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In functional MRI (fMRI), population receptive field (pRF) models allow a quantitative
description of the response as a function of the features of the stimuli that are relevant
for each voxel. The most popular pRF model used in fMRI assumes a Gaussian shape in
the features space (e.g., the visual field) reducing the description of the voxel’s pRF to the
Gaussian mean (the pRF preferred feature) and standard deviation (the pRF size). The
estimation of the pRF mean has been proven to be highly reliable. However, the estimate
of the pRF size has been shown not to be consistent within and between subjects.
While this issue has been noted experimentally, here we use an optimization theory
perspective to describe how the inconsistency in estimating the pRF size is linked to an
inherent property of the Gaussian pRF model. When fitting such models, the goodness
of fit is less sensitive to variations in the pRF size than to variations in the pRF mean.
We also show how the same issue can be considered from a bias-variance perspective.
We compare different estimation procedures in terms of the reliability of their estimates
using simulated and real fMRI data in the visual (using the Human Connectome Project
database) and auditory domain. We show that, the reliability of the estimate of the pRF
size can be improved considering a linear combination of those pRF models with similar
goodness of fit or a permutation based approach. This increase in reliability of the pRF
size estimate does not affect the reliability of the estimate of the pRF mean and the
prediction accuracy.

Keywords: population receptive fields, retinotopy, tonotopy, computational neuroscience, fMRI

INTRODUCTION

In sensory cortical (and subcortical) areas, processing is organized in maps whose topography
depends on the preferences of neuronal populations to the information carried by external stimuli
(i.e., the receptive field – RF). Using computational approaches and functional magnetic resonance
imaging (fMRI) data, the receptive field of the neuronal population within each voxel (population
receptive field, pRF) can be estimated non-invasively at the level of individual subjects. That is,
pRF modeling approaches parametrically characterize the measured fMRI response in the space
of a chosen set of features that represent the stimuli. Over the last decade, these approaches have
become mainstream in neuroscientific fMRI research (Wandell and Winawer, 2015).
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Population receptive field modeling has been introduced to
study visual information processing building on early techniques
for visual field mapping (Engel et al., 1994; Sereno et al., 1995).
The pioneering model of Dumoulin and Wandell (Dumoulin
and Wandell, 2008) underlies the majority of the current
pRF modeling approaches. This model assumes that the pRF
characterizing neuronal populations in the visual cortex is
a two-dimensional Gaussian function that is defined in the
visual space spanned by the stimuli. The Gaussian in the
visual field coordinates is described by three parameters, the
distance to the fovea (eccentricity), the angle of the pRF
mean with respect to the horizontal axis and the standard
deviation (pRF size). A number of extensions of this initial
model, varying the function that describes the pRF, have been
considered. For example the effect of suppressive surround in
the visual pRF has been introduced by combining two Gaussian
functions (Zuiderbaan et al., 2012; Harvey et al., 2013), and
compressive spatial summation has been introduced considering
non-linear effects in the pRF model (Kay et al., 2013). Apart
from variations on the model shape or properties, different
estimation approaches have also been considered. A Bayesian
framework for the estimation of the pRF parameters has been
introduced allowing model comparison using the posterior
probability (Zeidman et al., 2018). Furthermore, using a Bayesian
approach, the incorporation of prior anatomical information
in the pRF estimation procedure has also been considered
(Benson and Winawer, 2018). Another possibility for fitting the
Gaussian model is to select the best combination of Gaussian
basis functions using LASSO regression. The pRF can also be
estimated directly from the features matrix using regularized
linear regression, without making a priori assumptions about
the pRF shape (Moerel et al., 2012; Lee et al., 2013). Apart
from characterizing the properties of voxels in response to
external stimulation, the pRF modeling approach has also been
extended to study resting state connectivity (Gravel et al., 2014).
Outside the study of visual areas, pRF modeling approaches
have been successfully applied to map the spatial organization
of the somatosensory cortex (Puckett et al., 2020) as well as the
preference and selectivity (i.e., tuning) to sound frequency in
auditory cortical areas (Thomas et al., 2015).

Despite the widespread application of the pRF modeling
methodology (Gravel et al., 2014; Zuiderbaan et al., 2017;
Dumoulin and Knapen, 2018), there are challenges concerning
model fitting that require careful consideration. In fact, finding
the best Gaussian pRF representing the responses of an fMRI
voxel is a non-convex optimization problem. As a consequence,
the cost function (e.g., the minimum squared error or the
correlation between the actual voxel response and the response
predicted by the pRF model) presents a constellation of local
minima and maxima that compromise the convergence of the
optimization algorithms conditioned to the signal-to-noise ratio
(SNR) of the fMRI data. While this issue has been noted
experimentally, here we describe the pRF optimization landscape
and show that these local optima appear in a subspace of the
cost function space that is populated by very narrow pRFs. This
problem is particularly relevant in noisy voxels, where one of the
local minima can become the global minimum, and thus result

in compromised estimates of the pRF size in particular, but also
of the pRF mean. This issue is apparent from the analysis of
in vivo data where the estimates of pRF size appear to have low
consistency both across subjects and within subject (using split-
half reliability metrics) (Benson et al., 2018), in contrast with
the higher consistency of the pRF eccentricity and polar angle
in different areas of the visual cortex. The same issue has been
previously highlighted by studies that reported the reliability of
pRF parameter estimates in visual cortical areas across sessions
(van Dijk et al., 2016) or runs (Zeidman et al., 2018). In addition
the estimates of the pRF size have been shown to be more
sensitive to changes in the experimental design and the stimuli
compared to the estimates of the pRF mean (Alvarez et al., 2015).
Different heuristic approaches have been used to mitigate the
problem. For example, spatial smoothing can be used to increase
the SNR in the fMRI data (Dumoulin and Wandell, 2008) or the
analyses can be limited to voxels whose variance explained by
the model exceeds a pre-determined threshold (Dumoulin and
Wandell, 2008; Thomas et al., 2015). Alternatively, constraints
can be introduced to the size of the pRF (i.e., allowing only
pRF broader than a certain value) (Zeidman et al., 2018) and
a combination of all these approaches has also been considered
(Thomas et al., 2015).

These algorithmic alternatives come with multiple software
implementations which complicates the validation of the pRF
estimation. With the aim of evaluating the reproducibility of
these software alternatives a computational framework has been
recently developed (Lerma-Usabiaga et al., 2020). Following
a similar but complementary aim, this article focuses on the
algorithmic principles rather than the software alternatives for
estimating the pRF. In particular, we focus on understanding the
theoretical difficulties underlying the estimation of the Gaussian
pRF model and their interaction with the noise in the signal.
To do this, here we first consider simulated data and study the
sensitivity of the pRF cost function under variations of the pRF
parameters. We focus on the reasons underling the instability
(inconsistency) in the estimation of the pRF size. On simulated
data that represent the response to traveling bars in the visual
field, we compare five pRF estimation methods in terms of bias
and variance of the pRF parameters. Four of them are approaches
that have been previously introduced. In particular we consider
the pRF estimation procedure and an estimation procedure based
on grid search extracted from the procedure reported in Benson
et al. (2018), the convex estimation procedure introduced by
COpRF and the linearized encoding procedure proposed by Lee
et al. (2013). The fifth approach consists in a heuristic procedure,
that we introduce here, that averages pRF models with similar
training error. The advantage of this procedure is a reduction in
the variance of the estimated pRF sizes, increasing the reliability
of pRFs parameters.

