
Introduction 

General anesthesia (GA) is a temporary, medically induced 
condition that includes loss of consciousness (LOC), amnesia, 
analgesia, relaxation of skeletal muscles, and loss of reflexes in 
the autonomic nervous system. Despite substantial advances in 

our understanding of both neuroscientific and pharmacody-
namic aspects of anesthetics, we do not yet have an overall pic-
ture of what happens to the brain during GA [1]. Consequently, 
anesthesiologists often refer to landmarks to induce narcosis 
correctly, avoiding a deeper state of anesthesia that can cause 
postoperative cognitive disorders, other postoperative compli-
cations, morbidity [2], and sudden emergencies that carry an 
increased risk of anesthesia awareness (AA) [3,4]. These points 
of reference encompass clinical and instrumental parameters, 
including the monitoring of ventilator parameters and anesthe-
sia gas delivery. Additionally, standard clinical monitoring is of-
ten combined with methods that can assess depth of anesthesia 
(DoA) for better assessment of the level of consciousness during 
anesthesia [5-7]. As GA encompasses amnesia, analgesia, and 
immobility, “depth of anesthesia” may appear as a vague term. 
In this review, only methods for monitoring hypnotic depth are 
discussed, while nociceptive monitoring methods, including the 
surgical pleth index, analgesia nociception index, pupillometry, 
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and neuromuscular monitoring devices are not considered. 
Thus, in the present context, DoA refers to brain monitoring, 
and is used synonymously with “depth of hypnosis.”

Brain Electrical Activity during General 
Anesthesia

GA is induced by administration of two types of general 
anesthetics: intravenous agents, such as etomidate, midazolam, 
propofol, thiopental and ketamine; and inhaled agents includ-
ing nitrous oxide (the oldest of all anesthetics) and various ha-
logenated agents such as halothane, desflurane, isoflurane, and 
sevoflurane, and xenon. Because all general anesthetic drugs 
are relatively apolar molecules, they are able to cross the blood-
brain barrier, interacting, as explained below, with specific ion 
channels that regulate synaptic transmission and membrane 
potentials in several target areas of the brain. The binding of an 
anesthetic to one or more targets involves alterations in neu-
ronal activities through neuron hyperpolarisation, resulting in 
increased neural inhibition or decreased synaptic excitation. 
There does exist a general scheme for explaining the operating 
mechanism of anesthetics [8,9].

The actions of a general anesthetic at the molecular level 
impact on the brain’s electrical activity, causing specific changes 
in the electroencephalogram (EEG). During anesthesia, the ad-
ministration of anesthetics produces distinct EEG patterns; as 
the level of GA deepens, there is a progressive increase in low-
frequency and high-amplitude activity. In his fascinating study, 
Brown showed that, during anesthesia, EEG patterns can be 
described in relation to three different periods: induction, main-
tenance, and emergence [10]. Before induction, the patient has a 
normal, active EEG, with prominent alpha activity (10 Hz). Af-
ter inducing anesthesia, the patient may enter a state referred to 
as paradoxical excitation (similar to drunkenness), characterised 
by incoherent speech, euphoria or dysphoria, distorted time per-
ception, depersonalisation, and an EEG pattern that shows an 
increase in beta activity (13–25 Hz) [11]. This phase ends with 
LOC, in which the patient shows unconsciousness, depression of 
brain-stem reflexes, no response to nociceptive stimuli, apnoea, 
and the need for cardiorespiratory and thermoregulatory sup-
port. During the maintenance phase of anesthesia, it is possible 
to observe several different EEG patterns, depending on the 
DoA. A light state of narcosis, often defined as light anesthesia, 
is characterised by a decrease in EEG beta activity (13–30 Hz) 
and an increase in both EEG alpha activity (8–12 Hz) and delta 
activity (0–4 Hz); this pattern is particularly evident with propo-
fol use [12]. As the anesthesia state becomes deeper, beta activity 
decreases, whereas alpha and delta activities increase, especially 
in the anterior EEG leads relative to the posterior leads [13]. In 
this state, the EEG pattern resembles that seen in non-rapid eye 

