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Abstract: Fish is a nutrient-rich food but, at the same time, consumption of fish is a possible source of
exposure to heavy metals. Since many coastal Mediterranean areas suffer from great anthropomorphic
pressure, the aim of this study was to assess the level of potentially toxic inorganic elements in
different fish samples from the coastal zone of Southern Italy (Gela) where there is a high mortality
rate linked to cancer disease and congenital malformations. The presence of mercury, cadmium,
lead, nickel, arsenic, vanadium, and chromium was measured by inductively coupled plasma-mass
spectrometry (ICP-MS). The risk assessment was evaluated in terms of estimated daily intake by
calculating the amount of potentially toxic elements that an average individual adult weighing 60 kg
would ingest. Moreover the non-carcinogenic risk was estimated by target hazard quotient (THQ).
The study evidenced significant contamination by inorganic elements, especially cadmium, which
can be linked to industrial pollution. The THQ indexes, as indicators of human health, suggest that
the consumption of fish from the study area is not free of risk.

Keywords: fish; heavy metals; food safety; human health; pollution; Mediterranean Sea

1. Introduction

Pollution due to potentially toxic inorganic elements affects many coastal regions of the world [1-3].
These chemicals are, in fact, not biodegradable and accumulate up to the trophic levels of the food
chain, thus producing adverse effects on the marine ecosystem [4]. On the South coast of Sicily, there is
the most striking example of a compromised landscape in regards to the ecological network, as the
Gela petrochemical industry is the main cause of marked chemical contamination in the South-East of
Sicily [5], which should be one of the most attractive areas of the Region. Yet, since 1960 the industrial
development has generated such serious environmental and health-related damage that in 1990, that
the Gela municipality and two neighboring municipalities (Niscemi and Butera) were included among
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the areas at high risk of environmental crisis and, in 1998 an extensive area of Gela municipality was
designated as a Gela Reclamation Site of National Interest (RSNI) for soil remediation [6-10].

The activities of the industrial district of Gela, an area of Italy where the quantity and danger
of pollutants requires remediation, have led to a progressive contamination of the environment with
extremely high levels of toxic, persistent and bioaccumulating pollutants [11,12]. For some companies
that have carried out the maintenance work of the pipelines for the embarkation and disembarkation
of petroleum products, the sea has become an immense illegal landfill to be used for significant savings
in the costs of special waste disposal. Thus, tons of scrap iron, metal drums and building material
waste are stacked on the seabed near the Gela refinery, along the pipe which, with the breakwater,
makes up the former petrochemical port. Eliminating this waste material would take several years of
work, and imply considerable economic investments [13].

Many important projects have been proposed to reduce the risk and dramatic healthcare
consequences caused by the Gela refinery over more than half a century. In fact, following the Marine
Strategy Framework Directive [14], which establishes a framework for marine environmental policy
that aims to achieve good environmental status (GES) of the EU’s marine waters by 2020 [15-17], the
Sicilian Region Authority for the Landscape and Environment started redrafting the management plan
for this site [18]. This requires improving current assessment capabilities, through the characterization
of the marine-coastal environment by suitable indicators of contamination.

Since 1998, preliminary studies conducted by the interdisciplinary group of oceanography of the
National Council of Research focused on the state of health of the central basin of the Mediterranean
Sea, the area of the Strait of Sicily and the area of Gela. Most of these studies concerned the mineral
distribution in both the dissolved phase and the suspended particulate of seawater samples collected at
different depths, characteristics of the foraminifera found and inorganic pollutants in sediments [19-23].
These investigations help in determining the magnitude of anthropogenic contamination and particular
attention has been paid to pollutants migration in the environment and to the potential exposure of
the population; however, they do not provide any information about the biota’s contamination. It is
well known that inorganic contaminants, such as heavy metals, are of particular concern due to their
environmental persistence and potential ecological risks. Moreover, heavy metals can interact with many
aquatic organisms that can assimilate dissolved metals directly, causing unwanted bioaccumulation.

Recently, our research group evaluated the pollution level induced by potentially toxic inorganic
elements in vegetables coming from the area of Gela and the results suggested that the concentrations
of some elements (particularly cadmium and arsenic) might determine important cancer risk for the
consumers [10]. Considering that toxic inorganic pollution in the Gela area should not be neglected
and, despite the fact that in 2014 the petrochemical plant was reconverted into a “green” refinery, Gela
citizens risk dramatic health consequences generated by the activity of the refinery during the last
fifty years. This study aims at monitoring the accumulation of potentially toxic inorganic pollutants in
different fish samples collected in the Gulf of Gela. The simultaneous determination of some inorganic
elements (Hg, Pb, Cd, Cr, Ni, Cu, V, and As) by inductively coupled plasma mass spectrometry
(ICP-MS) in fishes and sediments represents a global tool to assess the marine environmental safety of
Mediterranean Sea close to Gela coasts and, at the same time, can be considered from a nutritional
standpoint to evaluate the risk associated with seafood consumption for human health.

2. Materials and Methods

2.1. Study Area

The Gulf of Gela is located on the Southern coast of Sicily and is the largest gulf of the island.
It extends for about 25 km and is included between Punta Braccetto to the East, and Licata to the
West (Figure 1). The coast, characterized by typical dunes with Mediterranean vegetation, is low and
sandy. In short stretches, the sandy shore shows high ecological diversity in terms of environmental
heterogeneity and variability of species composition. The whole coast overlooks the gulf, has no



Int. |. Environ. Res. Public Health 2020, 17, 3285 30f 22

natural ports and the seabed is generally low. Nevertheless, in the gulf there are some artificial ports:
the port “Rifugio di Gela” (used for small boats), the port “Isola di Gela” (used by the petrochemical
refinery, especially for tankers), the port of Licata and the port of Scoglitti.
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Figure 1. Location of (a) Gela area in Sicily (Italy) and (b) study area of Gela and municipalities of the
high environmental risk area.

The entire coastal stretch has a low soil attenuation capacity, i.e., that of filtering against potential
pollutants [12]. The area presents an intrinsic vulnerability of the aquifer to pollution. In fact, due to
the high permeability of the wind sands and the presence of groundwater, the pollutant, if present,
reaches the surface in a short time, which is not sufficient for a suitable self-purification. Therefore,
the geological study of the coastal stretch, following an approach based on pollution, attributes a
medium-high degree of vulnerability to this area [24].

Pollution in the study area dates back to industrial activities that have been carried out since the
mid-1950s, which exposed the soil and the aquifer to contamination from anthropogenic origin [10].
The main causes of pollution of the coastal marine environment in the Gulf of Gela are linked to the
discharge of process and cooling waters of the industrial pole, the port activities, the delivery of poorly
or not purified municipal sewage to the sea, and the delivery of waste water from agricultural land
to the sea [8]. Several rivers and streams flow into the Gulf of Gela and some of these are near the
refinery. This one is located in a flat area in the middle of the Gulf of Gela and, more precisely, in the
east of the river Gela whose flow rate is strongly influenced by the discharge of cooling water from the
petrochemical plant. Moreover, about 5.5 km from the refinery in the East, there is the Acate river,
whose environmental status has been defined as “bad” since the water quality standard—expressed
as the maximum permissible concentration for some chemical pollutants in the water—exceeds the
quantitative level of even a single pollutant. [25].

The seabed in front of the refinery consists of medium and coarse sands (between 0.18 and 2 mm),
and is characterized by a reduced slope of about 1.5% and up to 2%. The coasts of the study area have
become more vulnerable to natural hazard related to intense erosion caused by the sea. The coastline is
exposed to wave action, especially from North-West to South-East; also, the marine currents within the
Algerian current of the Strait of Sicily are characterized by prevalent NW-SE direction.