The results obtained in simulations are then validated on
real fMRI (visual and auditory fMRI experiments) data by
considering the split-half reliability of the pRF parameter. We
used the retinotopic experiment from the 7 Tesla Human
Connectome Project (HCP) (consisting in 181 subjects – Benson
et al., 2018) to evaluate the different methods in their ability of
estimating visual pRFs. In this dataset, the Gaussian pRF model
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is estimated from the response elicited by visual stimuli that
smoothly travel across the visual field (see (Senden et al., 2014)
for alternatives design that can be used for pRF mapping). In this
case the estimation of the pRF occurs in the domain of the fMRI
time series by convolving the neural response predicted by the
Gaussian pRF model with the hemodynamic response function.
However, when the experimental design allows (i.e., when the
temporal sequence of the stimuli allows for the estimation of
the response to each individual stimulus) the pRF can also be
estimated based on a response vector that does not include the
effect of the hemodynamic response and constructed by the
Beta coefficients estimated with a General Linear Model. In this
case, we show that, when the responses to individual stimuli are
exchangeable under the null hypothesis, a modification of the
grid-search algorithm can be used that leverages a permutation
test to estimate the distribution of the cost function under the
null hypothesis which is the one of no relationship between
the voxel’s pRF model and the observed data. We test this
approach on auditory pRFs estimated from the response to
natural sounds. In this dataset, selecting the auditory pRF with
the smallest probability of occurring by chance results in more
reliable estimates than any of the standard methods.

MATERIALS AND METHODS

In pRF modeling, the observed fMRI response y is assumed to
be a function of the pRF (w) and a matrix X that represents the
stimuli (e.g., images or sounds) in the feature space (e.g., pixels or
sound frequencies), convolved with the hemodynamic response
function:

y = α (Xw)γ + ε (1)

ε ∼ N(0, 6)

The measurement noise is represented by ε which is assumed
to be Gaussian with zero mean and covariance matrix 6. In
the visual field the features are measured in degrees of the
visual field (Engel et al., 1994) while in the auditory domain
the features could represent (logarithmically spaced) frequency
bands measured in Hertz (Moerel et al., 2015). The parameter
α (usually referred to as pRF gain) adjusts the predicted and
observed responses to the same scale. The exponent γ introduces
a non-linear relationship between the response and the voxel’s
pRF allowing to model compressive summation in the visual field
(Kay et al., 2013). The simultaneous estimation of the exponent
and the pRF size is hampered by their interaction on the cost
function and, for this reason, it is common practice to assume
a fixed value for γ (Thomas et al., 2015; Benson et al., 2018). In all
subsequent analyses we will use a value of γ = 1 unless otherwise
stated. Commonly, the shape of the receptive field is assumed
to be an isotropic Gaussian w (r|µ, σ), which is a function of
two parameters, the pRF mean µ and the pRF size (standard
deviation σ).

wi = e−
(ri−µ)T (ri−µ)

2σ2 (2)

In the visual domain, this function describes the response
of a voxel to a stimulus presented at position ri in the feature
space (Dumoulin and Wandell, 2008). In the auditory domain r
typically refer to spectral characteristics of the sounds. Note that
in Eq. 2 the pRF is described by a multidimensional Gaussian
(r and µ are vectors) whereas the intensity of the response
at a particular location is a scalar value resulting from the
multiplication between the matrix X and the vector w.

Real Data
The HCP Dataset
The retinotopy data from the Young Adult Human Connectome
Project (HCP) contains pre-processed fMRI data from 181
subjects acquired at 7T with isotropic voxels of 1.6 mm. The
dataset and the codes for retinotopic analysis are available from1

and2 respectively. In this dataset, after preprocessing, the voxel
size was resampled to 2 mm isotropic and projected on the
cortical surface. The experimental design consisted of six fMRI
runs of 300 s each acquired with a TR of one second, in
which visual stimuli (bars) where presented traveling smoothly
across the visual field. To evaluate the reliability of the pRF
parameter estimates we have split each of the runs in two halves
(150 fMRI volumes each). Following a previous report (Benson
et al., 2018), we analyzed the data coming from four regions
of interest in visual cortex defined as posterior (V1-V3), dorsal
(V3A/B, IPS0-5), lateral (LO-1/2, TO-1/2), and ventral (VO-
1/2, PHC-1/2), with a total of 5012 voxels in each subject.
A detailed description of the experiment can be found in Benson
et al. (2018). Due to its large number of subjects and the
standardization of the preprocessing pipeline this dataset is an
excellent benchmark sample for a wide range of applications,
including the validation of pRF methods.

Natural Sounds Experiment
Subjects with no history of neurological disease took part in the
experiment and gave informed consent before commencement
of the measurements. The Ethical Committee of the Faculty
for Psychology and Neuroscience at Maastricht University
granted approval for the study. Magnetic resonance imaging
data were acquired on an actively shielded MAGNETOM 7T
whole body system driven by a Siemens console at Scannexus
https://scannexus.nl/. Functional (T2∗ weighted) data (1.1 mm
isotropic) were acquired using a clustered Echo Planar Imaging
(EPI) technique. The experiments were designed according to
a fast event-related scheme. A total of 168 natural sounds
were presented six times across 24 runs in silent gaps in
between volume acquisitions using magnetic compatible earbuds
(Sensimetrics inc.). The 168 sounds were divided into four
training and testing sets (126 and 42 sounds respectively) without
overlapping sounds between the training and test set. For more
details on the acquisition and stimulation paradigm we refer to
(Sitek et al., 2019). We analyzed data in the original volume
space (without projection on the cortical surface) confined to an
anatomical mask covering the auditory cortex (Heschl’s gyrus,

1https://db.humanconnectome.org/app/action/DownloadPackagesAction
2https://osf.io/bw9ec/
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planum temporale and planum polare) bilaterally. We estimated
pRFs from the voxels’ beta time series (i.e., the estimated
response to all individual natural sounds in the experiment).
Beta series estimation followed the procedure detailed in Sitek
et al. (2019), the codes are publicly available at https://github.
com/sitek/subcortical-auditory-atlas. Only voxels that belonged
to the top 10% of the distribution of F-values estimated on the
training data were submitted to the pRF analysis. On average
this selection criterion produced a set of 20000 voxels in the
sample of 10 subjects. Note this number is approximately five
times larger than the number of voxels that were submitted to the
pRF analysis in the visual dataset example. The unprocessed fMRI
time series for the 10 subjects can be downloaded from https:
//openneuro.org/datasets/ds001942/versions/1.2.0. To estimate a
Gaussian pRF in the sound frequency space, natural sounds were
analyzed in order to extract the norm (energy) of the Fourier
transform at 2048 logarithmically scale frequency partitions from
180 Hz to 7040 Hz.

Simulations
We used simulations to compare pRF estimation procedures.
The first simulation corresponds to a one dimensional pRF
characterizing the preference to sound frequencies that can
be estimated in auditory fMRI experiments. We used this
simulation to introduce the optimization landscape typical of
pRF modeling. The second simulation considers the case of a
two dimensional pRF representing the retinotopic preference
that can be estimated from visual fMRI experiments. We used
this simulation both for introducing issues relating to the
optimization of the pRF paramters as well as for a comparison
between estimation approaches.

To introduce the optimization landscape and provide a simple
graphical representation, we started with simulating a one-
dimensional pRF, modeling the response of a voxel to 240 equally
spaced tones between 88–8000 Hz presented randomly in one
single fMRI run. This simulation followed the experimental
design adopted by Thomas et al. (2015), in which one fMRI
run contains 260 volumes (TR = 2000 ms). We simulated the
response elicited by a pRF with mean and size defined by [µ0 =

120 (4.04 KHz) , σ0 = 16.2 (534 Hz)] and a scaling parameter
of α = 1. To the simulated fMRI response (obtained following
Eq. 1) we added realistic fMRI noise generated with a first order
autoregressive processes with an autoregressive coefficient of 0.36
(implemented using the Matlab function arima.m) (Worsley and
Friston, 1995). The standard deviation of the noise defines the
SNR, and it affects the maximum performance that a model can
attain in predicting fMRI responses. In reporting the results of
our simulations we quantified the noise level by computing the
split-half noise ceiling (SHnc) between two signals generated
under the same simulation framework (Lage-Castellanos et al.,
2019). We used the SHnc as to quantify signal to noise ratio as
it relates to the reproducibility of the data and is an estimator of
the maximum prediction accuracy that a pRF model can attain
given the noise in the data. As we have previously shown this is
a robust estimate that does not rely on specific assumptions with
respect to the noise structure (Lage-Castellanos et al., 2019). We
used this simulated data to analyze the effect of the noise on the

estimation of the pRF parameters in two representative scenarios
with high and low noise ceiling (i.e., SHnc values of 0.63 and
0.11 respectively).

