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In literature, there are three simplest methods of solving Einstein’s field equations, namely, (a) assuming 
conformally flat spacetime, (b) using conformal killing vector and (c) using Karmarkar conditions. In all these 
approaches the two metric functions 𝑔𝑡𝑡 and 𝑔𝑟𝑟 are link via a bridge. However, the first two approaches are facing 
a critical failure while determining central red-shift while the last method always yields well-behaved solution. 
Therefore, we are adopting the last method and discover a generalized class one solution. It is found that the 
maximum mass and radius of the compact star describe by the solution strongly depends on the parameter 𝑛. As 
𝑛 increases the maximum mass and radius also increases. For 𝑛 = 3.3, 𝑀𝑚𝑎𝑥 = 1.459𝑀⊙ and 𝑅𝑚𝑎𝑥 = 9.52 km, and 
for 𝑛 = 4.8 have 𝑀𝑚𝑎𝑥 = 1.766𝑀⊙ with 𝑅𝑚𝑎𝑥 = 10.31 km. For 𝑛 = 4.8 the equation of state is behaving linearly as 
the speed of sound is almost constant at 0.333. In overall the presented solution is well-behaved in all respects.
1. Introduction

After the discovery of general theory of relativity by Albert Ein-

stein in 1915, Schwarzschild [1] obtained the solution of Einstein’s 
field equation that describes the neighborhood of a compact objects. 
The obtained solution was spherically symmetric and static with van-

ishing pressure and density. In later, by using isotropy pressure, Tolman 
[2] obtained the model of static and spherically symmetry compact ob-

ject. When the pressure inside a compact object is not equal at each 
and every point then a situation occurs which is called the pressure 
anisotropy in the terms of astrophysics. Pressure anisotropy is the dif-

ference between transverse pressure and radial pressure and is denoted 
by Δ. Symbolically, Δ = 𝑝𝑡 − 𝑝𝑟. 𝑝𝑡 and 𝑝𝑟 are transverse and radial pres-

sure respectively and these are the two components of the pressure and 
𝑝𝑡 acts in the orthogonal direction to 𝑝𝑟. The pressure anisotropy creates 
an force which is known as anisotropy force (𝐹𝑎 =

2Δ
𝑟

) and a positive 
anisotropy force (when Δ > 0, i.e., 𝑝𝑡 > 𝑝𝑟) protects the compact object 
from gravitational collapsing by creating a force towards the boundary 
as stated by Gokhroo & Mehra [3]. They explained the behavior of a 
neutron star using pressure anisotropy and conclude that the maximum 
mass of a neutron star does not exceed two solar masses, which confirms 
the Chandrasekhar limit. Pressure anisotropy can be found in the com-
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pact objects like, X-ray pulsar, Her-X-1, X-ray buster 4U 1820-30, the 
millisecond pulsar SAX J 1804.4-3658, PSR J1614-2230, LMC X-4 etc.

whose density of the core exceeds the nuclear density (∼1015 gm/cc). 
Ruderman [4] and Canuto [5] first proposed the idea of anisotropy. Af-

ter that several works have been done by assuming pressure anisotropy 
with uniform density, Maharaj and Maartens [6] obtained a solution 
for anisotropic sphere though, most of the researchers proposed stel-

lar model with variable density. From previous investigations found in 
literature it is proved that the pressure anisotropy is occurred by the 
presence of 3𝐴 superfluid [7], different kinds of phase transitions [8]. 
In the context of Newtonian gravity, anisotropies in spherical galaxies 
have been studied by Binney & Tremaine [9]. Weber [10] pointed out 
that strong magnetic fields can generate an anisotropic pressure com-

ponent inside a compact sphere. The effects of slow rotation in a star 
was examined by Herrera & Santos [11]. Mixture of two gases such as 
ionized hydrogen and electrons also caused pressure anisotropy as pro-

posed by Letelier [12].

To solve the EFEs, some researchers used the metric co-efficient 
along with radial pressure 𝑝𝑟 [13, 14, 15], but a common approach is to 
choose metric coefficients along with equations of state (EoS) (a relation 
between the pressure and density). Several works can be found in these 
directions [16, 17, 18, 19, 20, 21, 22]. At that stage when the matter 
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density inside the star is much greater than the usual nuclear density, 
it is really a very difficult task to predict a complete equation of state 
for the superdense objects. To overcome this situation some researchers 
used an alternative approach called core-envelope models [23, 24, 25]. 
To obtain a core-envelope model, a relativistic star is assumed to con-

sist of a central core region surrounded by an outer envelope region, 
and the matter distribution in these regions exhibit different physical 
features.

If a space-time can be represented as a hypersurface embedded in a 
flat space of 5-dimensions then it is called the space-time of embedding 
class one. A necessary as well as sufficient condition which a space-time 
should satisfy to be of class one is that there exist a symmetric tensor 
𝑏𝑖𝑗 satisfying the following conditions:

𝑅𝜇𝜈𝛼𝛽 = 𝑒(𝑏𝜇𝛼𝑏𝜈𝛽 − 𝑏𝜇𝛽𝑏𝜈𝛼)

𝑏𝜇𝜈;𝛼 − 𝑏𝜇𝛼;𝜈 = 0

where ‘;’ represents covariant derivatives and 𝑒 takes the value +1 or −1
according to the normal to the manifold being space-like or time-like. 
In case of embedding class one spacetime, the two metric co-efficients

are correlated by an equation. In 2008, Herrera et al. [26] proposed an 
algorithm to obtain static spherically symmetric anisotropic solutions 
of Einstein’s field equations and they showed that this can be generated 
from EFEs by two generating functions. So the main advantage of using 
embedding class one spacetime is that, if one chooses one metric coef-

ficients the whole system can be generated by it (in case of uncharged 
fluid sphere). Instead two generating functions we need only one. The 
other advantage is that we can solve the system of highly non-linear 
EFEs without any help of any EoS. Both charged and uncharged com-

pact star models in embedding class one spacetime can be found in [27, 
28, 29, 30, 31, 32, 33, 34, 35, 36, 37]. Mirzazadeh and his co-authors 
have present various perturbation method of solving systems of equa-

tions [38, 39, 40, 41, 42, 43].