movement (or slow-wave) sleep. Because this state represents 
the target unconscious state, surgery is usually performed dur-
ing this phase. A further state of deep anesthesia status is char-
acterised by an EEG pattern comprising flat periods interspersed 
with periods of alpha and beta activity. This pattern of activity, 
called burst suppression, occurs in pathological states and dur-
ing deep anesthesia and represents an interesting field of study. 
For example, Kenny et al. [14] showed significant differences in 
the duration, amplitude, and power of burst-suppression pat-
terns induced by two common general anesthetics, sevoflurane 
and propofol, suggesting that the neuronal circuits involved in 
burst-suppression generation may differ among anesthetics. As 
this state of GA deepens, the gap between periods of alpha activ-
ity lengthens, and the amplitudes of the alpha and beta activity 
decrease, until the most profound state of narcosis is reached in 
which the EEG becomes isoelectric [15]. As stated in the Intro-
duction, GA induces a reversible LOC. Emergence from narco-
sis can be characterised as a passive process that depends on the 
amount of drug administered. Although EEG patterns proceed 
in approximately the reverse order, from several different main-
tenance period phases, it is possible to observe a progressive 
decrease in alpha power and increased peak alpha frequency 
before the return of responsiveness. However, emergence is an 
active process with a distinct neurobiology [16]. Moreover, as 
recently shown by Hight et al. [17] the classic EEG pattern of 
emergence is not the only pattern of emergence from deep anes-
thesia. Indeed, some patients show no obvious progressive EEG 
change until an abrupt recovery of responsiveness.

Not all anesthetics work according to these EEG patterns 
during induction, maintenance, and emergence from anesthesia. 
As described below, some drugs, like ketamine, induce a more 
complex pattern of brain electrical activity with specific EEG 
patterns. This represents one of the many limitations of DoA 
monitoring devices.

Operating Principles of DoA Monitors:  
Basis for Algorithm Development

The EEG reflects the combined synaptic activity of excitatory 
and inhibitory post-synaptic potentials generated by cortical 
neurons [18]. Since 1937, anesthetists have been aware that an-
esthetics produce significant changes in EEGs [19]. However, 
the complex waves of a raw EEG are not interpreted easily and 
several problems have limited the application of standard EEG 
monitoring to anesthesia; for example, EEG does not change in a 
linear or monotonic fashion with changing anesthetic depth, and 
not all anesthetic agents produce similar EEG patterns. Thus, 
there is a need for simple and reliable techniques and tools that 
could be practical for use in all operating rooms. Over several 
decades of research, the complex EEG signal has been dissected 
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to extract its core component, with significant advances also 
made in interpretation of the information that it may contain. 
The increased speed, flexibility, and economy of digital circuits, 
as well as advances in computer hardware and signal-processing 
algorithms, have produced revolutionary changes in the field 
of signal processing. Thus, methods have been developed that 
compress, simplify, and display various ‘processed’ summaries 
of EEG data. Consequently, many of these algorithms have been 
applied in commercially available DoA devices. However, there 
exists a major limitation to the study of the various algorithms 
of DoA monitors; namely, that they are proprietary algorithms. 
Thus, it is often difficult to understand the mathematical pro-
cesses involved.

In this review, the evolution of raw EEG analysis is discussed 
as an introduction to this complex issue. One significant step 
forward was the possibility of translating the analogue raw EEG 
signal into a digital signal, because this renders it possible to rep-
resent discrete points in time at which values are underpinned 
by a fixed, rather than continuous, resolution. That is, digital 
signals are quantised in time, unlike analogue signals, which 
vary smoothly from moment to moment. However, the process 
of analogue-to-digital translation inevitably leads to some loss 
of fidelity in the resulting digital signal. Thus, it is essential to 
transform the EEG signal spectrum for accurate data processing. 
One of the mathematical models used for this purpose is Fourier 
analysis (or Fourier transform) [20]. This process decomposes 
the EEG time series into a voltage-by-frequency spectral graph 
commonly called a ‘power spectrum,’ with ‘power’ being the 
square of the EEG magnitude, and magnitude being the integral 
average of the amplitude of the EEG signal, measured from (+) 
peak to (−) peak, across the time or epoch sampled. The epoch 
length determines the frequency resolution of the Fourier, with 
a 1-s epoch providing a 1 Hz resolution (± 0.5 Hz resolution), 
and a 4-s epoch providing a ¼ Hz, or ± 0.125 Hz, resolution. 

