Windows (GraphPad Software, La Jolla, CA,

USA). The various groups were statistically analyzed with the Mann-Whitney two-tailed U test

(i.e. acute phase) or the nonparametric ANOVA by ranks of Kruskal-Wallis test followed by

the Dunn’s multiple comparisons post-hoc test (i.e. chronic phase). Differences were consid-

ered statistically significant at P� 0.05.

Results

Transcription profiles

The mean Cq values represent a different intragroup variation profile of the reference genes in

the hippocampus compared to the cortex (Fig 1). The genes B2m and Gusb had a significantly

higher expression in the TLE model than in the controls at the acute phase (acute phase control

vs. T10), with the exception of the Gusb cortical expression. The chronic phase shows a more

disperse pattern, where the mRNA expression of Hprt1, Pgk1, Ywhaz, Actb and Rpl13a differs

significantly between the control and TLE rats in the hippocampus, while Gusb, B2m, Rpl13a,

Tbp, Ywhaz and the B2 element differ significantly between groups in the cortex. The signifi-

cant differences in mean Cq values may indicate the instability of a reference gene or B ele-

ment. The Cq value profile displayed a wide range of mRNA expression levels, where Gusb has

high Cq values (30.42), thus a low mRNA expression, and Gapdh (18.37), Actb (19.13) and B2

element (19.41) were highly expressed.

Stability determination

The expression stability of the reference genes and the B elements was assessed by two algo-

rithms. The geNorm algorithm labels the most stable genes with the lowest M value. This value

is defined as the mean standard deviation of the logarithmically transformed expression values

of the compared genes, which is calculated by the average variation among pairs of genes

through the comparison of a control gene with other genes. First, the algorithm selects a pair

of genes, which have the lowest M value, the additional genes are ranked based on the highest

degree of compatibility with the other and with a geometric mean of the first pair [38]. The

order of stability of the reference genes and B elements varied between the acute and chronic

phase in the hippocampus (Fig 2A and 2C).

Nowadays, to perform correct normalization of a target gene (e.g. Gfap), multiple reference

genes are recommended [4]. The qBaseplus software package also performs a pairwise varia-

tion analysis. This analysis calculates the variation between successive pairs, which is expressed

as the normalization factor (NF). Hereby, the influence of a subsequent reference gene added

to the previous pair is determined. The comparison is made with NFn for n number of genes

to NFn+1, which contain the same set of genes with an additional gene having a consecutive

higher M value. If the added gene to the NF has a significant impact, the variation Vn/n+1

between two NF factors is high. Supported by the data presented in the original publication, a
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cutoff value of 0.15 for Vn/n+1 was determined [32]. When the value is below the cutoff, the

addition of an extra reference gene is not necessary for the normalization of a target gene.

Using two reference genes in the acute (Pgk1/Hprt1) or chronic (B1 and B2 element) model is

sufficient, with values of 0.060 and 0.069 respectively (Fig 2B and 2D).

Fig 1. Cq values of the reference genes and B elements in hippocampus and cortex. (A) The mRNA expression profiles of the reference genes and B

elements in the hippocampus of the acute phase (T10), the chronic phase (T80 and T120) in the KA model and their corresponding controls. (B) The

mRNA expression profiles of the reference genes and B elements in the cortex of the acute phase (T10), the chronic phase (T80 and T120) in the KA

model and their corresponding controls. Results are given in Cq values, mean ± SD (n = 6/7), during the acute phase (acute phase control vs. T10) and

chronic phase (chronic phase control vs. T80/T120) phase, Mann-Whitney U Test or Kruskal-Wallis Test, respectively, � = P� 0.05 and �� P� 0.01.

https://doi.org/10.1371/journal.pone.0210567.g001
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An equivalent geNorm analysis was performed in the cortex of the rat model for TLE (Fig

3). The algorithm determined that the Hprt1 and Ywhaz reference genes were sufficient for the

normalization (V2/3 = 0.032) in the acute phase. Similar as in the hippocampus, the B elements

were also the most stably expressed in the chronic phase. The V value (0.123) is below the

defined cutoff value (0.15), so according to the geNorm algorithm, the use of only the two B

elements as reference genes is adequate for normalization.