The purpose of the current investigation is to obtain a new solution 
of the Einstein field equations (EFEs) in presence of pressure anisotropy 
in embedding class one spacetime. We have studied in details the dif-

ferent physical properties of the present model and demonstrated the 
effect of dimensionless quantity 𝑛 through the graphical representa-

tion of the model parameters. The paper is planned as follows: in next 
section we have discussed about the interior space-time and field equa-

tions, in sect. 3 the field equations are solved by choosing a physically 
reasonable metric coefficient for 𝑔𝑟𝑟. The physical analysis of the model 
parameters are obtained in sect. 4, in the next section we matched our 
interior solution to the exterior solution to fix different constants and 
we have also obtained the values of the different constants for some well 
known compact objects in tabular form. The energy conditions and the 
stability analysis have been discussed in sect. 4 and finally some con-

cluding remarks are given in sect. 5.

2. Theory

The interior space-time line element assumed as,

𝑑𝑠2 = 𝑒𝜈(𝑟)𝑑𝑡2 − 𝑒𝜆(𝑟)𝑑𝑟2 − 𝑟2
(
𝑑𝜃2 + sin2 𝜃𝑑𝜙2) (1)

where 𝜈 and 𝜆 are functions of the radial coordinate ‘𝑟’ only.

Further, assuming an anisotropic fluid distribution the Einstein’s 
field equations can be written as

𝑅𝜇
𝜈
− 1

2
𝑔𝜇
𝜈
𝑅 = −8𝜋

[
(𝑝𝑡 + 𝜌𝑐2)𝑣𝜇𝑣𝜈 − 𝑝𝑡𝑔

𝜇
𝜈
+ (𝑝𝑟 − 𝑝𝑡)𝜒𝜈𝜒𝜇

]
(2)

where the symbols have their usual meanings.

For the space-time (1), the field equations reduces to

1 − 𝑒−𝜆

𝑟2
+ 𝑒−𝜆𝜆′

𝑟
= 8𝜋𝜌 (3)

𝑒−𝜆 − 1 + 𝑒−𝜆𝜈′ = 8𝜋𝑝𝑟 (4)

𝑟2 𝑟

2

𝑒−𝜆
(
𝜈′′

2
+ 𝜈′ 2

4
− 𝜈′𝜆′

4
+ 𝜈′ − 𝜆′

2𝑟

)
= 8𝜋𝑝𝑡. (5)

We have also defined that the measure of anisotropy Δ = 8𝜋(𝑝𝑡 − 𝑝𝑟).
If the space-time (1) satisfies the Karmarkar [44]

𝑅1414𝑅2323 =𝑅1212𝑅3434 +𝑅1224𝑅1334. (6)

then the two metric functions 𝜈(𝑟) and 𝜆(𝑟) can be link via

𝜆′𝜈′

1 − 𝑒𝜆
= 𝜆′𝜈′ − 2𝜈′′ − 𝜈′ 2. (7)

This kind of solutions of Einstein’s field equations are referred as “em-

bedding class one” i.e. they can be embedded in five dimensional 
pseudo-Euclidean space. However, the Pandey and Sharma condition 
[45] is needed to satisfy for a class one solution i.e. 𝑅2323 ≠ 0.

On integration (7) we get

𝑒𝜈 =
(
𝐴+𝐵 ∫

√
𝑒𝜆 − 1 𝑑𝑟

)2
(8)

where 𝐴 and 𝐵 are constants of integration.

By using (8) we can express the anisotropy as [46] as

Δ= 𝜈′

4𝑒𝜆

[
2
𝑟
− 𝜆′

𝑒𝜆 − 1

] [
𝜈′𝑒𝜈

2𝑟𝐵2 − 1
]
. (9)

For isotropic case Δ = 0 and there are three possible solutions when

(a) 𝜈′ = 0 ; (b)
2
𝑟
− 𝜆′

𝑒𝜆 − 1
= 0 ; (c)

𝜈′𝑒𝜈

2𝑟𝐵2 − 1 = 0. (10)

The solution [47] (a) leads to 𝑒𝜈 = 𝐶 and 𝑒𝜆 = 1 and therefore a con-

figuration with zero density is obtained, hence, not a physical solution. 
The solution of (b) yields the well known Schwarzschild interior solu-

tion. Again this solution is not physical as the density is constant leading 
to un-physical velocity of sound, adiabatic index etc. The last solution 
from (c) is also the well celebrated Kohler-Chao solution. This solu-

tion is only physical for cosmological model as the pressure vanishes at 
𝑟 →∞.

3. Calculations

To construct the model, we have assumed the generalized metric 
function [48] along 𝑔𝑟𝑟 as

𝑒𝜆 = 1 + 𝑎𝑟2(1 + 𝑏𝑟𝑛)𝑚 (11)

where 𝑎 and 𝑏 are parameters related to central pressure and density, 
when 𝑛 and 𝑚 are kept as tuning parameters. On integrating (8) we get

𝑒𝜈 =
(
𝐴+ 1

2
√
𝑎𝐵𝑟2𝑓 (𝑟)

)2
(12)

where 𝑓 (𝑟) = 2𝐹1

[
−𝑚

2 ,
2
𝑛
; 𝑛+2

𝑛
;−𝑏𝑟𝑛

]
. The behavior for metric functions 

are shown in Fig. 1.