A Fourier transform can transform a set of signal values x(ti) 
sampled at time moments ti within a signal sample into a set of 
an equal number of complex values X(fi) corresponding to a set 
of frequencies fi:

X(fi) = ∑
ti

  x(ti)e
–i2πfiti

A Fourier analysis generates a frequency spectrum X(fi), 
which is simply a histogram of amplitudes or phase angles as a 
function of the frequency of the signal x(ti). As anesthesiologists 
are clinicians, and therefore may not be familiar with biosta-
tistics, explaining this complex transformation is possible only 
by using a practical example. The concept may be illustrated in 
terms of the effect of passing a white light through a glass prism, 
thus creating a rainbow (or spectrum). Each color of light rep-
resents a unique frequency photon, and the relative brightness 
of the colors is a measure of the energy amplitude at each fre-

quency [21].
Any measured signal, such as the spectral components X(fi), 

transformed by the Fourier technique into the frequency do-
main will have both an amplitude and a phase component for 
each harmonic frequency. Nevertheless, this basilar approach to 
transforming and processing the raw signal is laborious. Thus, 
processing commonly uses specific algorithms, such as the fast 
Fourier transform [22,23].

Fourier analysis was improved by using bispectrum mea-
sures, also called bispectral (BIS) analysis. While the algorithms 
of Fourier analysis lend themselves to measurement of the phase 
of component frequencies relative to the start of the epoch, BIS 
analyses allow for phase correlation between different frequency 
components. Moreover, BIS analysis has several additional char-
acteristics that may be advantageous for processing EEG signals. 
For example, suppression of sources of noise involves significant 
enhancement of the signal. Technically, the bispectrum quanti-
fies the relationships among the underlying sinusoidal compo-
nents of the EEG, and examines the relationship between the si-
nusoids at two primary frequencies, f1 and f2, and a modulation 
component at the frequency f1 + f2. This set of three frequency 
components (f1, f2, and f1 + f2) is known as a triplet. For each 
triplet (i.e. the bispectrum), it is possible to precisely calculate 
the amount incorporating both phase and power information, 
such that the bispectrum is a statistic used to find evidence of 
non-linear interactions in signals.

Based on these assumptions, all commercial DoA monitors 
analyse and quantify spontaneous or evoked raw EEG data using 
mathematical methods. Accordingly, and also by using specific 
algorithms, these devices provide several indices allowing for an 
easier reading of anesthesia status. These dimensionless indices 
are constructed, abstract quantities not directly linked to any 
physiological parameter. Among their other features, they are 
characterised by inherent time delays, consistent with the pro-
cessing time, and the calculation and removal, through specific 
algorithms, of certain artefacts.

Depth of Anesthesia Monitors and Indices

In 1994, Sigl and Chamoun [24] were the first to describe the 
use of BIS technology for brain monitoring. Their BIS system in-
cludes a non-invasive adhesive sensor, a patient interface cable, 
a digital signal converter, a BIS engine (microprocessor), and a 
monitor. The technology is also available as a module that can 
be integrated into other manufacturers’ monitoring systems.

As noted previously, raw EEG signals can be difficult to in-
terpret; thus, the BIS engine processes EEG data from a single-
channel EEG signal, measured from the patient’s forehead 
according to an algorithm that combines select EEG features 
to produce a single dimensionless number, which is the ‘BIS 