The NormFinder algorithm uses a model-based estimation of variance approach to deter-

mine a stability value. This ANOVA model-based approach takes into account the average

influence of a gene within the group and the individual impact of a group compared to the

other groups, called the intra- and intergroup variations, respectively. The final value depends

Fig 2. A geNorm analysis of the acute and chronic phase in the hippocampus of the TLE model. (A) Expression stability values (M values) of all the

reference genes and B elements in the hippocampus of the acute phase. The higher the M value, the less stable the gene is expressed and vice versa. (B)

Pair-wise variation analysis to determine the number of optimal genes for normalization in the acute phase. The software calculates a V value, which is

an expressed variation number between the two calculated sequential normalization factors. (C) The M values of all the reference genes and B elements

in the hippocampus of the chronic phase. (D) Pair-wise variation analysis to determine the number of optimal genes for normalization in the chronic

phase.

https://doi.org/10.1371/journal.pone.0210567.g002
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on the number of candidate genes and samples analyzed [33]. The obtained results of the

NormFinder analysis of this study are shown in Table 3. In the acute phase, the two most stable

genes in the hippocampus are Rpl13a (0.164) and Actb (0.185), while Gusb (0.611) and B2m
(0.693) are the two most unstable genes. In the chronic phase the three most stable genes were

Rpl13a (0.129), Gapdh (0.143) and the B1 element (0.159). The most unstable genes were B2m
(0.314) and Tbp (0.345), which differed slightly from the geNorm analysis. In the acute phase,

the most stable reference genes in the cortex are Actb (0.112) and Gapdh (0.145). As before,

the two most unstable genes were Gusb (0.356) and B2m (0.508). In the chronic phase, B2m
(0.196) and B1 element (0.240) have the least diversity, while Rpl13a (0.359) and Ywhaz
(0.437) turn out to be unreliable as reference genes. The calculated intra- and intergroup varia-

tions per gene are presented in S1 Table.

Fig 3. A geNorm analysis of the acute and chronic phase in the cortex of the TLE model. (A) Expression stability values (M values) of all the

reference genes and B elements in the cortex of the acute phase. The higher the M value, the less stable the gene is expressed and vice versa. (B) Pair-

wise variation analysis to determine the number of optimal genes for normalization in the acute phase. The software calculates a V value, which is an

expressed variation number between the two calculated sequential normalization factors. (C) The M values of all the reference genes and B elements in

the cortex of the chronic phase. (D) Pair-wise variation analysis to determine the number of optimal genes for normalization in the chronic phase.

https://doi.org/10.1371/journal.pone.0210567.g003
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Rank aggregation

Not surprisingly, the different algorithms yielded a different ranking of the genes and B ele-

ments. In order to obtain a final consensus list of ranks, weighted rank aggregation was con-

ducted. The R script for the weighted rank aggregation, via a CE Monte Carlo algorithm with

the weighted Spearman’s foot-rule distance, is presented in S1 File. The weight of the M values

of the geNorm algorithm and the stability values of the NormFinder algorithm were taken into

account in this iterative process [34]. As presented in Fig 4, the B1 element is the most stably

expressed, independent of brain region and disease stage.

Validation of reference genes and B elements

Finally, the B elements and reference genes used in this study were validated to normalize the

expression analysis of Gfap. From literature, it is known that expression of this gene is

Table 3. A NormFinder analysis of the acute (acute phase control vs. T10) and the chronic (chronic phase control vs. T80/T120) phase in the hippocampus and

cortex.

