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Alpha transmembrane proteins (αTMPs) profoundly affect many critical biological

processes and are major drug targets due to their pivotal protein functions. At present,

even though the non-transmembrane secondary structures are highly relevant to the

biological functions of αTMPs along with their transmembrane structures, they have

not been unified to be studied yet. In this study, we present a novel computational

method, TMPSS, to predict the secondary structures in non-transmembrane parts

and the topology structures in transmembrane parts of αTMPs. TMPSS applied a

Convolutional Neural Network (CNN), combined with an attention-enhanced Bidirectional

Long Short-Term Memory (BiLSTM) network, to extract the local contexts and long-

distance interdependencies from primary sequences. In addition, a multi-task learning

strategy was used to predict the secondary structures and the transmembrane helixes.

TMPSS was thoroughly trained and tested against a non-redundant independent

dataset, where the Q3 secondary structure prediction accuracy achieved 78% in the

non-transmembrane region, and the accuracy of the transmembrane region prediction

achieved 90%. In sum, our method showcased a unified model for predicting the

secondary structure and topology structure of αTMPs by only utilizing features generated

from primary sequences and provided a steady and fast prediction, which promisingly

improves the structural studies on αTMPs.

Keywords: protein secondary structure, protein topology structure, deep learning, alpha-helical transmembrane

proteins, long short-term memory networks

INTRODUCTION

Membrane proteins (MPs) are pivotal players in several physiological events, such as signal
transduction, neurotransmitter adhesion, ion transport, etc. (Goddard et al., 2015; Roy, 2015).
While transmembrane proteins (TMPs), as an essential type of MPs, span the entire biological
membrane with segments exposed to both the inside and the outside of the lipid bilayers (Stillwell,
2016). As themajor class of TMPs, alpha-helical TMPs are given great pharmacological importance,
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accounting for about 60% of known drug targets in the current
benchmark (Wang et al., 2019). Nevertheless, the difficulties of
acquiring their crystal structures always stand in our way due
to their low solubilities in the buffers typically used in 2D-PAGE
(Butterfield and Boyd-Kimball, 2004; Nugent et al., 2011). All of
this is calling for accurate computational predictors.

Predicting alpha-helical TMPs’ tertiary structure directly
from amino acid sequences has been a challengeable task in
computational biology for many years (Yaseen and Li, 2014),
but some indirect measures may be worth considering. Since
Pauling et al. (1951) performed the first protein secondary
structure prediction in 1951, many indicators on the secondary
structure level of proteins, such as topology structure (Wang
et al., 2019), surface accessibility (Lu et al., 2019), have been
demonstrated to be strongly associated with the 3D information
of TMPs. Specifically, the secondary structure helps to identify
function domains and guides the design of site-specific mutation
experiments (Drozdetskiy et al., 2015), whereas the topology
structure can help reveal the relative position relationship
between TMPs and membranes (Tusnady and Simon, 2001).
Generally, the performance of protein secondary structure
prediction can be measured by Q3 accuracy in a 3-class
classification, i.e., helix (H), strand (E), and coil (C), or Q8
accuracy in an 8-class classification under a more sophisticated
evaluation system. Q3 is preferred according to its low cost
and close ability in depicting the secondary structure compared
with Q8.

Progress in the structure prediction for MPs is slower than
that for soluble proteins (Xiao and Shen, 2015). At present,
state-of-the-art methods aiming at predicting the secondary
structure based on primary sequences, such as SSpro/ACCpro
5 (Magnan and Baldi, 2014), JPred4 (Drozdetskiy et al., 2015),
PSIPRED 4 (Buchan and Jones, 2019), and MUFOLD-SSW
(Fang et al., 2020), are all trained on soluble protein-specific
datasets. However, none of those mentioned methods can
simultaneously predict the secondary structure and topology
structure of alpha-helical TMPs. More specifically, existing tools
could not distinguish transmembrane helices of TMPs from non-
transmembrane ones and, in-term, would weaken the TMPs’
structure prediction specificity. Another common challenge
among the available methods is that features fed into these
models are often toomiscellaneous, making themodel prediction
low efficient and even difficult for users to understand. Thus,
a more suitable and practical tool for assisting the structure
prediction of TMPs is greatly needed.