In a second set of simulations, we considered a two-
dimensional pRF, modeling the responses of a voxel in
visual cortex to retinotopic mapping stimuli. We followed the
experimental design of the retinotopic experiment of Human
Connectome Project (see e.g., Benson et al., 2018). We simulated
the response of two voxels with different pRFs (eccentricity:
1.79◦; angle: 0.59 radians, 33.8◦), one narrow and one broad (size:
0.23◦ and 1.81◦, respectively). In Figure 1 we present the values of
the simulated pRF parameters in the second simulated dataset in
the context of the pRF parameters estimated from the HCP data.
To evaluate the effect of SNR we considered three scenarios with
different noise ceilings: high (0.6 SHnc), medium (0.35 SHnc),
and low (0.1 SHnc). These noise levels match the distribution of
the SHnc in the real data used in this article (see Supplementary
Figure S1). In order to evaluate the bias and variance of the
estimated pRF parameters by different procedures, the second set
of simulations was repeated 1000 times.

pRF Model Estimation
To estimate the pRF, most applications use as cost function either
the sum of squared error (CSSE) or one minus the correlation
(C1−corr). In the case of a linear model (i.e., γ = 1), these cost
functions are defined as:

CSSE =
(
y− αXw (µ, σ)

)T (
y− αXw (µ, σ)

)
(3)

C1−corr = 1− yTXw(µ,σ)
√

wTXTXw

α∗, µ∗, σ2∗
= argmin2

α,µ,σ C
(
α, µ, σ2)

Here, without loss of generality, we assumed y and the
columns of X to have zero mean, which makes the definition
of C1−corr simpler and have omitted the variance of y in the
definition of C1−corr since it is not a function of the pRF
parameters and only acts as a scaling parameter for the cost
function of each voxel. If the variance of y is not unitary
the value of C1−corr is a linear function of one minus the
correlation coefficient and is not bounded in the interval [0 2].
Note that the minimum of the cost function is invariant to this
linear transformation.

In the original (Dumoulin and Wandell, 2008) procedure,
the pRF parameters(µ, σ) are optimized in a two-step approach
using CSSE as a cost function. The scaling factor (α) was linearly
solved to account for the unknown units of the fMRI signal.

For α =
(
wTXTX w

)− 1
2 both cost functions CSSE and C1−corr are

equivalent (see Supplementary Material 1.1), but not equivalent
to the original procedure in which α is used to adjust the scale
of y (Dumoulin and Wandell, 2008). Note that for C1−corr the
scale of y is not relevant. Trying to optimize µ, σ and α at the
same time increases the number of local extrema since varying
either α or σ have similar effect on the cost function, and results
in imprecise estimations for α and/or σ (Zeidman et al., 2018).
Finally, minimizing C1−corr is equivalent to maximizing the
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FIGURE 1 | Distribution of the estimated pRF parameters (angle, eccentricity and pRF size) from the retinotopy experiment of the HCP database (Benson et al.,
2018). The vertical lines denote the values of the parameters of the pRF used in the second simulation. In the extreme right the green and the red lines denote the
pRF sizes used for simulating the narrow and the broad pRFs respectively.

FIGURE 2 | Results obtained from the simulations of the one dimensional pRF characterizing the preference to sound frequencies (i.e., auditory fMRI data). Upper
and bottom left panels show Ccorr as a function of µ and σ for high and low SHnc respectively. The right panels show the corresponding profiles with respect to
µ, while the different (gray) curves are obtained with different σ values. The values of Ccorr as a function of µ for the broadest and narrowest possible pRFs are
displayed in green and cyan respectively. The values of Ccorr as a function of µ for the pRF that generated the data are depicted in red. Red dots and black dots
denote the µ, σ used to generate the data and the global minimum respectively. In the high SHnc scenario the generative pRF (red) and the global minimum (black)
are in the same location in the (µ, σ) space (the dots are superimposed).

correlation coefficient between the predicted and observed data
(Ccorr) and in this manuscript when presenting the results of our
analyses we will use C corr.

Figure 2 (left panels) shows for the first simulation (auditory
data experimental design) the value of the cost function (Ccorr)
for every possible combination of the pRF mean (µ - scalar for

the one dimensional Gaussian simulation) and size (σ) obtained
with high (top) and low (bottom) noise ceiling. The right panels
of Figure 2 show the dependence of the cost function Ccorr
on µ, with different curves corresponding to different σ values
(depicted in gray). The results for CSSE are presented in the
Supplementary Figure S2. Both when using the correlation or

Frontiers in Neuroscience | www.frontiersin.org 5 July 2020 | Volume 14 | Article 825

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-00825 July 28, 2020 Time: 18:37 # 6

Lage-Castellanos et al. Reliability of pRF Size Estimates

the residual sum of squares, the cost function varies little along
the σ axis in comparison to the µ axis (note the left panels of
Figure 2 and Supplementary Figure S2), and, as a result, is more
sensitive to variations in the pRF mean than in the pRF size.
An interesting observation can be made when comparing the
right panels of Figure 2 and Supplementary Figure S2. When
considering the behavior across a large range of possible pRF
means, the Ccorr of narrow models (cyan line) is generally worse
than the one of broad models (i.e., the cyan line is above the
green one and Ccorr is better when is higher). This behavior is
opposite for CSSE. Importantly, around the optimal pRF mean
narrow and broad models result in a similar behavior when
using both Ccorr and CSSE. In what follows for simplicity we will
present results obtained using the correlation as cost function, but
the conclusions we take apply to the use of the sum of square
errors given that both cost functions present the same behavior
with respect to changes in the pRF size. In Supplementary
Figure S3 we present the ratio between the derivatives of the
cost function (Ccorr) with respect to µ and σ for two different
noise levels as it allows to visualize the regions of the optimization
landscape in which either of the parameters (the pRF mean or
size) have more influence on the cost function. The formulas
for the derivatives with respect to µ and σ are presented in the
Supplementary Material 1.2. It is important to note that, in low
noise ceiling conditions (bottom in Figure 2 and Supplementary
Figure S2), the global minimum of the cost function shifts away
from the true pRF mean and sigma and local extrema emerge
compromising the convergence of pRF estimation. The number
of local extrema (with respect to µ) increases with decreasing
values of σ (narrowest pRF, cyan curve in the bottom right panel
of Figure 2). In Supplementary Material 1.3 we show that when
σ→ 0 the derivative of the cost function tends to zero. That is, for
σ→ 0 the cost function corresponds to either a local minimum
or a local maximum. As a result the minimization of the cost
function in noisy voxels may be biased toward narrow pRFs, and
to the limit the pRFs can result in selecting a single feature in
the stimulus space. In particular high frequency noise with sharp
spikes can bias the estimation in the direction of narrow pRFs
as the prediction of a pRF selecting a single feature in stimulus
space result in a prediction with sharp peaks (every time this
feature is stimulated).