Gene name Acute Phase Hippocampus Chronic Phase Hippocampus Acute Phase Cortex Chronic Phase Cortex

Actb 0.185 0.229 0.112 0.266

B1 Element 0.231 0.159 0.233 0.240

B2 Element 0.193 0.298 0.228 0.264

B2m 0.693 0.314 0.508 0.196

Gapdh 0.334 0.143 0.145 0.261

Gusb 0.611 0.274 0.356 0.331

Hprt1 0.381 0.211 0.163 0.333

Pgk1 0.278 0.257 0.159 0.261

Rpl13a 0.164 0.129 0.216 0.359

Tbp 0.190 0.345 0.208 0.251

Ywhaz 0.337 0.280 0.168 0.437

Best Genes Rpl13a & Actb Rpl13a & Gapdh Actb & Gapdh B2m & B1 Element

https://doi.org/10.1371/journal.pone.0210567.t003

Fig 4. The rank aggregation consensus result of the reference genes and B elements via the performance of the Cross-Entropy (CE) Monte Carlo algorithm in

combination with the Spearman’s foot-rule weighted distance.

https://doi.org/10.1371/journal.pone.0210567.g004
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upregulated in several epilepsy models as well as in human patients with TLE [10, 14, 39–41].

The best pairs of genes resulting from the geNorm and NormFinder analysis and all the indi-

vidually expressed genes and B elements were used to evaluate the pattern of Gfap in the hip-

pocampus and the cortex, as depicted in Fig 5A and 5B, respectively. Normalized Gfap
expression was very similar for both B elements as reference genes, in the hippocampus, as

well as in the cortex. Moreover, normalization using the B elements was almost equivalent to

normalization using the geNorm and NormFinder method. Only the chronic phase control

versus the T120 in the NormFinder differed slightly compared to the B1 or B2 element nor-

malization in the hippocampus. Even the use of unstably expressed genes as Gusb and B2m
still allowed detection of the significant upregulation of Gfap mRNA expression in the two

brain regions, in both the acute and chronic phase. Nevertheless, the upregulation of Gfap nor-

malized by these reference genes differed in significance level compared to the normalization

of Gfap with geNorm and NormFinder. Moreover, these reference genes were significantly

upregulated in the acute phase of the TLE model, independent of brain region (S1 Fig).

Remarkably, in the chronic phase of the TLE model normalization using Ywhaz didn’t yield

significant Gfap upregulation in the cortex.

Discussion

Currently, RT-qPCR is the ‘gold standard’ to determine variation in mRNA expression levels

in biological materials between experimental conditions. Hereby, an accurate normalization

strategy is key to infer correct conclusions from generated data. Predominantly, the expression

of one or more endogenous ‘reference’ genes is used to correct for technical variations in the

RT-qPCR protocol. Using multiple reference genes is recommended and the optimal number

applied should be experimentally determined [4]. Importantly, some experimental procedures

also influence reference gene expression, rendering specific genes unsuitable for normalization

of target gene expression. Applying only a single reference gene could lead to erroneous con-

clusions in that case [32].

Our study is the first to validate the use of SINEs as a normalization strategy, comparing

these to nine widely used and accepted reference genes as a normalization method in a rodent

model. Previously, SINEs were validated in zebrafish tissues, human blood samples and

human cell lines [15–18]. In order to perform the comparison, we selected nine reference

genes from different functional classes, for example genes involved in major histocompatibility

complex (B2m), transcription (Tbp) or metabolism (Gapdh), to avoid co-regulation (Table 1).

The use of ribosomal RNA (rRNA) as a normalizer is discouraged, because the rRNA (e.g. 18S

rRNA) is not polyadenylated, transcribed by a different RNA polymerase and has a different

function in the cell than mRNA. Although around 90% of the total RNA concentration con-

tains rRNA, the mRNA/rRNA ratio can fluctuate depending on the experimental conditions

[42, 43]. Therefore, the rRNA was not included in our research. In contrast, the SINEs (i.e. B

elements in the Rattus norvegicus) are part of the mRNA and are dispersed abundantly

throughout the transcriptome.