2.2. Reagents and Standards

The gases, 99.9990% argon and 99.9995% helium, were supplied by Rivoira gases (Rivoira S.p.A.,
Milan, Italy). Concentrated (65%, v/v) nitric acid trace metal analysis grade (J.T. Baker, Mallinckrodt
Baker, Milan, Italy) and concentrated (30%, v/v) hydrogen peroxide (J.T. Baker, Mallinckrodt Baker,
Milan, Italy) were used to digest samples. Ultrapure de-ionized water (resistivity 18.2 M(). cm) was
obtained from a Milli-Q water purification system (Thermo Scientific Barnstead Smart2Pure 12—Milan,
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Italy). Stock standard solutions (1000 mg L1 in 2% nitric acid) of each element under investigation
were purchased from Fluka, Milan, Italy (Cr, Ni, Cu, Pb, As, and V) and from Merck, Darmstadt,
Germany (Hg and Cd). Also, standard solution of Re at 1000 mg L~! in 2% nitric acid was acquired by
Fluka (Milan, Italy) and used, as preparation standard at 0.8 mg L=}, to verify the sample digestion and
to correct the volumetric changes. Stock standard solutions of 15Ty, 45G¢, 103Rh, and 2%9Bi (1000 mg Lt
in 2% nitric acid) were purchased from Fluka (Fluka, Milan, Italy) and were used as on-line internal
standards (at level of 10 pg L) to correct instrumental drift and variations due to the matrix. To tune
the instrument, an ICP-MS tuning solution containing 59Co, 7Li, 8Y and 2971 (each 1.0 ug L tin 2%
HNOs3) was obtained from Agilent (Santa Clara, CA, USA). Mixed working calibration standards were
prepared at concentration ranges suitable for the analytes being investigated. Before use, all glassware
was washed with 5% HNOj for at least 12 h, rinsed with ultrapure water and then dried.

2.3. Sampling

Ten fish samples and ten sea urchins were collected in the Gulf of Gela in order to carry out a
bio-monitoring of the marine environment. The fish samples were netted and obtained from local
fishermen between the east area of the petrochemical site and the city of Gela, while the sea urchins
were taken manually from the same place. The sampling took place between March—April 2018. The
physicochemical properties, e.g., pH (8.35 at 18.5 °C) and dissolved oxygen (187.60 mg L™!) of seawater
were determined. In detail, the samples were as follows: 6 red mullets (Mullus barbutus) which were
divided into two groups according to the their size and weight, namely: Group Mullett 1, with lengths
14-16 cm and weights 53-61 g, and group Mullett 2, with lengths 18-20 cm and weights 87-97 g; three
sea hen (Chelidonichthys lucernus) with lengths between 25 and 30 cm and weights between 250280 g; 1
ray (Raja species), 36 cm long and weighing 349 g; 10 sea urchins (Paracentrotus lividus) with diameters
between 55 and 60 mm collected at a depth between 2 and 7m.

The analytical data of the fish samples and sea urchins from Gela were compared with other fish
samples caught in Sicilian areas where there is no industrial settlement. These samples were used as
controls to assess the significance of the different levels of contaminants observed.

For fish samples, the comparison was performed on 8 fish specimens: 2 specimens of sand
streenbras (Lithognathus mormyrus) caught by net in Marina di Ragusa, an area with seabed and marine
environments similar to those of the Gulf of Gela and where there are no industrial settlements, 3 sea
bass (Dicentrarchus labrax) and 3 sea bream (Sparus aurata) taken from a breeding facility, located in
the Gulf of Patti in the Tyrrhenian Sea (North of Sicily) and unaffected by human activities. Each fish
sample was subjected to biometric measurements (weight, total length, height, diameter for the sea
urchins) and stored in a plastic food bag at —80°C until dissection and analysis.

In order to carry out a bio-monitoring of the marine environment, since the sea urchin (Paracentrotus
lividus) is a suitable organism to fill the role of indicator due its wide distribution, easy collection,
filter-feeding habits and good tolerance to pollutants [26-31], 20 sea urchins (Paracentrotus lividus)
were manually collected from two control areas: Marina di Ragusa (10 specimens) and Piraino in the
province of Messina (10 specimens). The sea urchin gonads were extracted, homogenized, placed in
test tubes and transferred to the freezer at —20 °C until analysis.

In order to obtain any indicative data on the contamination of marine sediments in the area in
front of the Gela refinery, in the same period, 2 samples of surface sediments were collected, for a total
weight of about 1 kg for each sample (Figure 2).

Each sample was formed by the union of 5 superficial samplings (0-10 cm depth), performed
randomly at a depth of 3 to 6 m, each within a square mesh of 50 m x 50 m. The sediment sample SED
1 was taken about 1 km from the shore (about 4 m deep) while the sediment sample SED 2 was taken
about 500 m from the shore (about 3 m deep).

The samples were homogenized in situ and stored, separately, inside polyethylene containers
(Sarstedt, Germany). After collection, the samples were stored at 0 °C. Coordinates, depth of the
seabed, color, odor and type of sediment were recorded (Table 1).
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Figure 2. Sampling plan of marine sediments in the Gulf of Gela.

Table 1. Sampling and physical characteristics of marine sediments.

Sample GPS Coordinates Color Odor Sediment Type
SED 1 37°2'54.78” N 14°16’1.81” E brown odorless silty-sandy
SED 2 37°3'6.89” N 14°15/5354”E  gray-black hydrogen silty-sand

’ ’ y sulfide/hydrocarbons y y

To minimize sample contamination, all sample handling was performed wearing disposable,
powder-free, latex gloves in clean laboratory areas.

2.4. Sample Pre-Treatment

2.4.1. Sediment Samples

Initially, the sediment samples were dried in an oven at 40 °C till constant weight; then a part of
each sample was powdered using an agate mortar and an agate pestle. About 1 g of dry powdered
sample was digested with 2.5 mL of HNO3, 0.8 mL of HCI, 1 mL H,O,, and 1mL of Re internal standard
in Teflon containers. The mineralization was carried out using a microwave oven (Mileston ETHOS 1,
Milestone, CT, USA) with a constant microwave power (1000 W). The heating program was as follows:
temperature was increased to 200 °C in 10 min (Step1), and then it was held to 200 °C for 10 min
(Step 2). After the mineralization, the residues were cooled at room temperature, filtered and diluted
to 25 mL with ultrapure water. All the final samples were analyzed by ICP-MS.

2.4.2. Fish Samples

Each fish sample was dissected and the muscle tissues, without skin, were collected and
homogenized with a ceramic knife to constitute the global sample. About 0.7 g of the homogenized
sample were placed in a Teflon vessel and added with 7 mL of 65% HNOj3, 1 mL of 30% HpO,, and 1mL
of Re internal standard. The samples were digested using an optimized method (Step 1 for 10 min at
200 °C and Step 2 for 20 min at 200 °C with a power of 1000 watts), and then made to volume in 25 mL
ultrapure water. To minimize the error in the mineralization phase, a blank sample was prepared and
subjected to the same procedures.

2.5. ICP-MS Analysis

The determination of the minerals was carried out using the same procedure adopted for the
determination of potentially toxic inorganic species in vegetables and zebra fishes [10,32]. The digested
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samples were analyzed using an Agilent 7500CX ICP-MS spectrometer (Agilent, Santa Clara, CA, USA)
with Octapole Reaction System (ORS), reaction/collision cell, and an ASX 500 auto sampler. The system
was pressurized with helium to remove the interference due to the plasma and to the matrix. The
analyses were performed either in gas mode or in no gas mode.