116 Online access in http://ekja.org

VOL. 69, NO. 2, April 2016 Brain monitoring of anesthesia 

index.’ The BIS algorithm is not publicly available. We know that 
this value is a statistically-based, empirically-derived, complex 
parameter equivalent to the weighted sum of several EEG sub-
parameters, including a time domain, a frequency domain, and 
several high-order spectral subparameters [25]. The BIS index 
ranges from 0 (equivalent to EEG silence) to 100. A BIS value 
between 40 and 60 indicates an appropriate level for GA with a 
low probability of consciousness. In addition to the BIS index, 
the device displays other data, such as the BIS trend, which 
is a graphic representation of BIS index values over time, the 
signal quality index (SQI) bar, and the suppression ratio (SR). 
While SQI measures the reliability of the signal (a higher SQI 
number indicates more reliable BIS values), the SR number is 
the percentage of time over the last 63-s during which the EEG 
signal was suppressed (flat-lined). The monitor also displays a 
single-channel EEG waveform and an electromyography (EMG) 
bar graph, which, similar to the SQI, is used to help determine 
whether the BIS index values are reliable.

The BIS monitor was the first EEG-based DoA monitor. It is 
the most widely used system for assessing the brain monitoring 
of GA. Nevertheless, during the last 15–20 years, other EEG-
based technologies have been studied [26], and some of them 
have become commercially available, such as E-Entropy and 
Narcotrend equipment (MonitorTechnik, Bad Bramstedt, Ger-
many), and auditory evoked potential (AEP) measuring devices.

E-Entropy uses a proprietary algorithm to map the entropy of 
the EEG signal to the behavioural responses of the patients [27]. 
Here, the theoretical assumption is that irregularity in the EEG 
signal decreases under anesthesia. This irregularity can then be 
inferred by the entropy and used to estimate the DoA. The con-
cept of spectral entropy originates from a measure called Shan-
non entropy [28], which is applied to the power EEG spectrum 
signal. The following steps are required to compute the spectral 
entropy for a particular epoch of the signal within a particular 
frequency range [f1, f2]. From the Fourier transform X(fi) of the 
signal x(ti), the power spectrum P(fi) is calculated by squaring 
the amplitudes of each element X(fi) of the Fourier transform:

P(fi) = X(fi) * X^(fi)

In this formula, X^(fi) is the complex conjugate of the Fourier 
component X(fi). The next step of the algorithm is mathematical 
normalisation of the overall frequency range of values between 
1 (maximum irregularity) and 0 (complete regularity). However, 
this transformation operates in parallel with the variable time, 
producing time-frequency-balanced spectral entropy in which 
the signal values x(ti) are sampled within a finite time window 
(epoch) of a selected length with a particular sampling frequen-
cy. That is, to elaborate the signal rapidly, the algorithm allows 
for the study of each frequency in the context of an optimal time 

window.
Simplifying, through this algorithm, the degree of disorder 

of EEG and frontal EMG, the data are converted into two values 
that indicate the DoA. The first value, response entropy, provides 
an indication of the patient’s responsiveness to external stimuli 
and signals early awakening. The second value, state entropy, is a 
stable parameter that may be used to assess the hypnotic effects 
of anesthetic agents on the brain. More ordered signals, with less 
variation in the wavelength and amplitude over time, produce 
higher entropy values and may indicate that the patient is awake. 
Regular signals, with a constant wavelength and amplitude over 
time, produce low or zero entropy values, indicating a low prob-
ability of AA recall and suppression of brain electrical activity. 
The response entropy scale ranges from 0 (no brain activity) to 
100 (fully awake), and the state entropy scale ranges from 0 (no 
brain activity) to 91 (fully awake). The clinically relevant target 
range for response entropy is 40–60, while state entropy values 
near 40 indicate a low probability of consciousness.

The Narcotrend technology (MonitorTechnik), developed at 
the University Medical School of Hannover, Germany, analyses 
raw EEG data using spectral analysis to produce a number of pa-
rameters. Multivariate statistical methods using proprietary pat-
tern recognition algorithms are applied to provide an automati-
cally classified EEG signal on the basis of a visual assessment of 
the EEG, as related to Loomis’ sleep classification system of 1937 
[29]. The EEG visual classification scale ranges from stage A 
(awake) to stage F (very deep hypnosis), with stage E indicating 
the appropriate depth of anesthesia for surgery. Stages A–F were 
further subdivided into three sub-stages; thus, the Narcotrend 
Monitor can automatically distinguish between 14 or 15 stages 
(depending on the software version used). Also, the Narcotrend 
software includes a dimensionless Narcotrend index, ranging 
from 100 (awake) to 0 (electrical silence) [30].