Now we can find the density, radial and transverse pressure as

8𝜋𝜌(𝑟) = 𝑎 (𝑏𝑟𝑛 + 1)𝑚−1[
𝑎𝑟2 (𝑏𝑟𝑛 + 1)𝑚 + 1

]2 [𝑎𝑟2 (𝑏𝑟𝑛 + 1)𝑚 + 𝑏𝑟𝑛

{
𝑎𝑟2 (𝑏𝑟𝑛 + 1)𝑚 +𝑚𝑛+ 3

}
+ 3

]
(13)

8𝜋𝑝𝑟(𝑟) =
√
𝑎 (𝑏𝑟𝑛 + 1)𝑚

𝑎𝑟2 (𝑏𝑟𝑛 + 1)𝑚 + 1

[
4𝐵 − 2𝐴

√
𝑎 (𝑏𝑟𝑛 + 1)𝑚

−𝑎𝐵𝑟2 (𝑏𝑟𝑛 + 1)𝑚∕2 𝑓 (𝑟)
][
𝐵𝑟𝑓 (𝑟)√

𝑎𝑟2 (𝑏𝑟𝑛 + 1)𝑚 + 2𝐴 (𝑏𝑟𝑛 + 1)𝑚∕2
]−1

(14)

Δ=
2𝑎𝑟2 (𝑏𝑟𝑛 + 1)𝑚 − 𝑏𝑟𝑛

[
𝑚𝑛− 2𝑎𝑟2 (𝑏𝑟𝑛 + 1)𝑚

]
2𝑟 (𝑏𝑟𝑛 + 1)1−

𝑚

2
[
𝑎𝑟2 (𝑏𝑟𝑛 + 1)𝑚 + 1

]2[
2𝑎𝐴𝑟 (𝑏𝑟𝑛 + 1)𝑚 +𝐵𝑓 (𝑟) (𝑏𝑟𝑛 + 1)−

𝑚

2
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Fig. 1. Variation of metric functions with 𝑟 for PSR J1614-2230 assuming 𝑀 =
1.97𝑀⊙, 𝑅 = 9.69 km and 𝑏 = 0.01𝑛−1 in the range 3.3 < 𝑛 < 5.

Fig. 2. Variation of density with 𝑟 for PSR J1614-2230 assuming 𝑀 =
1.97𝑀⊙, 𝑅 = 9.69 km and 𝑏 = 0.01𝑛−1 in the range 3.3 < 𝑛 < 5.

Fig. 3. Variation of pressures with 𝑟 for PSR J1614-2230 assuming 𝑀 =
1.97𝑀⊙, 𝑅 = 9.69 km and 𝑏 = 0.01𝑛−1 in the range 3.3 < 𝑛 < 5.

{
𝑎𝑟2 (𝑏𝑟𝑛 + 1)𝑚

}3∕2 − 2𝐵
√
𝑎𝑟2 (𝑏𝑟𝑛 + 1)𝑚

]
[
𝐵𝑟𝑓 (𝑟)

√
𝑎𝑟2 (𝑏𝑟𝑛 + 1)𝑚 + (𝑏𝑟𝑛 + 1)𝑚∕2 2𝐴

]−1
(15)

8𝜋𝑝𝑡(𝑟) = 8𝜋𝑝𝑟 +Δ. (16)

The trends of the above physical quantities are given in Figs. 2, 3 and 4.

The mass, compactness parameter, equation of state parameter 
(EOSP) and red-shift can be determined as

𝜇(𝑟) = 4𝜋 ∫ 𝑟2𝜌 𝑑𝑟 = 𝑎𝑟3 (𝑏𝑟𝑛 + 1)𝑚

2𝑎𝑟2 (𝑏𝑟𝑛 + 1)𝑚 + 2
(17)

𝑢(𝑟) = 2𝜇(𝑟)
𝑟

= 𝑎𝑟2 (𝑏𝑟𝑛 + 1)𝑚

𝑎𝑟2 (𝑏𝑟𝑛 + 1)𝑚 + 1
(18)

𝜔𝑟 =
𝑝𝑟

𝜌
; 𝜔𝑡 =

𝑝𝑡

𝜌
(19)

𝑧(𝑟) = 𝑒−𝜈∕2 − 1. (20)
3

Fig. 4. Variation of anisotropy with 𝑟 for PSR J1614-2230 assuming 𝑀 =
1.97𝑀⊙, 𝑅 = 9.69 km and 𝑏 = 0.01𝑛−1 in the range 3.3 < 𝑛 < 5.

Fig. 5. Variation of equation of state parameters with 𝑟 for PSR J1614-2230 
assuming 𝑀 = 1.97𝑀⊙, 𝑅 = 9.69 km and 𝑏 = 0.01𝑛−1 in the range 3.3 < 𝑛 < 5.

Fig. 6. Variation of red-shift with 𝑟 for PSR J1614-2230 assuming 𝑀 =
1.97𝑀⊙, 𝑅 = 9.69 km and 𝑏 = 0.01𝑛−1 in the range 3.3 < 𝑛 < 5.

For a realistic equation of state, the equation state parameters must be 
less than unity. The nature of EOSP and red-shift are shown in Figs. 5

and 6.

4. Analysis

For a physical solution, the central values of density, pressure etc. 
must be finite. The central density and pressure can be found as

𝜌𝑐 = 3𝑎 > 0, (21)

𝑝𝑟𝑐 = 𝑝𝑡𝑐 =

√
𝑎

(
2𝐵 −

√
𝑎𝐴

)
𝐴

> 0. (22)

The Zeldovich’s criterion i.e. 𝑝𝑟𝑐∕𝜌𝑐 ≤ 1 is also needed so that a solu-

tion can represent physical matters. For the solution it is given as

𝑝𝑟𝑐

𝜌
=

2𝐵 −
√
𝑎𝐴√ ≤ 1. (23)
𝑐 3 𝑎𝐴
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Fig. 7. Variation of energy conditions with 𝑟 for PSR J1614-2230 assuming 
𝑀 = 1.97𝑀⊙, 𝑅 = 9.69 km and 𝑏 = 0.01𝑛−1 in the range 3.3 < 𝑛 < 5.