The ICP-MS operating conditions were the following: RF power, 1550 W; plasma gas flow rate,
15 L min~%; auxiliary gas flow rate, 0.9 L min~! 1
flow rate, 1 mL min~’; sample depth, 9 mm; spray chamber temperature, 2 °C; vacuum, <1.5 X 1077
Pa; interface pressure; 5.3 x 1072 Pa. These parameters were optimized using a solution containing

nuclides “Li, ¥Co, 80Y and 205T1 (10 nug L_l), whose masses were distributed all over the interval

; carrier gas flow rate, 1.1 L min™"; sample introduction

of interest.

For each element, selected isotopes were chosen on the basis of the relative isotopic abundance, in
order to optimize the sensitivity, and the absence of important isobaric interferences or interference
induced by the matrix, when possible. They were the following: 03Cy, 2OzHg, 4y, 60N, 7P As, OV,
52Cr and 208,207,206 pp,

A solution of 1°In, 4°Sc, 183Rh and 2%?Bi (10 ug L~! final concentration) was used as an on-line
internal standard to correct any instrumental drifts and matrix effects.

Quantitative measurements were carried out using the external standard method. The calibration
was performed with a multi-standard solution of Cr, V, Cu, Cd, Pb, Ni and As obtained by mixing
standard solutions of each individual element and diluting with nitric acid (HNOj3, 2%). Six standard
mixtures of all the elements, at different concentrations ranging from 5 to 2000 g L=! for each element,
were prepared by adding the appropriate amount of the element standard solution in 10 mL volumetric
flasks and bringing to volume with HNO3 2%.

In all the samples Hg was analyzed separately, applying a procedure that we used in an earlier
study [10]. Therefore, to minimize any memory effects, a washing solution with HNO3; 2%, was fluxed
between an analysis and the subsequent.

In order to exclude error and to satisfy quality assurance, all analyses were carried out in triplicate,
including blank and certified reference material.

2.6. Quality Assurance

The analytical process used was validated according to the regulation [33] and international
guidelines [34,35]. The evaluation of the linearity was based on injection of five standard solutions.
Each solution was injected six times (n = 6). Good linearity was observed in each concentration range,
with R? always >0.99993. The limits of detection (LODs) and of quantification (LOQs) were calculated
according to the International Union of Pure and Applied Chemistry (IUPAC) guidelines [36] and
Table 2 reports the validation parameters.

Table 2. Analytical performance of the method.

Element R2 LOD ! (ugL1) LOQ 2 (ugL1)
Cr 0.99999 0.006 0.02
Ni 0.99998 0.002 0.007
As 0.99997 0.0004 0.001
cd 0.99999 0.0005 0.002
\Y 0.99995 0.0009 0.003
Hg 0.99997 0.0009 0.003
Pb 0.99993 0.0004 0.001
Cu 0.99998 0.004 0.01

1 LOD, limit of detection (3.3 6/S); 2 LOQ, limit of quantification (10 0/S).

The limits of detection (LODs) and of quantification (LOQs) were experimentally calculated as
3.3 0/S and 10 o/S, respectively, where o is the residual standard deviation and S is the slope of the
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calibration curve. LOD values ranged from 0.0004 to 0.006 pg L~!, while LOQ values ranged from
0.001 to 0.02 pg L1

Accuracy was assessed by evaluating six determinations on certified reference materials and
was reported as recovery (%) between the value found with the calibration curve and the true value
reported, together with the relative standard deviation percentage (RSD%). The accuracy for the
sediments was evaluated on the certified matrix SOIL, GBW07402 provided by Natural Resources
Canada (NRCan) certificate for As 13.7 mg kg~!, Cd 0.071 mg kg™!, Cr 47 mg kg~!, Cu 16.3 mg kg~!, Pb
20 mg kg™!, Ni 19.4 mg kg™!, V 62 mg kg™!, Hg 15 ng g~!. Natural Resources Canada (NRCan) helps
improve the reliability of measurements at mineral analysis labs in Canada and around the world.
The certified matrix used for fishes was FISH TISSUE IAEA—407 provided by IAEA Environment
Laboratories and certified for As 12.6 mg kg™!, Cd 0.189 mg kg~!, Cr 0.73 mg kg~!, Cu3.28 mg kg~!, Pb
0.12mg kg™, Ni 0.60 mg kg™!, V 1.43 mg kg~!, Hg 0.222 mg g~!. The IAEA Environment Laboratories
produce certified reference materials for the measurement of radionuclides, trace elements and organic
contaminants. The obtained results, reported in Table 3, show that the recovery on the certified matrix
GBW(07402 varies from 87 to 112% with Relative Standard Deviation (RSD) values always lower than
5.62%. For the matrix FISH TISSUE IAEA—407, the recovery varied from 75 to 101% with RSD values
always lower than 7.23%.

Table 3. Accuracy and precision performance for the certified matrices.

Certified Matrix Certified Matrix Certified Matrix Certified Matrix
IAEA-407 GWB 07402 IAEA-407 GWB 07402
Element Recovery Accuracy Recovery Accuracy  Restricted Intermediate  Restricted Intermediate
(%) (RSD%) (%) (RSD%)  Repeatability Repeatability Repeatability Repeatability
(RSD%) (RSD%) (RSD%) (RSD%)
Cr 94 4.22 96 3.89 13 54 3.6 7.0
Ni 97 4.96 94 5.62 0.8 2.7 2.3 3.0
As 89 3.98 88 3.56 15 6.9 3.3 4.3
Cd 101 5.41 112 2.96 3.7 7.1 2.3 8.6
\% 88 3.98 97 4.26 3.1 48 3.6 7.5
Hg 92 3.06 87 2.54 1.1 5.5 3.8 9.5
Pb 75 3.42 90 1.45 2.9 3.9 3.8 8.3
Cu 92 7.23 97 5.42 3.6 48 2.9 8.7

The precision was also evaluated by intra-day and inter-day repeatability. The intra-day
repeatability of the method was assessed from replicates of the same material analyzed in the
same batch (n = 10) and in different days (1 = 20). The precision, theresults of which are reported as
RSD% in Table 3, was excellent in the same analytical run (RSD% between 0.8 and 3.7 for fish and
between 2.3 and 3.8 for soil) and good for long-term analysis (RSD% between 2.7 and 7.1 for fish and
between 3.0 and 9.5 for soil).

2.7. Target Hazard Quotient Calculation

The non-carcinogenic effect, expressed as target hazard quotient (THQ) and defined as the ratio
of the potential exposure to a substance and the level at which no adverse effects are expected, was
determined following the Equation (1):

THQ = 1072 (Efr X EDjo¢x FIR x C) / (RfDyX BWa X ATn) 1)

where Efr is the exposure frequency (365 day/year), EDyo; is the exposure duration (70 years), FIR
is the average daily consumption of muscle meat of fish or sea urchins (gr/day), C is the average
concentration of the heavy metals in the sample (mg/kg), RfDo is the oral reference dose (mg/kg-day),
BWa is the average body weight (kg) and ATn is the average exposure for non-carcinogens in a year
(365days/year of exposure, assuming 70 years in this study). The data were estimated for an Italian
adult (body weight 60 kg) that ingests 77.8 gr of fish [37] and 4 gr of sea urchins daily. Particularly,
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since daily ingestion values are not reported for sea urchins, and for the reason that European people
generally do not eat them in the same amount as fishes but as mollusks, we assumed a weekly ingestion
of sea urchins corresponding to 30 gr (about 4 gr per day).

A THQ value below 1 indicates no adverse effect for human health; if THQ is greater than 1, then
adverse health effects are possible.