For gradient-based optimization methods, whether the
algorithm asymptotically approaches the global minimum as the
iterations proceed (i.e., convergence) crucially depends on the
initial conditions. In Figure 3 we show the distance (measured
as squared Euclidean norm) between simulated pRF parameter
values (µ and σ defined by the red dot in correspondence
with Figure 2, auditory data) and the estimates obtained from
the Levenberg-Marquardt algorithm (LMA) as a function of
the initial conditions averaged over 30 realizations of the noise
(high and low SHnc in left and right panels of Figure 3
respectively). We used here Ccorr as cost function and the
Levenberg-Marquardt algorithm for optimization. The pRF size
was constrained to be a positive number. The same results were
obtained when the estimation was carried on using gradient-
descend (data not shown). The turquoise (pink) region indicates
for which initial conditions the estimation procedure converges

to the global minimum. In line with the results reported in
Figure 2 indicating that the number of local minima depends on
the pRF size, the region of convergence narrows as σ decreases.
This renders the choice of a large sigma as initial condition safe
irrespective of the true size of the receptive field. Typically, initial
conditions for pRF parameter estimation are obtained from grid-
search. In our simulation the initial conditions obtained from
grid-search (black dots in Figure 3) are always falling within the
region of convergence for the subsequent LMA optimization even
at the highest level of simulated noise.

We tested the insights on the behavior of the optimization
method gathered on simulated data on real fMRI data. Figure 4
displays Ccorr for different values of µ [defined by (x, y)] and σ

from a voxel in the HCP dataset. Note that, consistently with
the simulations presented in Figure 2, the cost function varies
mainly with respect to µ (for a fixed value of σ ; i.e., within
each plot) while the variability between plots (i.e., for different
σ) is smaller. Figure 5 presents the variation of Ccorr with respect
to σ for the optimal pRF position (µ) for the two independent
data splits in real fMRI data (same voxel from the HCP data set
presented in Figure 4). For a range of σ between [0 – 2.5] the cost
function is constrained in the small interval of [0.63 – 0.65] and
[0.59 – 0.61] (correlation coefficient) for the first and second splits
respectively. The global optimum occurs at locations σ1 = 1.81
and σ2 = 1.28 that is a change in width of the pRF across the
two splits of 1.4 times. The corresponding estimated pRFs are
displayed in the right panels of Figure 5. The ratio between σ1
and σ2 for all voxels in the visual cortex (subject code 100610) is
presented in the Supplementary Figure S4.

These analyses in both simulated and real data illustrate the
low sensitivity of the cost function (both the correlation and the
residual sum of squares) to variations in σ resulting in the large
variability in the estimated pRF size that has been previously
reported. We show that this problem is amplified by the noise
in the fMRI data and that the variability in the estimate of the
pRF size is contrasted by the relative robustness of the estimate
of the pRF mean.

pRF Estimation Methods
In this section we briefly describe the algorithmic principles
used by different pRF estimation methods. Note that different
software implementations of the same algorithm are available
and they may differ in computational efficiency, number of
hyperparameters and programming language. For an exhaustive
comparison between software tools for estimating the pRF see
(Lerma-Usabiaga et al., 2020).

Two-Steps Optimization [GridSearch-Gradient Based]
(HCP7pRF)
Here we used the implementation of the method presented
in Benson et al. (2018) which is available at https://osf.io/
bw9ec/. Following the approach of Dumoulin and Wandell
(2008) this method estimates the pRFs in two-steps. A grid-
search is used for selecting initial values for the pRF
parameters for subsequent non-linear optimization. The grid
search optimization uses the correlation coefficient as the cost
function. The initial conditions are selected within a dictionary
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FIGURE 3 | Results of the convergence of the optimization of a one simulated dimensional pRF characterizing the preference to sound frequencies (i.e., auditory
fMRI data; high (left) and low (right) split-half noise ceiling). Colors indicate the distance (squared Euclidean norm) between true parameter values (red dot) and the
solution obtained from starting Levenberg-Marquardt optimization at each location in parameter space. Distance values are averaged over 30 realizations. Black dots
indicate the initial conditions (for pRF estimation using LMA) estimated from grid-search. In particular a cyan color indicates the starting values for pRF mean and size
that resulted in the Levenberg-Marquardt algorithm to converge to the simulated value.

FIGURE 4 | Cost function (Ccorr) in the space of the pRF paramters (x, y, σ) for a voxel from the HCP dataset in the first split of the data (subject code 100610, first
split, voxel index 5). The location of the global maximum is represented by a red dot and is obtained σ = 1.81. Each subplot represents the cost function at varying
values of µ (defined by (x, y)) while the different subplots are obtained varying the value of the pRF size (σ). For visualization clarity in this figure we used cartesian
coordinates instead of eccentricity and angle.

of plausible pRFs. In this dictionary the angles of all possible
pRFs are uniformly distributed between [0◦ and 360◦]. On the
other hand, eccentricity and pRF size are characterized by non-
uniform distributions with the density of pRFs decreasing with

eccentricity and more seeds characterized by a small σ (i.e.,
narrow pRF). The scaling parameter α is computed using linear
regression between the observed and predicted fMRI time series
(the latter obtained after selecting the best seed with grid search
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FIGURE 5 | Left: Cost function (correlation coefficient) as a function of the pRF size (σ) for the two splits of a voxel in the HCP dataset. The cost function was
computed by fixing the voxel’s pRF mean (x, y) to the value of the best fit model that corresponds to the global maximum (red dot in the figure). Right: The
corresponding estimated pRFs for each split.

optimization). The pRF parameters obtained in the first pass
(using grid search) are then submitted to a second non-linear
optimization pass using the Levenberg-Marquardt algorithm
implemented by the Matlab function lsqcurvefit. This second
optimization pass uses the CSSE as the cost function. In this
approach, the observed voxel’s fMRI time series is standardized
to have zero mean and unitary variance. The non-linear optimizer
also allows for the eventual optimization of the compressive non-
linearity (γ) (Kay et al., 2013). Here, we used default setting for all
functions in this toolbox.

Two-Steps Optimization [GridSearch-Gradient Based]
for Auditory Data (GS + Gb)
A two-steps optimization approach has also been developed
to estimate auditory pRFs (Thomas et al., 2015). Here when
analyzing auditory fMRI (or the simulated auditory responses)
we used this approach whose implementation is available at https:
//github.com/kellychang4/pRF. This approach, firsts uses grid-
search to obtain an estimate of the initial conditions to be refined
in a second step. The dictionary used in the grid-search considers
pRFs with logarithmically spaced (tonotopic) preferences (i.e.,
the mean of the pRFs) between 180 Hz and 7040 Hz, while the
pRF size varies linearly from 10 to 100 in full width at half-
maximum (FWHM) of the logarithmic spaced bins. After the
grid-search, the estimation of the model is refined using the
Nelder-Mead algorithm (Lagarias et al., 1998 implemented by the
fminsearch Matlab function) which is a direct search method and

does not rely on the gradient of the cost function. It is important
to note that in this procedure both the grid search and the finer
optimization step are carried on using Ccorr as the cost function
(which is a difference with respect to the two-step procedure
outlined above for the analysis of visual data which uses CSSE in
the second optimization step).

Grid-Search (GS)
Grid-search automatically imposes a form of regularization on
the models avoiding the optimization to converge into to the
subset of the local minima not included in the grid. For this
reason, we included here the estimation of pRF using only grid-
search and used, for the auditory and visual data, the grid-search
module from the HCP7pRF procedure. The regularization is
given by the coarseness of the grid. A coarse grid will reduce
the variability of the estimated pRF while paying the cost of
introducing an estimation bias. A very fine grid will produce
unbiased estimates however increasing the risk of landing in local
minima. Consistently with the implementation of grids search
available in the two-step optimization procedures for both visual
and auditory data (see above) we used Ccorr as the cost function.

Convex pRF Estimation (COpRF)
We used the implementation available at https://github.com/
davesl/COpRF. The algorithm estimates the voxel’s pRF as a
linear combination of the pRF seeds available in a large pRF
dictionary using LASSO regression (Bishop, 2006). The Lasso
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regression minimizes CSSE where the voxel’s fMRI time series
and the pRF dictionary have been standardized to have zero
mean and unitary norm. As Lasso imposes sparsity on the
regression coefficients only a small subset of the pRF dictionary
will be selected for obtaining the voxel’s pRF. Interestingly, two
consecutive regressions are performed using different dictionary
sizes. The first regression uses a reduced dictionary of around
3000 seeds. Then the seeds from the large dictionary that are
contained within a radius from the center of the pRF estimated
in the first pass are submitted into the second regression. It is
important to note that estimated pRF parameters for the voxel’s
pRF are derived by the weighted sum of the pRF parameters of
the selected seeds using the LASSO coefficients. Here we used the
default values in the toolbox for the search radius and the LASSO
regularization parameter.