Deep learning has been employed in several protein sequence
classification problems (Lv et al., 2019; Wei et al., 2019; Zeng
et al., 2020). Here, we proposed a deep learning-based predictor
named TMPSS to predict the secondary structure and topology
structure of alpha-helical TMPs simultaneously using amino
acid sequences. Equipped with a robust network and carefully
screened input features, TMPSS ignored input length restriction
and achieved the highest output efficiency compared with other
state-of-the-art methods with an acceptable Q3 performance of
secondary structure prediction in the full chain (see Figure 1).
In addition, our TMPSS achieved the Q3 of a whopping 0.97
in the transmembrane region, suggesting that almost all the

transmembrane helices were identified. Moreover, TMPSS also
significantly outperformed other existing topology structure
predictors with the prediction accuracy of 0.90 and the Matthew
Correlation Coefficient (MCC) of 0.76 using an independently
generated dataset. TMPSS implemented a deep neural network
by grouped multiscale Convolutional Neural Networks (CNNs)
and stacked attention-enhanced Bidirectional Long Short-Term
Memory (BiLSTM) layers for capturing local contexts and
global dependencies, respectively. We also utilized the multi-
task learning technique to improve prediction performance
by considering the mutual effects between different protein
properties. We have released TMPSS as a publicly available
prediction tool for the community. The pre-trained model
and support materials are both available at https://github.com/
NENUBioCompute/TMP-SS.

MATERIALS AND METHODS

Benchmark Datasets
As illustrated above, none of the existing secondary structure
predictors available today are specific to TMPs. Thus, it is
necessary to create unique datasets that contain only alpha-
helical TMPs for targeted research. The Protein Data Bank
of transmembrane proteins (PDBTM) (Kozma et al., 2012),
the first up-to-date and comprehensive TMP selection of the
Protein Data Bank (PDB) (Burley et al., 2017), was chosen to
construct our datasets.We downloaded 4,336 alpha-helical TMPs
from PDBTM (version: 2020-2-7) and removed the chains that
contained unknown residues (such as “X”) and whose length was
<30 residues.

To reduce the redundancy of data and avoid the influence of
homology bias (Zou et al., 2020), we utilized CD-HIT (Fu et al.,
2012) with a 30% sequence identity cut-off and obtained 911
protein chains. These protein chains were then randomly divided
into a training set of 811 chains, a validation set of 50 chains, and
a test set (named “TEST50”) of 50 chains. Secondary structure
labels were obtained by the DSSP program (Kabsch and Sander,
1983) through PDB files, and topology structures were collected
from PDBTM. All the experiments were conducted on five-
fold cross-validation to gauge its generalization performances
(Walsh et al., 2016). The results were used to evaluate our
model and compare against other predictors. The overview of
AA composition of the training set, validation set, and TEST50
is shown in Table 1.

Features and Input Encoding
Features are the key issue for the machine learning tasks (Patil
and Chouhan, 2019; Zhang and Liu, 2019). Prediction of alpha-
helical TMPs’ secondary structure and topology structure at the
residue level is formulated as follows: for a given primary protein
sequence of an alpha-helical TMP, a sliding window whose length
is L residues is used to predict the secondary structure and
topology structure of the central residue. For example, if L is
19, each protein will be sliced into fragments of 19 amino acids.
Providing valuable input features to deep learning networks is of
great importance to make predictions more accurate. Here, we
carefully selected two encoding features to represent the protein
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FIGURE 1 | Secondary structure and topology structure prediction of alpha-helical transmembrane proteins.

TABLE 1 | Overview of AA composition of the training set, validation set, and

TEST50.

3-State 8-State Training set Validation set TEST50

Helices G 60.1% 5,090 59.0% 438 55.1% 317

H 119,987 7,931 7,897

I 3,101 254 192

Strands E 6.3% 12,226 6.5% 853 8.9% 1,240

B 1,295 103 110

Coils C 33.5% 34,372 34.5% 2,298 36.0% 2,607

S 17,861 1,332 1,397

T 19,195 1,409 1,488

fragment: one-hot code and HHblits profile (Remmert et al.,
2012).

The first set came from the protein profiles generated by
HHblits, which is faster, almost twice as sensitive, and provides
more accurate evolutionary information for protein sequence
than PSI-BLAST (Steinegger et al., 2019). We found the best
results against the database named uniprot20_2016_02 with
three iterations, an E-value threshold of 0.001, and other default
settings. The obtained Hhhm matrix consisted of 31 dimensions,
30 of which were HMM profile values and one reflected NoSeq
label (representing a gap) (Fang et al., 2018) at the last column.
Each of Hij in the matrix was scaled by a variation of sigmoid
function [see Equation (1)], making the distribution of features
more uniform and reasonable.

f (t)= 10

1+e
− t
2000

(1)

We then adopted a 21-dimensional matrix Oonehot as our second
set containing a simple one-hot encoding of 20 positions with one
NoSeq label. The past research suggested that one-hot encoding
was straightforward to generate and has been successfully used
in protein structure prediction-associated tasks (Ding and Li,
2015). Therefore, we used 19 dimensional “0” vector with a “1”
to represent AA at the index of a particular protein sequence. We
mapped each protein fragment sliced by the sliding window with
this encoding strategy into an undisturbed coding within local
position information.