Moreover, considering that exposure to more pollutants may cause cumulative and/or interactive
risk effects, based on United States Environmental Protection Agency (USEPA) suggestions [38], we
calculate the Combined Target Hazard Quotient (CTHQ) according to the Equation (2):

CTHQ = Z THQ @)
k=1

wheren =1,2,...,nis the individual THQ for the studied inorganic elements.
3. Results and Discussion

3.1. Level of Potentially Toxic Inorganic Elements in Marine Sediments

The concentrations of the inorganic elements (As, Cd, Cr, Cu, Hg, Ni, Pb and V) in sediments
from the investigated area are shown in Table 4. The study, involving only two sediments, revealed
that both have high concentrations in V (14.89 mg kg~! and 27.17 mg kg~!), As (10.76 mg kg~! and
13.44 mg kg™!) and Ni (5.37 mg kg ! and 11.11 mg kg~!) of apparent industrial origin.

Table 4. Concentration of potentially toxic inorganic contaminants in sediments (mg kg ™).

Element SED 1 SED 2 EQS-AA1

As 10.76 £ 0.31 13.44 £ 0.35 12

Ni 5.37 £ 0.04 11.11 £ 0.07 30

Hg 0.02 £ 0.00 0.01 +0.00 0.3

A% 14.89 £ 0.16 27.17 £0.20 -

Pb 2.77 £0.01 453 £0.01 30

Cd 0.55 + 0.04 0.60 +0.02 0.3

Cu 2.77 £ 0.06 433 +0.10 -

Cr 6.50 + 0.01 14.25 + 0.02 50
! Environmental Quality Standards—Annual Average. Legislative Decree 8 November 2010 n. 260. Table 2/A, and
Table 3/B.

The highest concentrations of potentially toxic elements in the sediments have been found in the
internal area of the Port due to a lower dispersion capacity of the sedimented material and a greater
contribution of municipal sewage containing such pollutants. In fact, as data shows, the levels of
potentially toxic inorganic elements had a different distribution profile in the two samples tested and
the sediment SED 2, characterized by a dark-gray color and the persistent odor of hydrocarbons and
hydrogen sulfide, showed higher concentrations of potentially toxic elements. The analytical data
indicate that the levels of Pb, Cr, Ni, V and Cu in SED 2 were approximately two times higher than
those of SED 1 and these results evidence a progressive increase in concentration of potentially toxic
species from the outermost zone to the innermost one. In addition, the levels of Pb and Ni in SED 1
were comparable with previous studies in the Strait of Sicily [39]. In both sampling sites, the Cd levels
were significantly exceeded (about 10 times) with respect to the Coppola [39] investigation, indicating
anthropogenic contamination of sediments in the area.

To evaluate the pollution and assess the sediment quality, the classification of the Environmental
Quality Status (EQS) of sediments was held according to the indications of the European directive [40],
implemented with DL 152/2006 and DM 260/2010 [41,42]. Comparing the results with the level
established by the Ministerial Decrees [42] we highlight that Cd in sediments shows the most serious
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contamination among all the potentially toxic inorganic contaminants considered, exceeding about
two time the limits in both samples. Contamination degree of As in sediment was also high, especially
in the SED 2 sample in which the legal limits were exceeded. Nevertheless, these levels were lower
than those reported for other strongly anthropized port areas of Sicily [43] and comparable with those
recently observed in the Strait of Sicily [39]. Most likely, the discovery of potentially toxic elements
in the sediments is possibly due to impacts deriving from specific anthropic stresses such as the
presence of large industrial settlements that persist on the Strait of Sicily. However, the environmental
outcome and the spread of potentially toxic elements in the sediment is linked to the performance of
multiple competing variables such as: settling times of individual metals, effects of migration currents
along the low sandy coast of the Strait of Sicily, sediment accumulation times linked to the sediment
granulometry, preferential bioaccumulation processes for some metals (e.g., lead and cadmium) in
living organisms. Probably, the presence of mercury in the sediments of the study area is attributable to
the activities linked to the Chlorine-Soda plant in Gela, now closed, which for years poured mercurial
residues into the sea. The low content in the analyzed sediments can be explained considering that the
mercury possibly stratified in deeper layers than those collected. The high vanadium content is most
likely not only due to its natural origin and could also be attributed to the petroleum activity of Gela.
Generally, we could assume that in this marina area a correlation exists among the concentrations of
potentially toxic elements that were present in sediments in higher levels. It may be inferred that such
a relationship could be more significant in locations which are more affected by anthropogenic sources,
in this case petroleum derivatives and antifouling paints used for boats in the Gulf of Gela.

3.2. Level of Potentially Toxic Inorganic Elements in Sea Urchins

The results on the considered potentially toxic elements in P. Lividus gonads collected from Gela
are shown in Table 5. The data were compared with control samples from areas not contaminated by
industrial activities such as “Marina di Ragusa” and “Piraino”. All the data regarding the concentrations
of inorganic elements in fish samples are expressed in mg kg~! of wet weight, as indicated by the
Commission Regulation N°1881/2006 [44].

Table 5. Mean values and standard deviation of concentration (mg kg™ wet weight) of inorganic
contaminants in 30 sea urchins samples collected from 3 different areas in Sicily.

Element Gela Marina Di Ragusa Piraino Limit Value !
As 6.17 + 0.95 411 +0.08 2.71 £ 0.07 -
Ni 0.75 +0.07 1.18 £ 0.10 n.d. 2 -
Hg 0.03 +0.01 n.d. n.d. 0.5
\Y% n.d.n.d. 0.94 +0.09 n.d. -
Pb 22.25 +2.40 1.59 £ 0.16 nd. 15
Cd 0.02 +0.01 1.22 £0.10 n.d. 1.0
Cu 2.31+£0.15 0.27 + 0.04 0.83 + 0.08 -
Cr 2.29 +0.52 0.93 +0.07 nd. -

! Limit values established by the Commission Regulation (EC) n.1881/2006 for Pb and Hg levels in bivalve mollusks.
Limit values established by the Commission Regulation (EU) No 488/2014 for Cd levels in bivalve mollusks. 2nd.:
lower than the limit of detection (LOD).

The 30 sea urchin samples were analyzed and grouped by geographic area, each group consisting
of 10 samples. As the data show, the samples from Gela were the most contaminated and the average
concentration values of potentially toxic elements in the sea urchins from this area were in the order:
Pb> As> Cr> Ni> Hg> Cd. Moreover, the values evidenced that sea urchins from Gela had the highest
mean concentrations of As (6.17 mg kg™!), Cu (2.31 mg kg™!) and Cr (2.29 mg kg™!), compared to
samples from “Marina di Ragusa” and “Piraino”. On the contrary, the Cd content (0.02 mg kg™!) was
about 60 times lower than that found in samples from “Marina di Ragusa” in which V (0.94 mg kg™!)
and the highest mean levels of Ni (1.18 mg kg~!) were determined.
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The scientific literature indicates that P. Lividus is an organism suitable to cover the role of
biological-biochemical indicator due to its wide distribution, easy collection, alimentary and filtering
habits, and good tolerance to polluting substances. It has been used in several local pollution studies
as a bioindicator of heavy metal contamination in the marine environment [29-31,45-48].

Besides being compatible with the results of the survey carried out in this study on marine
sediments, the inorganic contaminants detected in the sea urchin gonads and, in particular, the levels
of Ni, V, As and Hg have a possible anthropogenic origin and could be linked to the activities of the
Petrochemical plant. The samples taken at “Piraino” were least contaminated and this is consistent
with the absence of industrial anthropogenic activities; instead, contrary to what we expected, the
samples from “Marina di Ragusa” were not absolutely pristine and this could probably be due to the
high vessel traffic, especially during the sampling.