Evoked potentials measure EEG responses to repetitive AEPS 
[31] or visual stimuli, and measure the integrity of the neural 
pathways that carry information from the periphery to the cor-
tex. Here, the rationale is that while the BIS value is an index of 
hypnosis, evoked potentials show responses to stimuli. This is 
a significant translational field of study involving neurological, 
acoustic, and anesthesia data [32]. The AEP monitoring tech-
nique isolates the neurophysiological signal generated during 
stimulation of the eighth cranial nerve using a repetitive audito-
ry stimulus (e.g. with a bilateral click stimulus of 70 dB intensity 
and 2 ms duration delivered through headphones [Alaris AEP 
Monitor; Alaris Medical Systems Inc., San Diego, CA, USA]). 
Repeated sampling allows the signal to be extracted from the 
background EEG noise. Furthermore, the signal is acquired us-
ing EEG electrodes located on the mastoid processes, a midline 
reference electrode, and a ground electrode. New AEP technolo-
gies are not only based on AEP, but also include spectral EEG 
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parameters (AEP Monitor/2; Danmeter A/S, Odense, Denmark) 
that provide a dimensionless number; i.e. the composite AEPs 
index (cAAI), which uses both cortical EEG and AEP data [33]. 
This composite index (0–100 or 0–60) was considered to be a 
measure of the overall balance between noxious stimulation, 
analgesia, and hypnosis. Unlike the BIS index, the transition 
from asleep to awake is characterised by a sudden increase in 
the AEP index. However, these instruments have not yet gained 
wide popularity as DoA monitors, partly due to problems relat-
ing to signal interference. The main characteristics of the newest 
AEP devices are their small size and battery operation, such that 
the unit can travel with the patient from the induction room to 
the operating room, and on to the intensive care unit, enabling 
uninterrupted patient monitoring.

Limitations in EEG Brain Monitoring, 
Possible Improvements, and Perspectives

The BIS monitor was initially considered as the best tool 
for monitoring cerebral activity during anesthesia. Because the 
AA phenomenon has historically been the major concern in 
anesthesiology, it can be considered as the proverbial “philoso-
pher’s stone” of anesthesia monitoring. This signalled the start 
of a hard-fought battle on the pages of scientific journals [34]. 
The most recent BIS monitor algorithm (BIS XP ver. 4.0; Aspect 
Medical Systems, Newton, MA, USA) may produce lower BIS 
scores compared to older models for the same level of hypnosis. 
This difference is secondary to the inclusion, in more recent 
models, of mechanisms that reduce the level of noise, interfer-
ence, and EMG activity, resulting in lower BIS values [35]. How-
ever, this advance in technology did not solve all of the problems 
related to the reliability of BIS monitoring. Indeed, the manufac-
turer of BIS recommends that BIS values should be interpreted 
cautiously in patients with known neurological disorders, and in 
those taking psychoactive medications. Moreover, BIS analysis 
is sensitive to changes in EMG activity; thus, the newer versions 
may also be ineffective for detecting a sudden change in the 
anesthesia status of patients receiving neuromuscular-blocking 
drugs [36].

Moreover, limitations affect other DoA monitors because of 
artefacts generated by the patient (e.g. due to eye movements 
and muscle activity) or external sources (poor skin contact, 
mains or power line interference, electrocautery), and clinical 
situations in which there is a lack of reliability. For example, E-
Entropy has been validated for use only in patients over the age 
of 2 years; it cannot be used for patients undergoing procedural 
or conscious sedation, and seizure activity may cause interfer-
ence. In addition, E-Entropy readings may be inconsistent when 
monitoring patients with neurological disorders or in those on 
psychoactive medications. Although Narcotrend is equipped 

with artefact-detection algorithms, to exclude segments contam-
inated with artefacts, Narcotrend values should be interpreted 
cautiously in patients with a history of central nervous system 
disease. 