The implementation as a normalization factor in RT-qPCR of another class of retrotranspo-

sons, the Long Interspersed Nuclear Elements (LINE-1), is discouraged as well. A difference in

transcription of these autonomous retrotransposons cannot only be induced by various chemi-

cal and biological stressors, but also has been observed in cancers, neurodegenerative disorders

and autoimmune diseases [44–49]. This would be due to hypomethylation of CpG islands and

chromatin rearrangements [50–52]. In addition, a qPCR analysis of human brain tissue

showed a high variation in LINE-1 copy number expression between individuals, especially in

the hippocampus, and differential expression between neurons [53, 54].
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The majority of the B elements are either located in upstream regions of specific transcripts,

or in their intronic regions [25–27]. Hence, PCR amplification of a specific repeat from a B ele-

ment will multiply the same transcript of various genes. Predictably, the detection of many

transcripts simultaneously will be less influenced by an unstably expressed gene. As a conse-

quence, it can be expected that the detected signal will be less prone to variation during various

biological conditions, than when a single gene is detected in RT-qPCR.

As a proof-of-concept we used a rodent model of TLE and sampled two different brain

regions at various disease stages (i.e. acute phase and chronic phase). KA will induce SE, fol-

lowed by a latency period, and finally spontaneous recurrent seizures occur [55, 56]. The gluta-

mate analog, KA, is a neuroexcitotoxic agent that acts via kainate receptors. Different

pathologic changes will be manifested in the rodent, such as behavioral changes (e.g. occur-

rence of wet-dog shakes), electrophysiological alterations, induction of oxidative stress,

Fig 5. Transcription profiles of Gfap in two brain regions upon using different normalization approaches. (A) The

relative expression of Gfap in the hippocampus, normalized using each of the nine reference genes, the B elements or

the best combination derived from the NormFinder and geNorm analysis. (B) The relative expression of Gfap in the

cortex normalized by nine reference genes, B elements or the best combination derived from the NormFinder and

geNorm analysis. The graphs show the mean Gfap expression during the acute (acute phase control vs. T10) and

chronic (chronic phase control vs. T80/T120) phase, Mann-Whitney U Test or Kruskal-Wallis Test respectively, � =

P� 0.05, �� = P� 0.01.

https://doi.org/10.1371/journal.pone.0210567.g005
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astrogliosis and aberrant mossy fiber sprouting. Primarily, the CA3 region of the hippocampus

has been shown as the most susceptible region. To a lesser extent the entorhinal- and piriform

cortex are targeted by KA [57–59]. Several studies have proposed reference genes for intrahip-

pocampal KA and pilocarpine (PILO) induced models of TLE and human epileptic brain tis-

sue [10, 14, 60, 61]. Because the expression of a reference gene may be unstable in different

(pathological) models, this study evaluated the suitability of nine specifically chosen reference

genes, as well as B elements, to normalize gene expression in the rodent model of TLE via sys-

temic KA administration [14]. Where most studies analyze only the hippocampus, we also

included the cortex, which is known to be affected as well.

An extra added value of our analysis is the application of both the geNorm and NormFinder

algorithm to determine the stability of the B elements, unlike previous studies, which validated

SINEs and inferred their conclusions only from one algorithm (i.e. geNorm) [16–18]. As dem-

onstrated by our data, there is a clear difference between the rankings generated by the two

algorithms (Table 3, Figs 2 and 3). Where a target gene (e.g. Gfap) uses reference genes (e.g.

Gapdh) as a point of reference to infer differences in expression over various experimental

conditions, a reference gene itself does not have a point of reference. In order to select the

most stable reference gene(s) over the experimental conditions, the two algorithms employ dif-

ferent mathematical schemes [32, 33]. To merge the results of both algorithms, we applied a

rank aggregation strategy, resulting in one ranking scheme, independent of biological variables

[34]. From this analysis, we could conclude that the B1 element, but not the B2 element, func-

tions as the most stable reference in our hands. Others have also reported that not every repeat

element is stably expressed under different conditions [17]. Upregulation of mouse B2 ele-

ments under heat shock conditions has been reported. Hereby, the B2 element binds to RNA

polymerase II, acting as a transcriptional repressor of protein-coding genes to prevent transla-

tion, thus reducing the number of misfolded proteins under hyperthermia [62–64]. An oppo-

site effect was seen in the hippocampus under stress conditions, wherein it was hypothesized

that proteins should be translated in the hippocampus to retain memories of successful escapes

and danger cues for future situations. The above demonstrates the ‘modulability’ of the B2 ele-

ment, possibly explaining why in our model its expression was somewhat less stable than that

of the B1 element [65].