The concentrations determined for Pb and Hg in urchins from Gela were higher as compared to
some data in the literature [45,47,48], however, our values were comparable to those determined by
Salvo et al. [29] in other urchin samples from Gela. The Cd levels in Gela samples were on average
about 10 times lower than the values reported by Warnau et al. [48] but comparable with other data [47].
The Cr content, on average, was comparable to an earlier report [48] and to values determined by Salvo
et al. [29]. Cu concentrations in urchins from Gela were much higher than those reported by Warnau
et al. [48] but comparable with other data from the Mediterranean area [29,47]. The Ni and V results
in P. Lividus from Gela were comparable with previous data determined by Salvo et al. [29] which,
furthermore, are the only data reported in the literature for the Mediterranean area.

European food legislation does not set any limits for heavy metals in sea urchins; however, after
comparing the content of Pb, Cd and Hg with the limits established by the European Community
for bivalve mollusks [44,49], it emerged that Pb in sea urchin samples from Gela was 15 times higher
than the limits established for fish safety criterion (1.5 mg kg™!). On the other hand, according to the
regulation, the investigated samples from Gela were characterized by mean concentration of Hg and
Cd (0.03 and 0.02 mg kg ™!, respectively), well within the maximum content set at 0.5 and 1.0 mg kg~!
for mercury and cadmium, respectively.

3.3. Level of Potentially Toxic Inorganic Elements in Fishes

The concentration of potentially toxic elements in fish samples allow us to provide double
information: one of environmental nature linked to the behavior of some species as bio-indicators, and
another one linked to the food safety of the product intended for human consumption. Therefore, to
rationalize the results of the research on fish samples, the data were divided into two Tables.

In Table 6, the analytical results regarding the muscles of the collected mullets (Mullus barbatus)
are grouped together. This species has a high economic and commercial interest for the Gela city. Itis a
benthic and territorial fish and is indicated by FAO/UNEP [50] as a species suitable for monitoring
heavy metal pollution. The samples of mullets have been divided into two groups according to their
size (Mullet 1 and Mullet 2) since the dimensions are recognized to be very important in the processes
of absorption, distribution and elimination of pollutants [51]. The comparative analysis of potentially
toxic elements between the two mullet groups confirms the importance of the dimensions in the
metals accumulation: larger specimens (Mullet 2) show higher concentrations than the smallest ones
(Mullet 1). This confirms that bioaccumulation is higher as the size increases, or in other words, old
and larger fish generally have higher pollutant levels than young and small specimens [3,52,53].

The average concentration values (Table 6) of the inorganic elements detected in the mullets were
in the following order: As > Cd > Pb > Ni > Cr >V > Hg > Cu.
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Table 6. Concentration (mg kg~! wet weight, mean + SD) of potentially toxic elements in mullets (Mullus barbatus) samples from Gela and compared with samples
from different Mediterranean areas.

Sample Sites Weight Mean Concentration + SD
(gr) As Ni Hg A" Pb Cd Cu Cr
Mullet 1 Gela 60 8.40 + 0.07 0.27 + 0.04 0.07 +£ 0.01 0.14 + 0.01 0.31 +£0.05 0.37 = 0.05 0.03 + 0.00 0.24 +0.03
Mullet 2 Gela 90 9.42 + 0.29 0.41 + 0.05 0.07 + 0.00 0.20 + 0.01 0.41 £0.01 0.50 = 0.01 0.04 +0.01 0.38 + 0.02
Minimum value Gela 90-60 8.10 + 0.06 0.22 +0.04 0.07 +£ 0.01 0.12 £ 0.01 0.29 +0.02 0.35 + 0.03 0.03 + 0.00 0.21 +£0.01
Maximum value Gela 90-60 9.68 + 0.12 0.45 + 0.05 0.07 + 0.00 0.23 +0.03 0.43 +0.04 0.56 = 0.06 0.04 +0.01 0.40 + 0.04
Mean value Gela 90-60 8.91 +0.72 0.34 +0.10 0.07 + 0.00 0.17 £ 0.03 0.36 + 0.07 0.43 = 0.09 0.04 +0.01 0.31 +£0.10
Limit vaue ! 1.0 0.30 0.050
Storelli and Marcotigiano g 112 Tonica 50 - - 0.12 +0.10 - 0.13 +0.07 0.17-0.80 - 0.29 +0.21
(2005) [53] 12 +0. 13+ 0. . . .29 + 0.
Storelli and Marcotigiano .
(2005) [53] Catania 50 - - 0.11 +£0.10 - 0.18 +£0.09 0.20-0.25 - 0.21 +0.02
Storelli and Marcotigiano 5
(2005) [53] Capo Passero 50 - - 0.81 +0.52 - n.d. 0.22-0.45 - 0.31+0.11
Kljakovic et al. (2002) [55] Croatia 10-193 - - - - 0.057-0.158 - -
Ferrara and Furnari .
(2004) [54] Adriatic Sea 20-45 - - - - 0.0088-0.029 - - 0.006-0.026
Naccari etal. (2015) [56] " editerranean 40-100 - - <0.06 - <0.09 <0.02 - -

FAO zone 37 1.3

! Limit values established by the Commission Regulation (EC) n.1881/2006 expressed in mg kg~! of wet weight. Maximum levels reported regards muscle meat of fish and rays (Raja
species). The regulation concerns the Pb and Hg levels. Limit values established by the Commission Regulation (EC) No 629/2008 expressed in mg kg’1 of wet weight. Maximum levels
reported regard muscle meat of fish. The regulation concerns the Hg levels in some fish species. The values established in this regulation coincide with those of the previous regulation.
Limit values established by the Commission Regulation (EU) No 488/2014 expressed in mg kg™! of wet weight. Maximum levels reported regard muscle meat of fish. The regulation
concerns the Cd levels. 2 n.d.: lower than the limit of detection (LOD).




Int. |. Environ. Res. Public Health 2020, 17, 3285 12 of 22

The mean concentration of inorganic elements detected in Mullus b. from Gela were compared
with the data obtained in previous studies carried out on the same species, with similar dimensions
and in uncontaminated areas of the Mediterranean Sea [53-56], as well as with the law limits available,
currently only for Cd, Hg and Pb [44,49,57].

The Cd concentrations in mullets from Gela were much higher than those reported in other
works [53,56], indicating a possible effect of anthropogenic input on fishes. Thus, cadmium released
from human activities such as fuel combustion, application of phosphate fertilizers or sewage sludge
could accumulate in fishes. Because it is a non-degradable and cumulative pollutant, cadmium
generally accumulates mainly in fish entrails (intestines, liver and kidneys), and from here it spreads
later to fish muscles [58]. Concerning the toxicological value, the average Cd level (0.43 mg kg™!) in
the samples from Gela was about 8.6 times higher than the legal limits established by the Commission
Regulation N.488/2014 [49], amending the Regulation N. 1881/2006 [44] and fixing the limits for muscle
meat of fish at 0.05 mg kg~!.

The Pb levels (average value 0.36 mg kg~!) were twice as high in the Gela samples compared to
the data in the literature that refers to uncontaminated areas; however, this value does not differ much
from the legal limit (0.30 mg kg~') [44]. Among the potentially toxic elements that negatively impact
the health status of marine environment, Hg deserve particular attention because its concentration
(average value 0.07 mg kg™!) remains lower than the samples from Capo Passero [53] and below the
legal limits fixed for muscle meat of fish (1.0 mg kg_l) [57].