Age is another underestimated variable in DoA monitoring. 
For example, under anesthesia, premature-born children display 
different EEG patterns versus term-born children [37], and the 
BIS index must be interpreted cautiously in the detection of 
depth of sedation in children [38] and elderly patients [39].

A significant limitation to actual DoA indices lies in their 
neurophysiological basis, because they assume that anesthet-
ics induce slowing of the EEG oscillations with increasing 
doses. Thus, slower oscillations should clearly indicate a more 
profound state of GA. However, not all anesthetics show this 
EEG pattern. For example, ketamine shifts the alpha peaks of 
bicoherence induced by propofol to higher frequencies, perhaps 
through modulation of the non-linear sub-cortical reverberating 
network [40]. However, nitrous oxide suppresses low-frequency 
power, which can influence EEG monitoring parameters by in-
creasing the value of the indices at clinically accepted doses [41].

This limitation seems to have been overcome by the develop-
ment of devices that incorporate specific algorithms, designed 
in the early 2000s [42]. One of these algorithms is the patient 
state index (PSI), which is another index of the level of hypno-
sis/awareness. The PSI is calculated by a high-resolution four-
channel EEG monitor that collects information on frequency 
and phase brain electric activity according to anterior-posterior 
relationships in the brain, as well as coherence between bilateral 
brain regions. The PSI provides a continuous numeric value, 
derived from systematic studies of the complex of changes in 
brain state that were observed to reversibly accompany loss and 
return of consciousness independent of anesthetic class. Indeed, 
the variables selected for incorporation in the PSI displayed very 
significant heterogeneity of variance at different levels of seda-
tion/hypnosis (sensitivity) but non-significant differences across 
anesthetic agents at a specified level (specificity) [43]. All these 
data suggest that technology using PSI (e.g. the SEDLine moni-
tor; Hospira, Lake Forest, IL, USA) could be superior to other 
classic EEG monitors, such as the BIS. However, comparative 
studies showed that the PSI offered only a better correlation with 
the end-tidal concentration of desflurane, and PSI values were 
less affected by electrical interference, especially electrocautery. 
Although the PSI showed a better performance during both the 
induction of, and emergence from, GA during the maintenance 
period, the PSI values were comparable to those of the BIS [44]. 
Thus, the PSI is only a valid alternative to BIS monitors and does 
not completely solve the problem of gaps in brain monitoring 
during anesthesia.

Another branch of study concerns improvement of methods 
already in use, by improving their algorithms. As mentioned 
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previously, a recent algorithm for the BIS monitor conferred 
reduced interference. Additionally, beyond response and state 
entropy, at least 10 entropy algorithms were investigated with 
respect to their ability to depth-monitor anesthesia and detect 
burst suppression. Although each entropy index showed advan-
tages and disadvantages, the right combination of these indices 
could help improve current clinical indices for brain anesthesia 
monitoring [45].

However, the true limit to GA brain monitoring is that com-
mercial brain monitoring devices do not accurately discriminate 
between consciousness and unconsciousness because their 
functioning is based on EEG signal analysis rather than consid-
eration of corticocortical connectivity and communication [46]. 
This is a complex topic encompassing the operating mechanism 
of general anesthetics. Although we understand that the anes-
thetic effect is realised through ligand-receptor interactions in 
different brain areas, a major question remains regarding the 
physiological mechanisms by which anesthetics interfere with 
cortical and subcortical signals [41] arising, for example, from 
the thalamus. However, the thalamus is not central to the tran-
sition between conscious and unconscious states; more recent 
studies outline the role of cortical areas, such as the primary 
visual cortex [47] and the primary somatosensory cortex, which 
is a key area involved in the processing of nociceptive inputs 
[48] from the posterior cingulate cortex, precuneus, and mesial 
parietal cortex. These mesial cortical areas are functionally spe-
cialised regions of the human cerebral cortex, interconnected by 
a dense network of cortico-cortical axonal pathways. Accord-
ing to a modern neurofunctional approach, based on so-called 
cognitive brain architecture [49], these cortical areas arrange 
into both a structural and functional brain core, which has an 
important role in functional integration [50]. Nevertheless, the 
role of the thalamus is not secondary; rather, it acts as a relay in 
corticocortical communication, because all neocortical areas 
receive thalamic inputs. Indeed, some thalamocortical pathways 
relay information from ascending pathways (first-order thalamic 
relays) and others relay information from other cortical areas 
(higher-order thalamic relays). Thus, efficient communication 
among cortical areas requires thalamic integrity and thalamic le-
sions lead to functional disarray despite cortical activation [51].