Linearized Encoding (LinEnc)
We used the implementation available at: https://sites.google.
com/site/leesangkyun/prf/codes.zip, (Lee et al., 2013). Linearized
encoding models do not assume a specific shape for the pRF,
instead using the General Linear Model (GLM) the (linear)
contribution of each model feature to the fMRI time series
(or Beta series) is estimated using ridge regression (Bishop,
2006) which uses CSSE on the space of the original variables
(untransformed). Regularization is required as the number of
model features (e.g., points in the visual field, or frequencies of a
sound) is often larger than the number of time points in the fMRI
time series (or the number of stimuli that define the length of
the Beta series). In the original settings of this toolbox the voxel’s
pRF is estimated only if the explained variance is larger than 0.3
after ridge regression. Here, to compare all methods under the
same conditions, we performed the estimation for all voxels. For
the estimation of visual pRFs we down sampled the visual stimuli
to a square of 101 × 101 pixels. We used the default parameters
of the toolbox (i.e., the grid of regularization parameters (λ) to
be used in the ridge regression). To estimate a preferred feature
and the size of the pRF, in a second step a Gaussian function
is fit (using the Matlab function lsqcurvefit) to the estimated
linear coefficients after imposing a threshold for discarding noisy
coefficients. We used the default setting for this second step by
considering three different thresholds (0.3, 0.5, and 0.7; relative
to the value of maximum coefficient) and selecting the Gaussian
model that explained the highest amount of variance of the linear
coefficients obtained from the first step.

Modifications to the Grid Search
Procedure
In this section we describe the two variants of the grid search
algorithm. We propose these modifications with the purpose of
increasing the reliability of the estimate of the pRF size. The first
approach combines the pRF models in the search space that result
in similar goodness of fit to the data. The second modifies the
criterion for selecting the best pRF model. In particular, instead
of selecting the pRF model that maximizes the correlation to the
observed data, we select the model with minimum probability
of being obtained under the null hypothesis of no relationship
between the observed and predicted responses.

Averaging pRF Models Explored With Grid-Search
(ModelAve)
To reduce the variability of the pRF estimates, we propose to
average pRFs models obtained from a grid-search and that have
similar goodness of fit using Ccorr as the cost function. We used
the grid-search module of the two-step optimization procedure.
However, instead of selecting the pRF model that produces the
maximum correlation with the observed response (as in the grid-
search procedure described above), we propose to consider all
pRFs models within a range of 1% of the goodness of fit of
the best model. The voxel’s pRF can then be obtained as the
average of the pRF models in this interval. Note that the average
is performed in the pRF space instead of the parameters space (as
done by the COpRF procedure). Despite the resulting averaged
pRF not being necessarily a Gaussian function, to estimate pRF
parameters (µ and σ) we fitted a Gaussian to the averaged pRF.
This approach can be used both on the original fMRI time series
(for experimental designs such as the traveling bars in the visual
field that do not allow the estimation of single stimuli) as well as
on Beta time series. Here we used this approach to analyze both
visual and auditory fMRI data.

Permutation Based Model Grid-Search for Separable
Betas Design (PermGS)
This procedure can only be implemented when the Beta
responses are exchangeable under the null hypothesis. The
experimental design of the retinotopy HCP dataset consists
of visual stimuli that smoothly travels across the visual field.
This experimental design prevents the estimation of separate
betas associated with each stimulus and, as a consequence, the
permutation procedure cannot be used. For this reason, here
we used this method only when analyzing the auditory data.
The distribution of local minima in the optimization space
that we have highlighted in simulations (Figures 2–4) results
in a large probability for the best model to be characterized
by small σ just by chance. Such probability can be estimated
by empirically determining the null distribution of the cost
function (Ccorr) for every possible combination of pRF mean and
size using permutations. The permutation procedure consists in
randomizing the response vector (here the beta series estimated
from the fMRI time series as the response to all the stimuli)
while keeping the pRF model fixed. By defining the empirical
null distribution we selected, for every voxel, the pRF model (i.e.,
selecting the pRF mean and size) with the smallest probability of
occurring by chance.

Statistical Analysis
The results obtained on simulated data were statistically assessed
using bootstrapping in order to evaluate the bias of the pRF
estimates as well as for comparing the variance of the estimates
across methods. In particular, the distributions of pRF parameters
(angle, eccentricity and size in the case of the simulated visual
data) obtained from the 1000 simulations were bootstrapped
10000 times (i.e., we derived 10000 bootstrap samples each
one representing the distribution of a given pRF parameter
over 1000 simulations). To statistically evaluate the bias in the
estimated parameters we computed the α = 0.05 (two tailed)
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confidence intervals of the mean of each bootstrap sample. The
bootstrapping procedure for the pRF was implemented using R
and a package (circular) allowing to account for circular data3.
When the value of the pRF parameter used for simulating the
data (e.g., the simulated parameter) fell outside the confidence
intervals we concluded that the method is biased and estimated
the bias as the distance between the simulated parameter and
the mean across all bootstrap samples. When a significant bias
was observed, we reported the effect in terms of the original
units (e.g., degrees of the visual field). To compare the variability
of the estimates (for each pRF parameter), we computed the
ratio of the variance between bootstrap samples (paired) obtained
using different approaches. This results in 10000 values of the
ratio between two methods. Estimating the α = 0.05 confidence
interval of this distribution allowed us to evaluate if there were
significant differences between methods (i.e., when the value 1
indicating identical variability between two methods was not
included within the confidence interval).

The statistical analyses of the estimates obtained on the HCP
dataset were performed using bootstrapping. In particular, we
bootstrapped 10000 times the 181 values of reliability (one value
per subject) obtained by correlating the estimates of each of
the pRF parameters obtained across the two splits of the data.
By estimating confidence intervals (α = 0.05) for the difference
between each pair of methods we determined the significance of
the differences and report the effect size as the mean differences
in reliability between methods. We followed a similar approach
to compare prediction accuracy between methods.

For the auditory data, we tested for statistical differences (in
reliability of the estimates measured as the Spearman correlation
between independent estimates of the pRF parameters) using
permutation tests. The empirical null distribution of the

3https://cran.r-project.org/web/packages/circular/circular.pdf

difference in reliability between each pair of methods was
obtained by exchanging the values between methods. The
p-values (threshold at α = 0.05, two tailed) were computed as the
cumulative probability of obtaining a reliability greater or equal
(smaller or equal for the left tail) than the observed difference
under the distribution of the null hypothesis.

RESULTS

The different estimation methods use different cost functions
(some the correlation and some the sum of squares). Our
previous analyses showed that the sensitivity of these cost
functions to variations in the pRF size (and mean) is similar (see
Figure 2 and Supplementary Figure S2) and in Supplementary
Material (Supplementary Figure S5) we present the results on
simulated data in which we changed the cost function for the Grid
Search from the correlation to the sum of squares. These results
show that the choice of the cost function does not influence our
evaluation on the reliability of the estimates of the pRF size.

Results for Simulated Visual Data
Figures 6, 7 report the comparison between the tested pRF
estimation procedures in terms of bias and variance of the
estimates on the second simulated dataset (i.e., two visual pRFs,
one narrow and one broad) at three levels of noise (high,
medium, and low).