Model Design
Network Architecture

As a deep learning-based predictor, TMPSS can predict the
secondary structure and topology structure of alpha-helical
TMPs simultaneously. As we can see in Figure 2, the four
parts of our model are feature-integration layers for input
feature preprocessing, groupedmultiscale CNN layers, attention-
enhanced BiLSTM layer, and fully-connected layers by two
softmax outputs in the end.

Our network’s input carried two types of features generated
from primary sequences, amino acid features, and profile
features. These preprocessed features were fed into a grouped
multiscale CNN layer to capture local position information and
prevent their mutual interferences at the same time. Then, the
merged CNN output flew into two stacked BiLSTM layers, which
turned out to be skilled in extracting long-term dependencies
and global information (Zhou et al., 2016). We also proposed
the attention mechanism as a simple dense layer to help LSTM
know which unit’s output should be paid more attention. At
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FIGURE 2 | Diagram of TMPSS.

the end of the components mentioned above, there were two
fully-connected hidden layers with a softmax-activated output
layer, which performed a 3-category secondary structure and
2-category topology structure classification. More details of
grouped multiscale CNNs and attention-enhanced BiLSTM are
discussed in the Supplementary Material.

Implementation Details

Our model was implemented, trained, and tested using the
open-source software library Keras (Gulli and Pal, 2017) and
Tensorflow (Abadi et al., 2016) on an Nvidia 1080Ti GPU.
Main hyperparameters, such as sliding window length, training
dropout rate, and number of LSTM units, were explored, and
an early stopping strategy and a save-best strategy were adopted
(Fang et al., 2018). When the validation loss did not reduce in
10 epochs during training time, the training process would be
stopped, and the best model parameters would be saved. In all
cases, the weights were initialized by default setting in Keras;
the parameters were trained using an Adam optimizer (Bello
et al., 2017) to change the learning rate during model training
dynamically. Furthermore, batch normalization layers (Ioffe and
Szegedy, 2015) and a Dropout layer (Gal et al., 2017) (rate =
0.30) were utilized since they were both skilled in avoiding the
network from overfitting and improving the speed of the training
process effectively. We set the sliding window’s length as 19
residues and put 700 units in each LSTM layer according to the
hyperparameter tuning results in this study.

Performance Evaluation
A commonly used evaluationmetric for both secondary structure
and topology structure prediction based on the residue level
is accuracy (ACC), and in particular, Q3 was widely used
as a performance metric for 3-category secondary structure
prediction (Fang et al., 2017). To quantitatively evaluate the
performance of TMPSS and other predictors at the residue level,
they were assessed by six measures, including accuracy, recall,
precision, specificity, MCC, and F-measure (Tan et al., 2019; Yang
et al., 2019; Zhu et al., 2019). The calculation formulas of these

evaluation parameters were illustrated as follows:

Accuracy= TN+TP
TP+FN+FP+TN (2)

Recall= TP
TP+FN (3)

Precision= TP
TP+FP (4)

Specificity= TN
FP+TN (5)

MCC= TP×TN−FP×FN√
(TP+FP)(TP+FN)(TN+FP)(TN+FN)

(6)

F−measure=2×Recall×Precision
Recall+Precision

(7)

where TN, TP, FN, and FP, respectively denoted true negative,
true positive, false negative, and false positive samples.

RESULTS

Prediction Performance Analysis at the
Residue Level
To evaluate the prediction performance of each category in both
two classification tasks at the residue level, we used the confusion
matrices (see Figure 3), Receiver Operating Characteristic (ROC)
curves, and Precision–Recall (PR) curves (see Figure 4) to
visualize the predict results of TMPSS on TEST50. As illustrated
in Table 1, TEST50 contains a total of 15,248 residues labeled
by “H” (helix), “E” (strand), or “C” (coil) in secondary
structure prediction and “T” (transmembrane helix) or “N” (non-
transmembrane residue) in topology structure prediction.

Figures 3A,B shows the confusion matrices of secondary
structure prediction in the full chain and non-transmembrane
region, respectively. As we can see, class “H” was predicted
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FIGURE 3 | Confusion matrices of TMPSS’s prediction performance. (A) Confusion matrix of secondary structure prediction in the full chain. (B) Confusion matrix of

secondary structure prediction in the non-transmembrane region. (C) Confusion matrix of topology structure prediction in the full chain.

FIGURE 4 | Receiver Operating Characteristic (ROC) and Precision–Recall (PR) curves of prediction performance. (A) ROC curve of secondary structure prediction.

(B) PR curve of secondary structure prediction. (C) ROC curve of topology structure prediction. (D) PR curve of topology structure prediction.
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TABLE 2 | Comparison of TMPSS with previous secondary structure predictors on TEST50 in the full chain.