According to this line of investigation, scientific research 
has enabled the development of new technologies for cerebral 
monitoring, and the studies of Boly et al. [52] on spectral EEG 
changes after propofol administration are very important. At the 
same time, Purdon et al. [53] also published their fascinating 
research explaining that the EEG pattern, and changes therein, 
are real-time indicators of the transition from consciousness to 
anesthesia. Transcranial magnetic stimulation (TMS) is a non-
invasive method used both to stimulate small regions of the 
brain and to measure the activity and function of specific brain 

circuits in humans. Indeed, it is used to examine the integrity of 
the fast-conducting corticomotor pathways in a wide range of 
diseases associated with motor dysfunction [54]. The principles 
of this technique can be applied to the study of the relationship 
between consciousness and anesthesia. Recent studies have in-
vestigated the EEG response to TMS in subjects in diverse states 
of consciousness (e.g. wakeful rest, deep sleep, GA) [55,56], as 
well as in propofol-induced GA [57]. Thus, a technique that was 
created to investigate the dynamics of consciousness could have 
various other possible applications, including as a precise tool 
for brain monitoring during anesthesia.

Others authors have focused on building new algorithms, 
starting from the analysis of EEG signals. For example, Mirsa-
deghi et al. [58] proposed a new method for distinguishing be-
tween awake and anesthetised states. Their methodology is very 
interesting: through a specific analysis that uses a dimensionality 
reduction method (from high-dimensional to low-dimensional 
data), they processed some linear and non-linear features of raw 
EEG signals, citing an accuracy of 88.4% for classifying the EEG 
signal into conscious and unconscious states. More complex 
algorithms have been proposed to combine EEG features and 
hemodynamic variables for better classification of anesthesia 
status [59]. Schneider et al. [60] studied a combination of clini-
cal standard monitoring, EEG, and patient and drug variables, 
demonstrating that it is possible to distinguish between different 
levels of anesthesia. However, their algorithm uses a complex 
analysis with a later construction, and is only marginally useful 
for rapid recognition of intraoperative awakening, particularly 
under conditions of neuromuscular blockade.

Conclusions

Several DoA monitors are now on the market; the technology 
underpinning these monitors is based on the results of studies 
of complex algorithms and mathematical models, related to the 
brain’s electrical activity during GA. These devices began to be 
commercialised in the early 1990s and, because they offered an 
immediate means (in the form of various indices) of assessing 
the level of consciousness during anesthesia, there was a rapid 
increase in their use. Nevertheless, despite initial enthusiasm, 
the use of DoA monitors remains a major controversy in an-
esthesiology. Indeed, many factors, such as age, race, gender, 
low core body temperature, acid-base imbalances, low blood 
glucose, drugs administered to the patient (e.g. neuromuscular 
blocking agents), and brain ischaemia, have a significant ef-
fect on raw EEG data. Additionally, DoA monitors are limited 
by their calibration range and interpatient variability in dose-
response curves.

The study of signal transduction, from raw EEG data to an 
index, represents a hidden and fascinating mathematical world 
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that is moving towards improvement of the reliability of indices 
of hypnosis. However, despite refinement of the algorithms, it is 
currently impossible to ameliorate the influence of all artefacts. 
What, then, are the current perspectives and goals? A better 
understanding of the transformation of cortical and subcorti-

cal activity into EEG signals, as well as resolution of the puzzle 
concerning the link between consciousness and anesthesia with 
the processing of algorithms ad hoc, could allow for the develop-
ment of DoA monitors for precise determination of the anesthe-
sia status of patients during GA.
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