For a narrow pRF (Figure 6 and Table 1), COpRF and
ModelAve showed biased estimates of the eccentricity and the
pRF size. LinEnc produced biased estimates as well, but, in
particular for eccentricity and pRF size the bias was larger
in effect size compared to the bias introduced by ModelAve
and COpRF (at all considered noise levels). We did not detect
a significance bias for HCP7pRF and grid-search. However,

FIGURE 6 | Boxplots ([25, 50, 75] percentiles over 1000 simulated datasets) represents the estimated pRF parameters using different estimation procedures for a
narrow two-dimensional pRF (presented in extreme left). Each column refers to a different split-half noise ceiling level from high to low: High SHnc = 0.63, Medium
SHnc = 0.35, Low SHnc = 0.1. Each row presents the results for each of the pRF parameters: angle, eccentricity and pRF size. Outliers (in the estimated pRF
parameters) are denoted by red + symbols and defined by the condition of being outside the 1.5 interquartile range. The horizontal red line indicates the pRF
parameters used to simulate the data.
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FIGURE 7 | Boxplots ([25, 50, 75] percentiles over 1000 simulated datasets) represents the estimated pRF parameters using different estimation procedures for a
broad two-dimensional pRF (presented in extreme left). Each column refers to a different split-half noise ceiling level from high to low: High SHnc = 0.63, Medium
SHnc = 0.35, Low SHnc = 0.1. Each row presents the results for each of the pRF parameters: angle, eccentricity and pRF size. Outliers (in the estimated pRF
parameters) are denoted by red + symbols and defined by the condition of being outside the 1.5 interquartile range. The horizontal red line indicates the pRF
parameters used to simulate the data.

TABLE 1 | Statistical analysis of the bias of the estimates of the angle, eccentricity and pRF size obtained when simulating a narrow visual pRF (angle = 0.59 radians,
eccentricity = 1.79◦, pRF size σ = 0.23◦) at different noise levels.

Low Noise Medium Noise High Noise

Angle Ecc. Size Angle Ecc. Size Angle Ecc. Size

HCP7pRF n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s.

GS n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s.

COpRF n.s. −0.007 −0.05 n.s. −0.01 −0.06 n.s. −0.03 n.s.

LinEnc n.s. −0.24 0.57 n.s. −0.33 0.61 n.s. −0.59 0.68

ModelAve n.s. −0.006 −0.09 n.s. −0.006 −0.01 n.s. −0.006 n.s.

For every noise level, columns represent the different parameters while rows represent the different estimation methods. For significant effects (p < 0.05) we report the
effect size (in units of the parameter), while n.s. indicates a non-significant effect. When significant bias was observed, the corresponding cell displays the mean of the
estimated parameter minus the its true value.

TABLE 2 | Pairwise comparison of the variability of the estimates of the pRF size between estimation methods at different levels of noise (narrow pRF: angle = 0.59
radians, eccentricity = 1.79◦, pRF size σ = 0.23◦).

Low Noise Medium Noise High Noise

GS COpRF LinEnc ModelAve GS COpRF LinEnc ModelAve GS COpRF LinEnc ModelAve

HCP7pRF n.s. 1.24 5.56 9.10 n.s. 1.12 1.67 12.53 n.s. 1.13 n.s. 3.93

GS 1.24 5.61 9.16 1.12 1.68 12.62 1.14 n.s. 3.87

COpRF 4.48 7.33 1.48 11.17 n.s. 3.47

LinEnc n.s. 7.45 3.84

Every cell displays (for significant effects) the variance of the pRF size estimated by the method in the row divided by the variance of the method in the column ( Var(σ)row
Var(σ)col

),
while n.s. indicates a non-significant effect.

HCP7pRF is two orders of magnitude more computationally
demanding than grid-search (see Supplementary Table S1). This
pattern was largely confirmed when considering large pRFs
(Figure 7 and Supplementary Table S2). In this case, we did
not detect a significance bias for grid-search (all parameters).
LinEnc produced biased estimates of the eccentricity and pRF
size which were larger in effect size compared to the bias

introduced by ModelAve and COpRF (at all considered noise
levels). We compared the variability of the estimates of the
pRF between pairs of methods by statistically assessing (with
bootstrapping – see section “MATERIALS AND METHODS”)
the ratio between the variance of the estimates. The results of
this statistical analysis are reported in Table 2 for a narrow pRF
and Supplementary Table 3 for a broad pRF. Averaging models
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FIGURE 8 | Histograms of the estimated pRF size for HCP7pRF, GS, COpRF and ModelAve. The bottom row shows the simulated pRF (the fovea is marked in red).
In all other plots, the red square denotes the pRF size value used to simulate the data (i.e., the targeted value to be estimated). The vertical green lines denote the
median of the distribution of the estimated pRF size.

with similar goodness of fit (ModelAve) prior to the estimation
of the pRF size resulted in a smaller variability of the estimates at
all the considered noise levels for narrow pRFs (Table 2). When
considering broad pRFs (Supplementary Table S3) the advantage
of using model averaging with respect to the variability of the
estimates was less noticeable. Note that reducing the variability
of the pRF size estimates for narrow pRFs will have a large
impact on the analysis of real data, as the largest proportion
of voxels in visual cortex present narrow pRFs (see Figure 1).
Linearized encoding showed the larger bias in the estimate of
the pRF parameters (eccentricity and size) for all considered
noise levels and this bias did not correspond to a significant
gain in variance reduction when comparing its estimates to e.g.,
model averaging.

A more refined evaluation of the estimated pRF size for
monotonically increasing simulated pRF sizes and moderate
noise level (SHnc = 0.35) is presented in Figure 8. Each
simulation was repeated 1000 times and the empirical
distribution of the estimated pRF size is presented for HCP7pRF,
GS, COpRF and ModelAve. The LinEnc algorithm was discarded
as this method showed the largest bias and not significantly
improved variability of the estimates when comparing it to
model averaging (see Tables 1, 2 and Supplementary Tables S2,
S3). Our results indicate that, within the range of the pRF size we
considered here, combining models with similar performances
(ModelAve) reduced the variance of the estimates for pRF size
smaller than σ = 0.91 (see Supplementary Table S4). While
model averaging resulted in a reduction in variance, for a large
range of pRF sizes, it was also associated with an increased bias
of the estimated of the pRF size as evidenced by the separation
between the median (green lines in Figure 8) and the value of the
pRF size used for simulating the data (red square).

Computational times for all tested approaches relative to GS
are presented in Supplementary Table S1 for the estimation of a
narrow (visual) pRF (for a varying number of simulated voxels),
and at a medium noise level (SHnc = 0.35). The results indicate
that the two step optimization procedure (HCP7pRF) is the most
computationally demanding approach (at least two orders of
magnitude slower than GS).

Visual pRFs Estimated From the Human
Connectome Dataset
We evaluated the reliability of the pRF parameter estimates
obtained with each of the approaches by computing the
(Spearman) correlation (across voxels) of the pRF parameters
estimated in two (independent) halves of the dataset (Figure 9).
For the eccentricity and the pRF size we used the Spearman
correlation to account for non-normal distributions while for
the angle we used the circular correlation coefficient (Mardia,
1975).We performed this analysis in four regions of interest
within the visual system: posterior, dorsal, lateral and ventral
(see Benson et al., 2018 for more details on the definition of the
regions) and in 181 subjects. We chose to perform the analysis
within predefined regions of interest in order to be consistent
with the analyses reported in Benson et al. (2018). In Figure 9
we report the results across the four ROIs combined. Note that,
in order to compare our results to a previous analysis reported
in Benson et al. (2018) we report here also the results obtained by
the HCP7pRF approach using an exponent of 0.05 (HCP7pRF05).
All methods except for linearized encoding showed similar
reliability for the estimates of the pRF eccentricity and angle
(i.e., the position in the visual field). In agreement with our
simulations, the estimate of the pRF size obtained using model
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FIGURE 9 | The split-half reliability ([25, 50, 75] percentiles of the distribution across 181 subjects) for pRF parameters estimates for different methods. The
correlation between the parameters estimated by the different methods (across all ROIs) is presented in the bottom row.

averaging was most reliable (ρModelAve
pRF size = 0.81 vs ρ

HCP7pRF
pRF size =

0.67, mean values across the four ROIs, see Supplementary
Table S5 for the results of the statistical comparisons between
methods). Note that the reliability of the estimate of the pRF
size obtained with the compressive non-linearity fixed to 0.05
was significantly lower than the one obtained using a fixed value
of 1 (Supplementary Table S5). Linearized encoding resulted in
the overall lowest reliability for the estimated pRF parameters
(ρangle = 0.56, ρecc = 0.83, ρpRF size = 0.39, mean values across
the four ROIs) and accuracy of the predictions (Supplementary
Table S5). In terms of mean prediction accuracy all other
methods performed similarly (prediction accuracy [correlation]:
HCP7pRF05 = 0.37, HCP7pRF = 0.36, GS = 0.36, COpRF = 0.36,
ModelAve = 0.36, LinEnc = 0.24). Note that despite the small
effect size the small increase in prediction accuracy attainable
when using a non-linear model (HCP7pRF05) was statistically
significant (Supplementary Table S5).