A constraint arises on 𝐵∕𝐴 due to (22) and (23) as√
2
𝑎

<
𝐵

𝐴
≤ 2

√
𝑎. (24)

Assuming the exterior spacetime to be Schwarzschild’s which is given 
as

𝑑𝑠2 =
(
1 − 2𝜇

𝑟

)
𝑑𝑡2 −

(
1 − 2𝜇

𝑟

)−1
𝑑𝑟2

−𝑟2
(
𝑑𝜃2 + sin2 𝜃𝑑𝜙2). (25)

The continuity of the metric coefficients at the boundary 𝑟 =𝑅 yields

1 − 2𝑀
𝑅

= 𝑒𝜈𝑠 = 𝑒−𝜆𝑠 (26)

𝑝𝑟(𝑟 =𝑅) = 0 (27)

that leads to

𝑎 = 2𝑀 (𝑏𝑅𝑛 + 1)−𝑚

𝑅2(𝑅− 2𝑀)
(28)

𝐴 =
√

1 − 2𝑀
𝑅

− 1
2
√
𝑎𝐵𝑅2𝑓 (𝑅) (29)

𝐵 = 1
2
√
𝑎 (𝑏𝑅𝑛 + 1)𝑚

√
1 − 2𝑀

𝑅
. (30)

The parameters 𝑀 and 𝑅 are mass and radius of the chosen compact 
star while 𝑏 is kept as free parameter.

Satisfaction of energy conditions is needed for all physically possible 
matters. The energy conditions are null energy condition (NEC), domi-

nant energy condition (DEC), strong energy condition (SEC) and weak 
energy condition (WEC). These are represented as below:

WEC ∶ 𝑇𝜇𝜈𝑡𝜇𝑡𝜈 ≥ 0 or 𝜌 ≥ 0, 𝜌− 𝑝𝑖 ≥ 0 (31)

NEC ∶ 𝑇𝜇𝜈𝑙𝜇𝑙𝜈 ≥ 0 or 𝜌− 𝑝𝑖 ≥ 0 (32)

DEC ∶ 𝑇𝜇𝜈𝑡𝜇𝑡𝜈 ≥ 0 or 𝜌 ≥ |𝑝𝑖| (33)

where 𝑇 𝜇𝜈𝑡𝜇 ∈ nonspace-like vector

SEC ∶ 𝑇𝜇𝜈𝑡𝜇𝑡𝜈 −
1
2
𝑇 𝜆
𝜆
𝑡𝜎𝑡𝜎 ≥ 0 or 𝜌−

∑
𝑖

𝑝𝑖 ≥ 0, (34)

where 𝑖 ≡ (𝑟𝑎𝑑𝑖𝑎𝑙 𝑟, 𝑡𝑟𝑎𝑛𝑠𝑣𝑒𝑟𝑠𝑒 𝑡), 𝑡𝜇 and 𝑙𝜇 are time-like vector and null 
vector respectively. Fig. 7 verify the satisfaction of energy conditions.

The generalized Tolman-Oppenheimer-Volkoff (TOV) equation de-

termine whether a relativistic stellar system is in equilibrium or not. 
Mathematically, it is given by

−
𝑀𝑔(𝑟)(𝜌+ 𝑝𝑟)

𝑟
𝑒(𝜈−𝜆)∕2 −

𝑑𝑝𝑟

𝑑𝑟
+ 2
𝑟
(𝑝𝑡 − 𝑝𝑟) = 0, (35)

where 𝑀𝑔(𝑟) is the gravitational mass and is calculated using the 
Tolman-Whittaker formula and the Einstein field equations. The expres-

sion is given as
4

Fig. 8. Variation of various forces with 𝑟 for PSR J1614-2230 assuming 𝑀 =
1.97𝑀⊙, 𝑅 = 9.69 km and 𝑏 = 0.01𝑛−1 in the range 3.3 < 𝑛 < 5.

Fig. 9. Variation of sound speeds with 𝑟 for PSR J1614-2230 assuming 𝑀 =
1.97𝑀⊙, 𝑅 = 9.69 km and 𝑏 = 0.01𝑛−1 in the range 3.3 < 𝑛 < 5.

𝑀𝑔(𝑟) = 4𝜋

𝑟

∫
0

(
𝑇 𝑡
𝑡
− 𝑇 𝑟

𝑟
− 𝑇 𝜃

𝜃
− 𝑇

𝜙

𝜙

)
𝑟2𝑒(𝜈+𝜆)∕2𝑑𝑟. (36)

For the Eqs. (3)-(5), the above Eq. (36) reduced to

𝑀𝑔(𝑟) =
1
2
𝑟𝑒(𝜆−𝜈)∕2 𝜈′. (37)

On using the expression of 𝑀𝑔(𝑟) in (35), we get

− 𝜈
′

2
(𝜌+ 𝑝𝑟) −

𝑑𝑝𝑟

𝑑𝑟
+ 2
𝑟
(𝑝𝑡 − 𝑝𝑟) = 0 (38)

which as also be written as

𝐹𝑔 + 𝐹ℎ + 𝐹𝑎 = 0, (39)

where 𝐹𝑔, 𝐹ℎ and 𝐹𝑎 are the gravitational, hydrostatics and anisotropic 
forces respectively i.e.

𝐹𝑔 = − 𝜈
′

2
(𝜌+ 𝑝𝑟) (40)

𝐹ℎ = −
𝑑𝑝𝑟

𝑑𝑟
(41)

𝐹𝑎 =
2Δ
𝑟
. (42)

Fig. 8 easily convinced that the solution is in equilibrium.

Since the general relativity obeyed the causation solution i.e. the 
sound velocity must be subliminal which is also linked with stability of 
the system. The radial velocity (𝑣2

𝑟
) and transverse velocity (𝑣2

𝑡
) of sound 

are determined as

𝑣2
𝑟
=
𝑑𝑝𝑟

𝑑𝜌
, 𝑣2

𝑡
=
𝑑𝑝𝑡

𝑑𝜌
. (43)

Fig. 9 verify the subliminal sound speed at the interior. The solution 
also satisfy the Abreu’s stability criterion [49] i.e. 0 ≤ |𝑣2

𝑡
− 𝑣2

𝑟
| ≤ 1 (see 

Fig. 10).
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Fig. 10. Variation of stability factor with 𝑟 for PSR J1614-2230 assuming 𝑀 =
1.97𝑀⊙, 𝑅 = 9.69 km and 𝑏 = 0.01𝑛−1 in the range 3.3 < 𝑛 < 5.