Among the other micro-constituents for which no specific law limits exist, As deserves particular
consideration as the concentration of this element in mullets was higher (average value 8.91 mg kg™!)
than the other potentially toxic elements; moreover, the value was not comparable with the literature
because this element has never been considered before. However, the current As levels suggest that
the high concentrations of As, found also in marine sediments of the Gela area (12.09 mg kg™1), are
probably of industrial origin and could influence the final As concentration in mullet.

Furthermore, Cr deserves more attention because, it is an essential element for the human body
as it could be involved in the blood glucose metabolism [59,60]; however, when hexavalent and
at high concentrations, chromium enters the bloodstream and can produce toxic, mutagenic and
carcinogenic effects in biological systems [61,62]. Its presence in the environment is mainly linked to
anthropogenic sources [53]. The comparative analysis of Cr concentrations shows that the levels are
fairly homogeneous. Particularly, the results of the Gela samples are in agreement with those obtained
by other authors in the Sicilian areas of Catania and Capo Passero [53].

As Table 6 shows, to the best of our knowledge, the V, Ni and Cu contaminations that we
determined for mullets are not comparable with the data in the literature regarding the Mediterranean
Sea. However, their levels in mullet muscles indicate that the possibility of inorganic element
enrichment could arise in an area where there have been anthropogenic activities for many years.
Particularly, as suggested by Antoniadis et al. [63], multi-element contamination cases are complex,
and the enrichment of many elements is often highly related with the occurrence of other elements
with similar chemical behavior. Therefore, multi-element contaminations cause more severe effects
cumulatively than the enrichment of any given element alone.

Finally, Table 7 shows the results of the study carried out on fillets samples of other fish species
caught in the Gulf of Gela: 2 sea hen (Chelidonichthys lucernus) and 1 ray (Raja species). The samples of
Gela were compared with fishes of other species coming from areas (Marina di Ragusa and Patti) not
subject to industrial contamination: 2 streenbras (Lithognathus mormyrus), 3 sea bass (Dicentrarchus
labrax) and 3 sea bream (Sparus aurata). Considering the variability of potentially toxic elements
accumulation among different fish species and in order to make the data comparable, the objective of
the study was to examine the same species both in the survey area and in the control area, unfortunately
this was not possible as for urchins (Paracentrotus lividus) or mullets (Mullus barbutus) for which we
considered the data available in the literature. In spite of these difficulties, all of them are fishes that
live and feed on or near the bottom of seas; moreover, the fish samples had similar lengths.
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Table 7. Concentration (mg kg~! wet weight, mean + SD) of potentially toxic elements in fish samples from Gela Gulf compared to samples from two different

Sicilian areas.

Samples Sites Length Mean Concentration + SD
(cm) As Ni Hg \' Pb Cd Cu Cr
Sea hen Gela 25-30 5.12 £ 0.09 0.33 £ 0.01 0.07 = 0.00 0.15 + 0.00 0.33 £ 0.01 0.39 £ 0.01 nd.! 0.29 £ 0.04
Ray Gela 36 17.98 + 0.43 0.30 £ 0.01 0.07 £ 0.00 0.14 + 0.01 0.31 +0.01 0.40 + 0.01 0.07 £ 0.01 0.26 £ 0.02
Steen bras Ragusa 22-25 5.06 £ 0.15 0.30 £ 0.02 0.08 £ 0.01 0.19 £ 0.01 0.31 +0.01 0.37 £ 0.01 0.21 £0.02 0.29 £ 0.02
Sea bass Patti 20-28 0.78 £ 0.02 0.32 £ 0.02 0.03 £ 0.01 0.19 £ 0.01 0.30 £ 0.01 0.37 +0.01 0.22 £0.01 0.29 £0.01
Sea bream Patti 18-22 1.10 + 0.10 0.29 £ 0.01 0.02 + 0.00 0.14 + 0.01 0.29 +0.01 0.37 + 0.04 0.10 £ 0.01 0.26 +£0.02
Limit value 2 - - 1.0 - 0.30 0.050 - -

! n.d.: lower than the limit of detection (LOD). 2Limit values established by the Commission Regulation (EC) n.1881/2006 expressed in mg kg™! of wet weight. Maximum levels reported
regards muscle meat of fish and rays (Raja species). The regulation concerns the Pb and Hg levels. Limit values established by the Commission Regulation (EC) No 629/2008 expressed in
mg kg™t of wet weight. Maximum levels reported regard muscle meat of fish. The regulation concerns the Hg levels in some fish species. The values established in this regulation coincide
with those of the previous regulation. 2 Limit values established by the Commission Regulation (EU) No 488/2014 expressed in mg kg™ of wet weight. Maximum levels reported regards

muscle meat of fish. The regulation concerns the Cd levels.
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The survey on these last fish samples showed that Hg levels (range: 0.02-0.08 mg kg~!) were
always below the limits established by the regulation (1.0 mg kg~!) [44,57] while Cd concentrations
(range: 0.37-0.40 mg kg ') were consistently far higher than the legal limits (0.050 mg kg™!) [49]. In
particular, the two species caught in Gela (sea hen and ray) showed Cd levels up to eight times higher
(0.39 and 0.40 mg kg~!, respectively), while the Pb contents (0.31 and 0.33 mg kg™, respectively) were
slightly above the legal limits (0.30 mg kg™!) [44]. What is particularly surprising is that these values
were not very different from those determined for the specimens fished in Patti and Ragusa, areas
which are far from direct anthropogenic impacts and are believed to be unpolluted and pristine. This
result could be explained by the fact that in the Gulf of Patti there is a nature reserve (code ITA030012) in
which a colony of yellow-legged gulls reside. Thus, in this area, a bird mediated contamination of trace
elements (especially for As, Cd, Pb, Hg, Ni, V, Cr, Cu, and Zn) exists, as studies on a Mediterranean
coastal system affected by gull guano revealed [64,65]. Regarding the samples from Ragusa, we
suppose that this area, although it does not present industrial settlements, is affected by sea currents
that convey inorganic contaminants in that direction from the nearby Augusta Bay where an important
commercial, industrial and tourist port and a fundamental naval base of the Italian Navy is situated.

The evaluation of the data (Table 7) concerning the contents of potentially toxic element in fishes
shows that in rays (Raja species), a benthic macro-invertebrate fish that could be considered as a
bio-indicator of marine pollution, As levels (17.98 mg kg™!) are far higher than those found in other
species. These results are related to the behavior of this species, to live in close connection with
sediment on the sea bed and to the alimentary habit of drawing nourishment directly from marine
sediments, which in this area are contaminated. However, the health impact of this result in the edible
tissues of fish is difficult to interpret in terms of the ability to induce adverse effects. In fact, while
the arsenic dissolved in water is mostly inorganic, in fishes, arsenic is present predominantly in the
organic forms of arsenobetaine and arsenocholine, which are virtually non-toxic [66].

As mentioned before, there isn’t currently a law that cites the safety limits for As, Ni, V, Cr and Cu.
Particularly, the Ni and V contents do not present significant differences among the fishes of Gela and
the control; Ni was always present in higher concentrations than V, and this distribution pattern reflects
the trend observed in mullets (Table 6). Therefore, we can assume that the inter-species metal capture
capabilities may be a result of a similar metal accumulation. Among the other micro-constituents, for
which no specific law limits currently exist, higher concentrations were observed for Cr and the data
did not show significant differences among the samples from different collection areas (range between
0.26 and 0.29 mg kg~!). Moreover, the levels were not very different from those determined for mullets.
Conversely, the distribution pattern of Cu in the present study shows a different metal accumulation:
the samples from Gela had the lowest content (range: n.d-0.07 mg kg~') while the highest were in sea
bass (Dicentrarchus labrax) and steenbras (Lithognathus mormyrus) (0.22 and 0.21 mg kg~!, respectively).
The different abilities of different fishes to store traces of potential toxic elements could be responsible
for the differences in the Cu concentrations. However, the different Cu content could also be due to the
presence of munitions—brass or bronze objects on the bottom of the sea in Patti or Ragusa—so that
this element may be bio-available as a contaminant.