By combining voxels across all regions of interest and
averaging across all 181 subjects in the dataset, we computed
the similarity (Spearman correlation) between the parameters
estimated between the different methods (Figure 9 bottom
row). All methods except linearized encoding resulted in
similar estimates of the angle (with correlations above 0.85).
Estimates of eccentricity were similar across all methods (with
the minimum correlation of 0.79 between HCP7pRF05 and
linearized encoding). As expected, the pRF size showed largest
variability in its estimate across methods. Note that large
correlation between the pRF parameters obtained with HCP7pRF
and grid-search (above 0.9 for ecc, angle and the pRF size), which
is an argument in favor of using grid-search over HCP7pRF

considering their large difference in computational efficiency.
The estimate of the pRF size obtained by fixing the compressive
non-linearity to 0.05 was the least similar to all other approaches
(that instead used a fixed value of 1).

Auditory pRFs
Figure 10 shows the mean reliability (Spearman correlation
between estimates obtained in two separate halves of the data)
in the auditory data (10 subjects) as a function of the prediction
accuracy. The pRF estimation using COpRF and LinEnc were
not included in this analysis since these toolboxes were designed
specifically for visual stimuli. We report reliability as a function
of prediction accuracy as we hypothesize that evaluating the
estimates of the model parameters should be limited to those
voxels in which the model is a good descriptor of the response.
As we are limiting the investigation to a simple model of sound
frequency, high prediction accuracy is expected in early auditory
cortical regions (Norman-Haignere and McDermott, 2018). It is
relevant to note that previous studies (Santoro et al., 2014) have
shown that feature spaces that are more complex than the use
of only sound frequencies (e.g., the combination of frequency,
spectral modulations and temporal modulations) may better
describe the response in secondary cortical areas.

Our results indicate that the permutation based grid-search
outperformed all other methods in terms of reliability of the
estimated pRF mean and size. The statistical comparison of
the reliability of the pRF mean and size across voxels whose
prediction accuracy was larger than 0.2 (measured as the
correlation between predicted and actual responses to the test
sounds) is reported in Supplementary Table S6 (similar results
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FIGURE 10 | Reliability analysis for the auditory data. The mean reliability across 10 subjects is presented as a function of the mean prediction accuracy for four pRF
estimation methods for the pRF mean (left) and size (central). In the right panel display the mean prediction accuracy (across 20000 voxels), for every subject.

were obtained when testing for differences between methods
considering voxels thresholded at higher value of prediction
accuracy). As when analyzing the visual data, also for the auditory
data the two-steps optimization procedure (GS + Gb) was
more computationally demanding (requiring over 24 h compared
to the few minutes of GS alone). Note that the permutation
approach will be more computationally demanding than the grid
search alone. In particular considering a set of 42286 voxels,
the permutation based approach was 21 times more expensive
than grid search.

DISCUSSION AND CONCLUSION

The use of computational approaches such as population
receptive field modeling has become an established method for
analyzing fMRI data (Gravel et al., 2014; Zuiderbaan et al.,
2017; Dumoulin and Knapen, 2018). Despite the widespread
application of this methodology, the analysis of in vivo data in
a large sample (the Human Connectome) has highlighted low
consistency in the estimate of the pRF size in comparison with the
pRF mean (Benson et al., 2018). In this article we examined the
influence of the optimization procedure on the variability of the
pRF parameters and proposed modifications to the algorithms in
order to improve the reliability of the pRF parameters in noisy
scenarios. Following previous research, we considered as cost
function the correlation and sum of squared errors. Both of these
are strongly affected by outliers. The sensitivity to outliers of pRF
estimation methods has not been considered in the literature,
and in future studies it would be of interest to investigate pre-
processing strategies or alternative cost functions that could limit
such sensitivity.

The Gaussian model for the pRF and the cost function
(correlation or minimum squared error) used to derive it
define the optimization landscape. This optimization landscape,
common to all estimation procedures, is at the basis of the large
variability in the estimates of the pRF size that has been previously
reported (Benson et al., 2018). In particular, estimates of the pRF
size have higher variance because of the weaker sensitivity of the
cost function to variations in the pRF size than to variations in
the pRF mean. Here, we illustrate this issue using simulations
(Figures 2, 3) as well as theoretically (Supplementary Material).

We performed simulations at different noise levels and quantified
SNR (of simulated and real data) using the split-half noise
ceiling (an estimate of the maximum prediction accuracy that
a pRF model can attain given the noise in the data) which is
computationally efficient and is not based on assumptions about
the noise structure (Lage-Castellanos et al., 2019). Computing
the SHnc only requires that the data can be split in two
identical partitions for computing the correlations between the
observed responses.

When considering established pRF estimation procedures,
our simulations showed that some approaches produce biased
estimates of the pRF parameters across the different levels of
noise and independently of the pRFs size (see the statistical
comparisons reported in Table 1 as well as Supplementary
Table S2). In particular, estimating pRFs with linearized encoding
resulted in larger biases compared to all other approaches. With
respect to the variability of the pRF size estimates previously
reported (Benson et al., 2018), our simulations indicate that the
difference in variability of the estimates between methods was
more noticeable when considering narrow pRFs. For narrow
pRFs, linearized approach produced more reliable estimates
compared to grid search, HCP7pRF and COpRF at medium and
low noise levels (Table 2). Taken together the analyses of the bias
and variability in simulated data indicate that estimating pRFs
with linearized encoding trades off bias in the pRF parameters
for stability of the estimated pRF size. The weaker sensitivity of
the cost function to changes in pRF size noticeable in simulated
data was apparent also when estimating pRFs from real fMRI
data obtained in response to visual stimulation (Figure 4). This
weaker sensitivity resulted in different estimates of the pRF size
when using independent splits of the fMRI data (Figure 5). Both
the bias in the estimation of pRF parameters introduced by some
of the approaches as well as the variability in the estimates of
the pRF size may affect studies that aim at comparing the pRF
size across brain regions or between experimental conditions.
A bias in the estimated pRF parameters compromises accuracy
and reproducibility especially in low SNR datasets (e.g., using
high spatial resolution), while the increased variance of the
estimates of the pRF size compromises statistical power. These
issues highlight the relevance of controlling for the SNR in the
data. Previous approaches have used a combination of heuristics
to this end, ranging from smoothing the fMRI data to increase
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SNR (Dumoulin and Wandell, 2008) as well as considering only
voxels (or regions) in which the pRF model explains a sufficient
amount of variance in the signal (Dumoulin and Wandell,
2008; Thomas et al., 2015). In addition, constraints have been
introduced allowing only pRFs broader than a certain value
(Thomas et al., 2015; Zeidman et al., 2018). Interestingly, our
results show that initiating the search for the pRF from regions
of the parameter landscape with broad pRF may help obtain
unbiased estimates (see e.g., Figure 3 where we show that the
region of convergence for the optimization procedure is larger
when the initial pRF size is set to larger values). When algorithms
other than a simple grid-search are used, initial conditions for
the optimization of pRF parameter are typically obtained from an
initial grid-search. While in our simulations this resulted to be an
effective strategy even in the case of low SNR, the development
of an optimization strategy that moves specifically from broad
to narrow pRFs could represent an interesting alternative for
low SNR data (e.g., high resolution functional data) that to
our knowledge has not been explored yet. It is important to
note that here we used default hyperparameters values when
using previously introduced estimation approaches (e.g., the
regularization parameters in the ridge regression of the linearized
encoding approach was fixed for all voxels to a value of equal
to one). Fine-tuning hyperparameters may result in improved
reliability of the estimated pRF parameters, but it is a data set
specific problem that could be addressed in follow up studies.
One interesting observation that derives from the results of our
simulations is that performing a second optimization step (e.g.,
using Levenberg-Marquardt as in the implementation of the pRF
method Benson et al., 2018) did not improve the reliability of
the estimated parameters compared to grid-search (see Table 2
and Supplementary Table S3). This is particularly relevant
considering the higher computational efficiency of grid-search
compared to the rest of the algorithms (see Supplementary
Table S1). We considered computational time for the estimation
of the pRF of voxels with a medium level of noise (SHnc = 0.35).
We expect this time to increase for all approaches except grid
search when the noise in the data increases. It is plausible to
assume that the absence of an improvement in the reliability
of the estimates obtained with a second optimization step is
caused by the effect of noise on the optimization routine resulting
in non-replicable estimates. It is important to note that the
computational complexity of grid-search increases rapidly with
the number of pRF parameters to be estimated. In this article the
number of parameters were limited to the pRF mean and size
(e.g., the inclusion of the non-linearity term or the increase in
dimensionality of the pRF mean).