Fig. 11. Variation of stability factor with 𝑟 for PSR J1614-2230 assuming 𝑀 =
1.97𝑀⊙, 𝑅 = 9.69 km and 𝑏 = 0.01𝑛−1 in the range 3.3 < 𝑛 < 5.

The adiabatic index for an anisotropic fluid distribution is defined 
as [50],

Γ𝑟 =
𝜌+ 𝑝𝑟

𝑝𝑟

𝑑𝑝𝑟

𝑑𝜌
. (44)

The Bondi condition [51] Γ𝑟 > 4∕3 gives a stable Newtonian system 
whereas Γ = 4∕3 being the condition for a neutral equilibrium. This con-

dition is partially valid for anisotropic case since it depends on nature 
of anisotropy. This condition modifies to [50],

Γ > 4
3
+

[
4
3
(𝑝𝑡𝑖 − 𝑝𝑟𝑖)|𝑝′

𝑟𝑖
|𝑟 + 8𝜋

3
𝜌𝑖𝑝𝑟𝑖|𝑝′
𝑟𝑖
| 𝑟
]
𝑚𝑎𝑥

, (45)

where, 𝑝𝑟𝑖, 𝑝𝑡𝑖, and 𝜌𝑖 are the initial radial, tangential pressures and en-

ergy density in static equilibrium. Within the square bracket, first term 
given the anisotropic modification and last term is relativistic correction 
Γ [50, 52]. If the anisotropy is positive, then a system with Γ𝑟 > 4∕3 may 
not be in stable and vice versa. For this solution the adiabatic index is 
more than 4/3 including the extra correcting terms (see Fig. 11) and 
therefore stable.

The stability analysis proposed by Harrison et al. [53] and Zeldovich-

Novikov [54] are much simpler than the Chandrasekhar’s method. 
The static stability criterion states that any stellar system are in sta-

ble configuration only if the mass increasing with central density i.e. 
𝑑𝜇∕𝑑𝜌𝑐 > 0 and unstable if 𝑑𝜇∕𝑑𝜌𝑐 < 0.

For the solution the mass as a function of central density is given 
below:

𝜇(𝜌𝑐 ) =
4𝜋𝜌𝑐𝑅3 (𝑏𝑅𝑛 + 1)𝑚

8𝜋𝜌𝑐𝑅2 (𝑏𝑅𝑛 + 1)𝑚 + 3
(46)

𝜕𝜇(𝜌𝑐 )
𝜕𝜌𝑐

= 12𝜋𝑅3 (𝑏𝑅𝑛 + 1)𝑚[
8𝜋𝜌𝑐𝑅2 (𝑏𝑅𝑛 + 1)𝑚 + 3

]2 > 0 (47)

This solution also fulfilled the static stability criterion (see Fig. 12).
5

Fig. 12. Variation of stability factor with 𝑟 for PSR J1614-2230 assuming 𝑀 =
1.97𝑀⊙, 𝑅 = 9.69 km and 𝑏 = 0.01𝑛−1 in the range 3.3 < 𝑛 < 5.

Fig. 13. Variation of mass with 𝑅 assuming 𝑎 = 0.004 and 𝑏 = 0.01𝑛−1 for the 
range 3.3 < 𝑛 < 5.

Fig. 14. Variation of radius with 𝜌𝑐 assuming 𝑏 = 0.01𝑛−1 for the range 3.3 <
𝑛 < 5.

5. Discussion & conclusion

We have explored a generalized class one solution satisfying 
field equations which can be embedded in five dimensional pseudo-

Euclidean space. The solution is analyzed rigorously through various 
physical constraints and shows physically possible only for 3.3 ≤ 𝑛 ≤ 5
and 6.6 ≤ 𝑚 ≤ 10. Any solutions outside these ranges either violates 
of the causality condition or un-physical sound speed. This solution 
within the above mentioned range satisfy causality condition, equi-

librium (TOV-equation), static and stable (stable static criterion). The 
maximum mass yield from the solution depends on the parameter 𝑛. 
For 𝑛 = 3.3 can attain 𝑀𝑚𝑎𝑥 = 1.459𝑀⊙ with 𝑅𝑚𝑎𝑥 = 9.52 km and 𝑛 = 4.8
gives 𝑀𝑚𝑎𝑥 = 1.766𝑀⊙ with 𝑅𝑚𝑎𝑥 = 10.31 km, Figs. 13 and 14. This im-

plies that the equation of state is slightly stiff for 𝑛 = 4.8 as compare 
to 𝑛 = 3.3 since the adiabatic index is slightly higher in the first case. 
Again, from the behavior of sound speed (Fig. 9) it can be seen that 
for 𝑛 = 4.8 the radial sound speed 𝑣𝑟 is almost constant at about 0.33 
equivalent similar to constant sound speed in MIT-bag model. This may 
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Table 1

Variation of central density, central pressure and surface density with parameter 
𝑛 choosing 𝑚 = 2𝑛.

𝑛 𝜌𝑐
(×1014 g/cc)

𝑝𝑟𝑐
(×1034 dyne/cm2)

𝜌𝑠
(×1014 g/cc)

3.3 8.766 9.766 6.372

3.6 10.002 8.802 5.858

3.9 10.076 8.148 5.537

4.2 11.203 7.754 5.343

4.5 11.448 7.530 5.228

4.8 11.582 7.407 5.162

5.0 11.634 7.358 5.134

signify that the equation of state for 𝑛 = 4.8 is similar with MIT-bag 
model i.e. the compact star is more likely composed of quarks. It can 
also observe that as the parameter 𝑛 increases the central density in-

creases however the central pressure and surface density decreases (see

Table 1).

It may be noted that there are three simplest approaches while solv-

ing field equations where the metric functions are link via a bridge 
equation. The first method is the embedding class problem where the 
bridge equation is Karmarkar condition i.e.