The comparative analysis of metal pollution among the fish species in Tables 6 and 7 evidence
that fishes from Gela showed a similar trend in potentially toxic element contamination, characterized
by high Cd levels, Hg contents lower than the law limits and Pb concentrations slightly higher than
the legal limits.

3.4. Intake Evaluation

The data determined for sea urchins, mullets, sea hens and rays has been applied to assess the
health risk for the consumers. Therefore, to predict the human intake we considered the recommended
dietary allowance (RDA) for Cu and Cr [67]; the maximum residue limit (MRL), the tolerable weekly
intake (TWI) and the provisional tolerable weekly intake (PTWI) values, established by the Europe
Food Safety Agency [68-72], were considered for Hg, Cd, Pb, and As. Moreover, since the EFSA
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CONTAM Panel determined that PTWI is no longer appropriate, in order to make these values more
health protective, we determined the benchmark dose of 1% extra risk (BMDLg;) [68,70] for As and Pb.
To evaluate the chronic dietary exposure to Ni, we calculated the tolerable daily intake (TDI) based on
the EFSA experts’ safe level because there are no legal maximum levels for nickel in food [73]. For
vanadium, EFSA failed to establish a tolerable upper intake level because of difficulties in identifying a
pivotal study to be used as a point of departure. All these parameters are reported in Table 8.

Table 8. Estimated metals intake of daily seafood consumption (4 gr of sea urchin and 77.8 gr of fish
muscle) for an adult of 60 kg.

Element As Ni Hg Pb Cd Cu Cr
MRLfor bivalve mollusks (mg/Kg/day) 0.50 15 1.0
MRLfor muscle meat of fish (mg/Kg/day) 0.50 0.30 0.10
TWI or PTWI(mg/kg b.w./week) 0.015 0.004 0.025 0.0025
TDI (ug/kg b.w./day) 2.8
BMDLy; (ug/kg b.w./day) 0.3-8 1.5
RDA (mg/day) 1.00 0.04
Sea Urchin (mean value mg/Kg) 6.17 0.75 0.03 22.25 0.02 231 2.29
% of TWI or PTWI estimated by mean value 19.2 0.35 41.53 0.45
% of TDI estimated by mean value 1.79
% of BMDLg; estimated by mean value 5.14-137.11 98.89
% of RDA estimated by mean value 0.93 22.86
Mullet (mean value mg/Kg) 8.91 0.34 0.07 0.36 0.43 0.04 0.31
% of TWI or PTWI estimated by mean value 539.09 16.11 13.22 157.21
% of TDI estimated by mean value 15.93
% of BMDLg; estimated by mean value 144.40-3850.67 31.47
% of RDA estimated by mean value 0.29 60.49
Ray (mean value mg/Kg) 17.98 0.30 0.07 0.31 0.40 0.07 0.26
% of TWI or PTWI estimated by mean value 1087.75 16.11 11.18 145.23
% of TDI estimated by mean value 13.89
% of BMDLg; estimated by mean value 291.36-7769.63 26.62
% of RDA estimated by mean value 0.58 51.15
Sea hen (mean value mg/Kg) 5.12 0.33 0.07 0.33 0.39 nd. ! 0.29
% of TWI or PTWI estimated by mean value 309.76 16.11 12.09 143.41
% of TDI estimated by mean value 15.28
% of BMDL; estimated by mean value 82.97-2212.55 28.79
% of RDA estimated by mean value n.d. 56.99

n.d.: lower than the limit of detection (LOD); b.w.= body weight.

In order to evaluate the risk associated with the consumption of fish from the study area, the
dietary intake was assessed for an adult (60 kg for an Italian) assuming a daily ingestion of 77.8 gr
muscle meat of fish [37] and a weekly ingestion of 30 gr sea urchins; the results are reported in Table 8.
As mentioned above, MRL levels for potentially toxic elements in sea urchins have not been established
yet; then, we considered the maximum reside levels fixed for bivalve mollusks for Pb [44], Hg [44,57]
and Cd [49].

The data analysis showed that the Hg levels were less than the MRL (0.50 mg kg™!) in all the
species. On the contrary, with the exception of sea urchins (MRL value 1.0 mg kg~!), Cd concentrations
in all the other samples exceeded the MRL value (0.10 mg kg™!). Relating to Pb, all the fish samples
were just above the specific MRL (0.3 mg kg~!) while the sea urchins presented levels that were
significantly greater than the limit in the European legislation (1.5 mg kg™!).

The comparative analysis of pollution among the species analyzed evidenced that all the samples
do not exceed the PTWI value for Hg, although a different trend in metal contamination can be
evidenced. In fact, Hg reaches the highest residual levels in mullets, rays and sea hen that live on
the seabed and accumulate contaminants from sediments (particularly ray), or have carnivorous
feeding habits.
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Compared to the safety standards, the results of the present study show that: Cd content in
sea urchins (0.45%) remain within safety margins of TWI while in all the fish samples this value
was exceeded (143.41-157.21%); conversely, PTWI and the extra-safety margin of BMDLg; are within
the safety limits for Pb in mullets (13.22% and 31.47%, respectively), sea hen (12.09% and 28.79%,
respectively) and rays (11.18% and 26.62%, respectively) while BMDLy; in sea urchins is borderline
(98.89%); Ni (1.79-15.93%) never exceeded the fixed TDI limit while the contents of Cu (n.d—0.93%) and
Cr (22.86-60.49%) remain within the RDA margins. A separate comment should be made for the arsenic
content. As the data show, As surpassed both PTWI and BMDLy; values in all the analyzed samples,
reaching significantly high values for rays (PTWI = 1087.75% and BMDLg; range = 291.36-7769.63%).
However, according to the EFSA opinion [68], data from seafood and fish, which are the major sources
of arsenic in animal feed materials, did not indicate arsenic levels of concern because the toxicological
risks mainly refer to inorganic arsenic, while the predominant forms in fish are the less toxic organic
forms. EFSA concluded that food derived from fishes contributes only insignificantly to human
exposure as the carry-over of arsenic in its inorganic form into edible tissue is low. Because the current
data produced many results for total arsenic, but relatively few for inorganic arsenic, the CONTAM
Panel considered the possibility of using a conversion factor which might provide an estimate of
inorganic arsenic content from the total arsenic data. A problem with this sort of approach is that
the relative proportion of inorganic arsenic and the ratio may vary depending on the seafood type.
Therefore, because of the observed variability in the reported inorganic arsenic levels, it was not
realistic to apply specific conversion factors to the total arsenic data. In our opinion, even if arsenic in
fish products is mostly present as an organic compound, the contribution to the diet provided by these
foods could be quite high, also because other food sources may contribute to the increase in quantities
ingested up to the maximum level allowed by European regulations. The risk would be greater in the
case of high consumption of fish, not uncommon in Italy, where some people, such as fishmongers,
fishermen or large consumers of fishery products ingest quantities of fish, crustaceans and mollusks in
much larger quantities than the average person.

3.5. Human Health Risks

The potential human health risks for fish consumption by the Gela population are summarized in
Table 9 where the results of the target hazard quotient (THQ) and cumulative target hazard quotient
(CTHQ) of potentially toxic elements are summarized with the corresponding oral reference dose
(RfD,) established by the United States Environmental Protection Agency (USEPA).