With the aim of reducing the variability of the estimated
pRF size in noisy scenarios here we introduced two specific
modifications of the grid-search algorithm. It is important to
note that, while these approaches improved the reliability of
the pRF size estimates in simulated and real data, they do not
constitute a principled solution to the low sensitivity of the
cost function to the pRF size (as they are still based on the
use of the same cost function). The first approach averages
pRF models (obtained from grid-search) that result in similar
goodness of fit to the data. This procedure can be interpreted

as a Bayesian Model Average under a uniform prior. Here, we
averaged models whose goodness of fit was within an interval of
1% of the minimum. The threshold of goodness of fit defining this
interval has direct influence on the bias-variance tradeoff of the
Model Average approach. Averaging more models will decrease
the variance of the estimates but at the cost of increased bias. In
addition, this hyperparameter should be carefully set depending
on data quality. Noisier fMRI data will require averaging more
models (i.e., considering a larger interval of goodness of fit) to
achieve similar reductions of the variance of the estimates. How
to calibrate this threshold conditioned to the noise in the data
should be considered in the future. For narrow PRFs, model
averaging resulted in improved reliability of the estimate of the
pRF size compared to the previously introduced approaches
we tested (Table 2). This improved reliability came at the cost
of a small but significant bias in the estimate of the pRF
parameters (Figure 8, Table 1 and Supplementary Table S2).
A more systematic analysis of the reliability of the PRF size
estimate in dependence with the pRF size indicated that using
model averaging is advantageous when the pRF size generating
the data is smaller than σ = 0.91. This indicates that using
model averaging may be preferable when considering early visual
cortical regions (see Figure 1 for a distribution of the pRF
size in visual cortical areas in the HCP dataset). The improved
reliability we observed in simulations was confirmed by the
analysis of the HCP dataset, where model averaging resulted in
a significant reduction of the variability of the pRF size estimates
(Supplementary Table S5).

The second modification to the standard grid-search
procedure that we introduce here is a permutation based
procedure. This approach was motivated by the observation that,
under the null hypothesis, the probability of obtaining a given fit
is not independent of the pRF size. In particular, considering the
two limit cases of infinite pRF size (i.e., a pRF with no preferred
feature) and a pRF selecting a single feature, the first produces the
same prediction regardless of the pRF mean, while pRFs selecting
a single feature produce different (uncorrelated) predictions. As
a result, the probability of selecting a narrow pRF model under
the null hypothesis is higher than the probability of selecting a
broader pRF model. The empirical null distribution of values of
the cost function (e.g., correlation) for all the pRF parameters
in a grid can be obtained using permutations. The selection of
the pRF parameters is then based on the probability of observing
under the null hypothesis a value of the cost function more
extreme than that obtained in the original case. Importantly, the
permutation procedure limits the applicability of this approach
as it requires the observed data to be exchangeable under
the null hypothesis, thus it can only be applied to particular
stimulation designs (i.e., not in the case of the classical traveling
wave retinotopic stimulation). While outside of the scope of our
publication, it is worth noting that the experimental setup has
been shown to have an effect on the estimation of pRF parameters
even when controlling for the experimental time. The ordered
presentation of tones (ascending and descending) resulted in
higher goodness of fit to the observed fMRI data compared to a
random presentation, and the random presentation of bars on
the visual screen has been found to produce more reliable pRF
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estimates as evidenced by higher prediction accuracy (Senden
et al., 2014). In addition, previous reports have in some cases
discouraged the estimation of pRF size (bandwidth in the case
of auditory pRFs) from ordered stimulus designs as it may be
affected by the overemphasis of the response near the beginning
or the end of the sweep (Thomas et al., 2015). These results
justify the comparison of the permutation based approach to
previously introduced estimation procedures on a design that
like a random stimulus order design allows for the estimation
of individual stimulus responses. In particular, we applied the
permutation based approach to an auditory data in which natural
sounds were presented and from which we estimated, per voxel,
a vector representing the response to all the individual (natural)
stimuli (Sitek et al., 2019). In this dataset, the permutation based
approach resulted in improved reliability of the estimated pRF
parameters (mean and size) compared to both model averaging
and a two-step optimization procedure that has been previously
introduced (Thomas et al., 2015). The improved reliability for the
permutation approach came at the cost of computational time.

It is important to note that in all our investigations we
considered a fixed non-linearity (fixed to 1 – a linear model)
for the pRF model. We did not systematically consider the
effect that either optimizing the non-linearity, or considering
a term other than 1, would have on the estimates of the pRF
mean and size. The simultaneous optimization of the pRF mean,
size and non-linearity increases the number of local minima
(Zeidman et al., 2018) and is expected to result in increased
variability of the estimates. Here, when analyzing real visual
data, we compared models estimated with an non-linearity
fixed to one to the procedure previously reported that used a
non-linearity fixed to 0.05 (Benson et al., 2018). Our results
indicate that a non-linearity of 0.05 results in more variable
estimates of the pRF parameters (angle, eccentricity and in
particular size) despite a small advantage in prediction accuracy
(Supplementary Table S5).

While our results on the validity of the estimates are in
line with the results reported previously (Lerma-Usabiaga et al.,
2020), here we focused on understanding how the interaction
between the pRF model (e.g., Gaussian) and cost function
underlie the previously reported variability of the pRF size. In
this respect, while interesting, we did not consider the effect
that the hemodynamic response function has on the estimates
(which we considered fixed and equal across methods). The
issues we highlight here of the sensitivity of the cost function to
variations in the pRF size are thus general in nature and affect all
estimation procedures similarly. This variability requires careful
considerations when comparing the estimated pRF size across

regions or experimental conditions. To limit this effect, previous
approaches introduced heuristics based on imposing a threshold
on the signal to noise ratio of the data or constraining the search
of plausible pRF sizes. Here we introduce two modification of
the grid-search optimization method based on model averaging
and selecting the best model based on permutation testing. Both
approaches showed improved reliability of the estimates of the
pRF size in both simulated and real data.
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