𝑒𝜈 =
(
𝐴+𝐵 ∫

√
𝑒𝜆 − 1 𝑑𝑟

)2
. (48)

Second method is based on conformally flat geometry adopted by 
Ivanov [55] where the bridge equation is

𝑒𝜈 = 𝐶2
1 𝑟

2 cosh2
(
∫

𝑒𝜆∕2𝑑𝑟

𝑟
+𝐶

)
(49)

where 𝐶1 and 𝐶 are constants of integration. This method yields a crit-

ical failure in finding the variation of red-shift at the interior especially 
at 𝑟 = 0. The third method is using conformal killing vector. Here the 
bridge equation is [56, 57, 58, 59]

𝑒𝜈 = 𝑐2𝑟2 exp
(
−2𝑘
𝐵 ∫

𝑒𝜆∕2

𝑟
𝑑𝑟

)
(50)

where 𝐴, 𝐵, 𝐶 and 𝑘 are constants. We can see that the second and third 
method are very much similar except one is with cosh2 and other with 
exponential function. Again, the third method have the similar problem 
in finding central red-shift. However, the first method i.e. the class one 
category always yield physically possible solutions and used by many 
authors (see refs. in sec. 1) provided the solution must incorporate ei-

ther anisotropy or charge or both. The property of class one space-time 
is that the four dimensional space-time is embedded in five dimensional 
pseudo-Euclidean hyperspace. In other words, a curved four dimen-

sional space-time behaves as flat space in five dimensions. This method 
simplifies to solve the field equations which can be obtained physically 
inspired solutions.

Declarations

Funding statement

Farook Rahaman was supported by DST-SERB (EMR/2016/000193), 
Govt. of India.

Author contribution statement

Ksh. Newton Singh: Analyzed and interpreted the data; Contributed 
analysis tools or data; Wrote the paper.

Piyali Bhar: Conceived and designed the analysis.

Modhuchandra Laishram: Contributed analysis tools or data.

Farook Rahaman: Analyzed and interpreted the data.

Competing interest statement

Additional information

No additional information is available for this paper.

Acknowledgements

FR and PB would like to thank the authorities of the Inter-University 
Centre for Astronomy and Astrophysics, Pune, India for providing re-

search facilities. We are grateful to the referee for his valuable com-

ments.

References

[1] K. Schwarzschild, Sitzungsber. Deut. Akad. Wiss. Berlin, Kl. Math. Phys. 24 (1916) 
424.

[2] R.C. Tolman, Phys. Rev. 55 (1939) 364.

[3] M.K. Gokhroo, A.L. Mehra, Gen. Relativ. Gravit. 26 (1994) 75.

[4] R. Ruderman, Rev. Astron. Astrophys. 10 (1972) 427.

[5] V. Canuto, Annu. Rev. Astron. Astrophys. 12 (1974) 167.

[6] S.D. Maharaj, R. Maartens, Gen. Relativ. Gravit. 21 (1989) 899.

[7] R. Kippenhahm, A. Weigert, Stellar Structure and Evolution, Springer, Berlin, 1990.

[8] A.I. Sokolov, Zh. Eksp. Teor. Fiz. 79 (1980) 1137.

[9] J. Binney, J.S. Tremaine, Galactic Dynamics, Princeton University Press, Princeton, 
NJ, 1987.

[10] F. Weber, Pulsars as Astrophysical Observatories for Nuclear and Particle Physics, 
IOP Publishing, Bristol, 1999.

[11] L. Herrera, N.O. Santos, Astrophys. J. 438 (1995) 308.

[12] P. Letelier, Phys. Rev. D 22 (1980) 807.

[13] P. Bhar, K.N. Singh, T. Manna, Astrophys. Space Sci. 361 (2016) 284.

[14] P. Bhar, B.S. Ratanpal, Astrophys. Space Sci. 361 (2016) 217.

[15] R. Sharma, B.S. Ratanpal, Int. J. Mod. Phys. D 22 (2013) 1350074.

[16] P. Bhar, Astrophys. Space Sci. 359 (2015) 41.

[17] P. Bhar, M.H. Murad, Astrophys. Space Sci. 361 (2016) 334.

[18] P. Bhar, K.N. Singh, N. Pant, Astrophys. Space Sci. 361 (2016) 343.

[19] P. Bhar, K.N. Singh, N. Pant, Indian J. Phys. 91 (2017) 701.

[20] S.D. Maharaj, J.M. Sunzu, S. Ray, Eur. Phys. J. Plus 129 (2014) 3.

[21] S.D. Maharaj, P.M. Takisa, Gen. Relativ. Gravit. 44 (2012) 1419.

[22] M.K. Mak, P.N. Dobson, T. Harko, Int. J. Mod. Phys. D 11 (2002) 207.

[23] M. Nauenberg, G. Chapline, Astrophys. J. 179 (1973) 277.

[24] C. Rhodes, R. Ruffini, Phys. Rev. 32 (1974) 324.

[25] J.B. Hartle, Phys. Rep. 46 (1978) 6.

[26] L. Herrera, J. Ospino, A.D. Prisco, Phys. Rev. D 77 (2008) 027502.

[27] K.N. Singh, N. Pant, Eur. Phys. J. C 76 (2016) 524.

[28] K.N. Singh, N. Pant, M. Govender, Chin. Phys. C 41 (2017) 015103.

[29] K.N. Singh, N. Pant, Astrophys. Space Sci. 361 (2016) 177.

[30] P. Bhar, K.N. Singh, N. Sarkar, F. Rahaman, Eur. Phys. J. C 77 (2017) 596.

[31] P. Bhar, Eur. Phys. J. Plus 132 (2017) 274.

[32] P. Bhar, M. Govender, Int. J. Mod. Phys. D 26 (2017) 1750053.

[33] S.K. Maurya, M. Govender, Eur. Phys. J. C 77 (2017) 347.

[34] S.K. Maurya, Y.K. Gupta, T.T. Smitha, F. Rahaman, Eur. Phys. J. A 52 (2016) 191.