Expression of the astrocyte-specific cytoskeleton protein Gfap was evaluated, relative to

every single reference gene or B element independently, or relative to the results of geNorm or

NormFinder. It has been well established for several models of TLE that Gfap expression is

highly upregulated during astrogliosis in human and animal epileptogenic hippocampi [10, 14,

39–41]. The expression pattern, when normalizing with the B elements, was similar to that

obtained when using geNorm or NormFinder, which is an indication of a specific upregulated

pattern. Remarkably, B2m and Gusb were significantly upregulated in both brain regions of

the acute phase. In a PILO model, when these two genes were used in normalization, a signifi-

cant upregulation of Gfap expression was not detectable [14]. Clearly, the Gusb and B2m genes

are unsuitable as references genes in the acute phase, since both were significantly upregulated

(S1 Fig). The rank aggregation also indicated these two genes as most unstable (Fig 4). Notable

is Gapdh, which comes out as the second-best normalizer, while in a KA intrahippocampal

model this gene was found to be an inadequate reference [10]. Furthermore, related models

mimicking the same disease could differ significantly in reference gene stabilities, since Gusb
was an unstable gene in the systemic PILO model, but stable in the intrahippocampal PILO

model [14].

In the end, we believe that the reference genes are less affected in the acute phase, except for

B2m and Gusb which were significantly upregulated. The systemic KA administration does

influence the global expression of some well-accepted reference genes (e.g. Yhwaz and Hprt1)
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and their stability decreases with progression of the disease, when aberrant mossy fiber sprout-

ing is more prominent. The B1 element remains more or less stable in M values or stability val-

ues independent of brain region or disease stage. This study demonstrates the potential of

implementing of the B1 element as a new reference for correct normalization of target genes in

the systemic KA induced rat model of TLE. We are currently investigating whether its imple-

mentation as a normalization strategy can be expanded to other disease models or rodent

species.

Conclusion

Accurate normalization is essential in RT-qPCR studies to infer correct conclusions from the

generated data. In this study, we investigated the stability of nine well-accepted reference

genes and the transcripts of two SINEs (i.e. B1 and B2 element). The stability of the B elements

and the performance as a normalizer were validated in a TLE rodent model induced by the sys-

temic administration of KA. The exact same expression data resulted in different ranks

between the geNorm and NormFinder algorithms. It is advisable to implement more than one

algorithm in reference studies, or skewed conclusions may be made. The weighted rank aggre-

gation generated a consensus list from both algorithms, but, importantly, this list was indepen-

dent of brain region (i.e. hippocampus or cortex) and disease stage. Overall, the expression of

the B1 element appears to be most stable, while B2m and Gusb were rather unreliable, even sig-

nificantly upregulated in the acute phase of the TLE model in both evaluated brain regions.

The validation of the new normalization strategy using Gfap, showed that the B1 element was

comparable with the best pair of reference genes generated by geNorm and NormFinder.

Thus, the B1 element can be implemented for the normalization of genes in this rodent model.

Its general application in rodents should be studied further and confirmed by other pathology

models and tissues.

Supporting information

S1 Fig. Relative expression analysis of Gusb and B2m in the hippocampus and the cortex.

(A) The relative expression of B2m in the hippocampus. (B) The relative expression of B2m in

the cortex. (C) The relative expression of Gusb in the hippocampus. (D) The relative expres-

sion of Gusb in the cortex. The graphs show the mean expression during the acute (control

phase acute vs. T10) and chronic (control phase chronic vs. T80/T120) phase normalized by

the optimal set of references genes described by geNorm, Mann-Whitney U Test or Kruskal-

Wallis Test respectively, � = P� 0.05, �� = P� 0.01.
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Writing – original draft: René A. J. Crans, Jana Janssens.
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