Table 9. Estimated target hazard quotient (THQ) and cumulative target hazard quotient (CTHQ) of
inorganic elements for the inhabitants of the study area through the consumption of fishes.

1

RfDo Sea Urchin Mullet Ray Sea Hen

(mg/kg-day)
As 0.00030 137.111 3850.668 7769.627 2212.546
Ni 0.02000 0.00251 0.02230 0.01945 0.02140
Hg 0.00030 0.00667 0.30688 0.30256 0.30688
A\ 0.00504 0.00000 0.04348 0.03679 0.03833
Cd 0.00100 0.00160 0.56146 0.51867 0.51218
Cu 0.04000 0.00386 0.00120 0.00243 0.00000
Cr (IIT) 150.000 0.00010 0.00027 0.00023 0.00025
Cr (VI) 0.00300 0.05080 0.13442 0.11367 0.12664
Cr (VI) 2 0.00300 0.00847 0.02248 0.01902 0.02118
CTHQ 3 139.421 3946.447 7859.518 2302.542
CTHQ 4 0.03681 134.286 167.587 112.122

1 Oral reference dose (RfDo). 2 This value was calculated according to the USEPA indication and assuming that the
Cr(VI) to Cr(IM) ratio is 1:6 (USEPA. 2018). 3 This parameter was calculated considering for chromium the value
reported for Cr(VI). * This parameter was calculated assuming an inorganic arsenic content equal to 1% of the
total value.
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Unfortunately, USEPA has no consensus RfD, for inorganic lead and compounds, so it was not
possible to calculate lead-THQ as for other chemicals. USEPA considers lead to be a special case
because of the difficulty in identifying the classic “threshold” needed to develop an RfD,, [38]. For
mercury we used the mercury chloride parameter, as indicated by USEPA (personally contacted),
although fishes efficiently absorb methyl mercury, and expel it very slowly [74]. The oral RfD, toxicity
value for vanadium used, is derived from the oral RfD, for vanadium pentoxide by factoring out
the molecular weight of the oxide ion. The oral RfD, toxicity value for chromium was evaluated
considering that hexavalent chromium (Cr VI) is toxic and also that chromium trivalent (Cr III) exists.
Therefore, the THQ was calculated for both Cr(VI) and Cr(IIl); moreover, according to the USEPA
indications, it was assumed that the Cr(VI) to Cr(III) ratio is 1:6. The chromium THQ was also valuated
for this value, knowing that this assumption may overestimate or underestimate the risk calculated. In
order to determine the appropriate RfD,, for THQ, it was assumed that all arsenic ions were inorganic.

The estimated THQ for the detected inorganic elements did not pose unacceptable risks except for
arsenic; furthermore, the contribution of inorganic lead could not be considered in the calculation, as
indicated by USEPA after direct contact. As Table 9 shows, THQ values for Cd, Cr(Ill)tot, Cr(VI)ot, Cu,
Hg, Ni and V were less than 1 for all fish specimens, indicating that there is no health risk from these
elements over a life time of exposure. Among these elements the maximum target hazard quotient is
for Cd in mullets (0.56146), ray (0.51867) and sea hen (0.51218), followed by Hg. For this element, the
THQ values were almost comparable among the fish species (0.30688 for mullets and sea hen, 0.30256
for rays) and definitely higher than the value determined for sea urchins (0.00667). It is important to
note that THQ values for As in all the specimens tested were above 1, indicating significant adverse
health risk for non-carcinogenic effects. In particular, the resulting THQ value was very high for rays
(77.69627), followed by mullets (38.50668) and sea hen (22.12546). These results indicate that through
the ingestion of this element from all these fish species, people could experience significant health
risk. As THQ deals with individual metals only, and since generally, food items contain more than
one inorganic element, as detected in our samples, the cumulative risk effect was calculated as CTHQ.
Like THQ, it should also not exceed 1; however, as to be expected from the THQ values, the calculated
CTHQ showed unacceptable risk for habitual fish consumers. It is important to evidence that As
contributed to more than 95.5 % of the non-cancer effect to the CTHQ. So, in order not to overestimate
the CTHQ, we recalculated this parameter assuming that the content of inorganic arsenic was 1%.
However, also in this case, as shown in Table 9, the threshold value is abundantly exceeded for as
many as three fish species (ray, mullet and sea hen). Nevertheless, in relation to this hypothetical
risk, as already stated above and according to EFSA’s opinion [68], the content of arsenic in fish is
considered unimportant because the toxicological risks mainly refer to inorganic arsenic, while the
predominant forms in fish are organic ones, arsenobetaine and arsenocholine, virtually considered
non-toxic. Nevertheless, in our opinion, even if arsenic in fish products is mostly present as an organic
compound, the contribution to dietary intake provided by these foods could be quite high, considering
that other food sources can contribute to the increase of the quantities ingested up to the maximum
level permitted by FAO/WHO [75].

4. Conclusions

In this study, for the evaluation of health risks, it was simply assumed that the local consumption
of fish products came only from the area under investigation. The results obtained cannot be considered
exhaustive as the number of samples examined is limited and in the future a broader and more extensive
monitoring must be envisaged. However, this is a first screening on exposure to toxic compounds
through fish consumption in the high environmental risk area of Gela, and the data obtained allow us
to put forward some considerations and hypotheses.

For the analysis of health risk through the use of fishery products, three different exposure
assessment procedures have been considered: evaluation according to regulations, evaluation according
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to a European harmonized approach using toxicological parameters and evaluation according to the
USEPA approach.

First of all, it must be considered that the legislation governing the maximum levels of some
contaminants in foodstuffs does not include all the analytes investigated in the present search and,
therefore, the evaluation of the exposure according to regulations must be integrated with other
evaluation approaches.

The findings of the study on potentially toxic elements (As, Cd, Cr, Cu, Hg, Ni, Pb and V) in fishes
caught in the Gulf of Gela show a very high risk of dietary exposure in particular for cadmium, lead
and arsenic. Regarding Cd and Pb (contaminants for which maximum allowed limits are defined in
fish products within the European Community), all the fish samples analyzed had levels higher than
the legal limits, in particular Cd. Samples of sea urchins were an exception since in these specimens,
Cd had concentrations lower than the legal limits while Pb reached levels higher than the permissible
limits for consumption. The high levels of Cd found in the sediments can determine a significant
concentration of this element in demersal and benthic species such as the analyzed specimens, which
could therefore play a role as environmental indicators.

The effect of anthropogenic activities on inorganic element loads of edible fish tissues reveals
alarming arsenic content. The results from this study showed that the contamination of sediments by
arsenic exceeded the threshold limit stated by the European Regulations. Therefore, we believe that
under such conditions, the accumulation of this potentially toxic element in fishes could represent
an unacceptable risk for the potential long-term impact on public health and ecosystem integrity.
With the evaluation in accordance to the European harmonized approach, the exceeding of the limits
set for cadmium in some monitored matrices was observed while a hypothetical risk for arsenic
was highlighted.

From the human health point of view, the THQ and CTHQ values indicate significant adverse
health risks of non-carcinogenic effect. Moreover, these data were unfortunately calculated, according to
the USEPA approach, without considering the lead contribution that often results above the legal limit.

The results of the research provide an initial confirmation of the epidemiological hypotheses
that also indicate one of the most important factors of exposure to potentially toxic elements in the
consumption of local fish products. More generally, the levels of dietary exposure are even more
serious if we consider that, in addition to the individual fishes analyzed, it is necessary to add the
contribution of potentially toxic elements coming from the other foods that constitute a diet (water,
meat, dairy products, etc.).
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