[35] S.K. Maurya, B.S. Ratanpal, M. Govender, Ann. Phys. 382 (2017) 36.

[36] S.K. Maurya, M. Govender, Eur. Phys. J. C 77 (2017) 420.

[37] S.K. Maurya, A. Banerjee, S. Hansraj, Phys. Rev. D 97 (2018) 044022.

[38] M. Mirzazadeh, Z. Ayati, Alex. Eng. J. 55 (2016) 1619.

[39] M.S. Osman, et al., Chin. J. Phys. 56 (2018) 2500.

[40] A. Biswas, et al., Optik, Int. J. Light Electron Opt. 125 (2014) 4215.

[41] A. Nazarzadeh, et al., Pramana 81 (2013) 225.

[42] M. Mirzazadeh, et al., Optik, Int. J. Light Electron Opt. 125 (2014) 6874.

[43] A. Biswas, et al., Optik 127 (2016) 7250.

[44] K.R. Karmarkar, Proc. Indian Acad. Sci. 27 (1948) 56.

[45] S.N. Pandey, S.P. Sharma, Gen. Relativ. Gravit. 14 (1981) 113.

[46] S.K. Maurya, Y.K. Gupta, S. Ray, S.R. Chowdhury, arXiv :1506 .02498 [gr -qc].

[47] K.N. Singh, N. Pant, M. Govender, Eur. Phys. J. C 77 (2017) 100.

[48] P. Fuloria, Eur. Phys. J. A 54 (2018) 179.

[49] H. Abreu, H. Hernandez, L.A. Nunez, Class. Quantum Gravity 24 (2007) 4631.

[50] R. Chan, L. Herrera, N.O. Santos, Mon. Not. R. Astron. Soc. 265 (1993) 533.

[51] H. Bondi, Proc. R. Soc. Lond. A 281 (1964) 39.

[52] L. Herrera, Phys. Lett. A 165 (1992) 206.

[53] B.K. Harrison, K.S. Thorne, M. Wakano, J.A. Wheeler, Gravitational Theory and 
Gravitational Collapse, University of Chicago Press, 1965.

[54] Ya.B. Zeldovich, I.D. Novikov, Relativistic Astrophysics Stars and Relativity, vol. 1, 
University of Chicago Press, 1971.

[55] B.V. Ivanov, Eur. Phys. J. C 78 (2018) 332.

[56] L. Herrera, J. Jimenez, L. Leal, J. Ponce de Leon, J. Math. Phys. 25 (1984) 3274.

[57] L. Herrera, J. Ponce de Leon, J. Math. Phys. 26 (1985) 2302.

[58] K.N. Singh, P. Bhar, F. Rahaman, N. Pant, J. Phys. Commun. 2 (2018) 015002.

[59] F. Rahaman, S.D. Maharaj, I.H. Sardar, K. Chakraborty, Mod. Phys. Lett. A 32 (2017) 
1750053.
The authors declare no conflict of interest.
6

http://refhub.elsevier.com/S2405-8440(19)32580-0/bibC340F4803161A481703D1C8BF74156EEs1
http://refhub.elsevier.com/S2405-8440(19)32580-0/bibC340F4803161A481703D1C8BF74156EEs1
http://refhub.elsevier.com/S2405-8440(19)32580-0/bibD35B2FFAF8824E19AC057EC11CFADA77s1
http://refhub.elsevier.com/S2405-8440(19)32580-0/bib92073D2FE26E543CE222CC0FB0B7D7A0s1
http://refhub.elsevier.com/S2405-8440(19)32580-0/bib6A45059D8546FEB3343506218BB98C4Bs1
http://refhub.elsevier.com/S2405-8440(19)32580-0/bib2C61EBFF5A7F675451467527DF66788Ds1
http://refhub.elsevier.com/S2405-8440(19)32580-0/bib06E3E081E1AA695794835CDD6A62EA1Es1
http://refhub.elsevier.com/S2405-8440(19)32580-0/bib5BD15CA24CEE57242A9B28B79481DA6Ds1
http://refhub.elsevier.com/S2405-8440(19)32580-0/bibFC9FDF084E290F26A270390DC49061A2s1
http://refhub.elsevier.com/S2405-8440(19)32580-0/bibED7EC3590A0F46910250AEA6C2068313s1
http://refhub.elsevier.com/S2405-8440(19)32580-0/bibED7EC3590A0F46910250AEA6C2068313s1
http://refhub.elsevier.com/S2405-8440(19)32580-0/bib18CAE25193D97DED00459C08542B57D7s1
http://refhub.elsevier.com/S2405-8440(19)32580-0/bib18CAE25193D97DED00459C08542B57D7s1
http://refhub.elsevier.com/S2405-8440(19)32580-0/bib9F5A44A734AC9E43B5968D0F3B71D69Bs1
http://refhub.elsevier.com/S2405-8440(19)32580-0/bib4FF1482F4B7B01D2A9789A46123469D4s1
http://refhub.elsevier.com/S2405-8440(19)32580-0/bibCF3FC916339B02AD9C14ACA2425CCF53s1
http://refhub.elsevier.com/S2405-8440(19)32580-0/bib9B7A6D7664C13961F6A0D346F74B9F5Fs1
http://refhub.elsevier.com/S2405-8440(19)32580-0/bib2D9EED3F34645E363BC9F098E70AC568s1
http://refhub.elsevier.com/S2405-8440(19)32580-0/bibD12912DC10168D6D12E4210FE021D490s1
http://refhub.elsevier.com/S2405-8440(19)32580-0/bibC8D40AD88ED22098C2489B7F3FE154E8s1
http://refhub.elsevier.com/S2405-8440(19)32580-0/bibD0C1D8F22A05ACFDD7F660A58EBEE235s1
http://refhub.elsevier.com/S2405-8440(19)32580-0/bibFA4EFBE1E3E3C842078674074020ED43s1
http://refhub.elsevier.com/S2405-8440(19)32580-0/bibE294286F0F16852B3014A4D80C6091E0s1
http://refhub.elsevier.com/S2405-8440(19)32580-0/bibA61A1DF8619C1394734D78BBC23AA2F5s1
http://refhub.elsevier.com/S2405-8440(19)32580-0/bib9C3280CC9557712AA6900443E4B92E57s1
http://refhub.elsevier.com/S2405-8440(19)32580-0/bib4D118FD4CE53D84B80A065ED1F020727s1
http://refhub.elsevier.com/S2405-8440(19)32580-0/bib843A28DFDC5B2D5463BA2A7B83FDEC7Cs1
http://refhub.elsevier.com/S2405-8440(19)32580-0/bib7EFD1210B31B96D372A4D1975A6941F2s1
http://refhub.elsevier.com/S2405-8440(19)32580-0/bibF58561FB53735B58EE5FE0FE6D3CFE24s1
http://refhub.elsevier.com/S2405-8440(19)32580-0/bibCB2ABDE5A8B3091333E261237603E095s1
http://refhub.elsevier.com/S2405-8440(19)32580-0/bib3F538A3C75F1C564ACC0270AEC2BCD13s1
http://refhub.elsevier.com/S2405-8440(19)32580-0/bib286F32E353FFD1668DDE127E2C5C0E27s1
http://refhub.elsevier.com/S2405-8440(19)32580-0/bib837841ED51B55101B06EEA4BEEC19542s1
http://refhub.elsevier.com/S2405-8440(19)32580-0/bib9462D16368E67D52BEF6D103CBB70D40s1
http://refhub.elsevier.com/S2405-8440(19)32580-0/bib0CFBEBDE1C66CC99982E9BC7FFB2ADD1s1
http://refhub.elsevier.com/S2405-8440(19)32580-0/bibBA18644AA69999BB00BF4982E9E0C248s1
http://refhub.elsevier.com/S2405-8440(19)32580-0/bibC1D3426C83D1684F7CA04FA6A1B3CE2As1
http://refhub.elsevier.com/S2405-8440(19)32580-0/bibF5A8F76CB6948EC0103B42FC8325EA06s1
http://refhub.elsevier.com/S2405-8440(19)32580-0/bib02369B1D3CDC7F96920795E94F332FB4s1
http://refhub.elsevier.com/S2405-8440(19)32580-0/bibE1521A46D535F1B349FC7B6172C00F57s1
http://refhub.elsevier.com/S2405-8440(19)32580-0/bib807950EF1729D80DE34690D9DDF956C3s1
http://refhub.elsevier.com/S2405-8440(19)32580-0/bib000D2B2EC73E2EA01215C1D018A22C21s1
http://refhub.elsevier.com/S2405-8440(19)32580-0/bibED267167900B09FB0C53F2694C8E22BDs1
http://refhub.elsevier.com/S2405-8440(19)32580-0/bibAAD230FF1D5FFCE881DCA14E4F7C798Fs1
http://refhub.elsevier.com/S2405-8440(19)32580-0/bibFBEBD027F099AF768C1B2B7B5703D727s1
http://refhub.elsevier.com/S2405-8440(19)32580-0/bibB88D5F7EE7FC455350FEFEDD7EBB2BAAs1
http://refhub.elsevier.com/S2405-8440(19)32580-0/bib24E09CBC9EC6870F87D5EDA543B20B5Cs1
http://refhub.elsevier.com/S2405-8440(19)32580-0/bib6FED58DA09A666E81349AD74E8202F91s1
http://refhub.elsevier.com/S2405-8440(19)32580-0/bib3ECB1CFA5565BE4D09612B8B3D9F3D6As1
http://refhub.elsevier.com/S2405-8440(19)32580-0/bibEDC2588F00CCCBC8EC176012564D6378s1
http://refhub.elsevier.com/S2405-8440(19)32580-0/bib7E1E91156F7C4E1BD0831CF008AD5FDFs1
http://refhub.elsevier.com/S2405-8440(19)32580-0/bib20C206DD84F29FB53AC4AF72F5DA7871s1
http://refhub.elsevier.com/S2405-8440(19)32580-0/bib08EF847DD805DCBF806DE43749E84634s1
http://refhub.elsevier.com/S2405-8440(19)32580-0/bib733BF454E6A20095F490563459D51042s1
http://refhub.elsevier.com/S2405-8440(19)32580-0/bib2B43A3BBA7550352FE98F5463DA8592Ds1
http://refhub.elsevier.com/S2405-8440(19)32580-0/bib4143E3DD1B0C2D2F8EC8E8B2571C2CEAs1
http://refhub.elsevier.com/S2405-8440(19)32580-0/bib4143E3DD1B0C2D2F8EC8E8B2571C2CEAs1
http://refhub.elsevier.com/S2405-8440(19)32580-0/bib4B9F88F617C9CFAEE2252FF98D1718BBs1
http://refhub.elsevier.com/S2405-8440(19)32580-0/bib4B9F88F617C9CFAEE2252FF98D1718BBs1
http://refhub.elsevier.com/S2405-8440(19)32580-0/bib1858B78054F5328781AB9C1B3D30B6D3s1
http://refhub.elsevier.com/S2405-8440(19)32580-0/bibFC1576ED78F146F5D496288D017B631As1
http://refhub.elsevier.com/S2405-8440(19)32580-0/bib48BEA1D9A6272DEE0EFA2AA0B16506A2s1
http://refhub.elsevier.com/S2405-8440(19)32580-0/bib248A02F523610B43B9C5917F184A518Es1
http://refhub.elsevier.com/S2405-8440(19)32580-0/bib1AA304151C024D2ADA8C067C052E51EBs1
http://refhub.elsevier.com/S2405-8440(19)32580-0/bib1AA304151C024D2ADA8C067C052E51EBs1

	A generalized class one static solution
	1 Introduction
	2 Theory
	3 Calculations
	4 Analysis
	5 Discussion & conclusion
	Declarations
	Funding statement
	Author contribution statement
	Competing interest statement
	Additional information

	Acknowledgements
	References