Method Class R P S MCC F Full chain

SS Q3

Limitation of

input length

(residues)

Time cost

(min)

SSpro5 (with

templates)

H 0.908 0.942 0.923 0.826 0.925 0.90 Limited to 1,500 980

E 0.908 0.778 0.975 0.824 0.838

C 0.870 0.854 0.926 0.792 0.862

PSIPRED 4 H 0.907 0.880 0.829 0.741 0.893 0.83 Limited to 1,500 490

E 0.726 0.735 0.975 0.705 0.731

C 0.731 0.770 0.891 0.631 0.750

RaptorX-Property H 0.897 0.910 0.877 0.772 0.903 0.85 – 114

E 0.771 0.761 0.977 0.743 0.766

C 0.786 0.770 0.883 0.666 0.778

Porter 5 H 0.919 0.893 0.849 0.773 0.906 0.85 – 1,035

E 0.757 0.763 0.977 0.737 0.760

C 0.758 0.796 0.903 0.670 0.777

DeepCNF H 0.867 0.908 0.879 0.741 0.887 0.83 – 3,000

E 0.741 0.703 0.970 0.694 0.722

C 0.791 0.743 0.864 0.645 0.766

Spider3 H 0.927 0.883 0.831 0.766 0.904 0.85 – 720

E 0.751 0.765 0.978 0.734 0.758

C 0.737 0.803 0.910 0.662 0.769

SPOT-1D H 0.931 0.884 0.832 0.772 0.907 0.85 Limited to 750 2,030

E 0.821 0.767 0.976 0.773 0.793

C 0.731 0.822 0.921 0.673 0.774

MUFOLD-SSW H 0.920 0.884 0.833 0.760 0.902 0.85 Limited to 700 150

E 0.820 0.743 0.973 0.758 0.779

C 0.724 0.815 0.918 0.663 0.767

JPred4 H 0.830 0.908 0.884 0.706 0.867 0.80 Limited to 800 110

E 0.664 0.602 0.958 0.595 0.632

C 0.772 0.689 0.826 0.583 0.728

TMPSS H 0.907 0.888 0.842 0.752 0.897 0.84 – 96

E 0.646 0.764 0.981 0.677 0.700

C 0.763 0.759 0.880 0.641 0.761

H, helix (DSSP classes H, G, and I); E, strand (DSSP classes E and B); C, coil (DSSP classes S, T, and blank).

R, Recall; P, Precision; S, Specificity; F, F-measure. Bold fonts represent the best experimental results.

with great precision in different regions of TMPs, but the
results of class “E” and class “C” were less satisfactory. A
similar experimental phenomenon existed in Figures 4A,B

simultaneously. Helices account for the largest proportion and
make the prediction more significant by considering our dataset’s
characteristics. The matrices demonstrate that TMPSS did well
in both full chain and non-transmembrane region prediction of
secondary structure on TEST50, confirming it to be a suitable
secondary structure predictor for TMPs.

As for topology structure prediction, TMPSS is also an
effective method. The confusion matrix of topology structure
prediction in the full chain (see Figure 3C) proves that the
output results performed well, whether for class “T” or class “N.”
The ROC and PR curves (see Figures 4C,D) also support the
above conclusion. After doing a thorough analysis of TMPSS’s
prediction performance at the residue level on TEST50, it can be

seen that TMPSS is a reliable and convenient tool for predicting
the secondary structure and topology structure of alpha-helical
TMPs synchronously.

Assessment of Multiple Predictors on
TEST50
We tested TMPSS against SSpro5 (Magnan and Baldi, 2014)
(with templates), PSIPRED 4 (Buchan and Jones, 2019), RaptorX-
Property (Wang et al., 2016a), Porter 5 (Torrisi et al., 2019),
DeepCNF (Wang et al., 2016b), Spider3 (Heffernan et al., 2017),
SPOT-1D (Hanson et al., 2019), MUFOLD-SSW (Fang et al.,
2020), and JPred4 (Drozdetskiy et al., 2015) on the TEST50
we created (see Table 2). Experimental results illustrated that
SSpro5 (with templates) was the most accurate 3-state predictor
in our tests on TEST50 in the full chain with a Q3 of 0.90.
It might be probably because of the contribution of templates.
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TABLE 3 | Comparison of TMPSS with previous secondary structure predictors

on TEST50 in the different transmembrane regions.

Method Trans SS Q3 Non-trans SS Q3

SSpro5 (with templates) 0.90 0.89

PSIPRED 4 0.94 0.79

RaptorX-Property 0.95 0.80

Porter 5 0.95 0.81

DeepCNF 0.91 0.80

Spider3 0.95 0.80

SPOT-1D 0.95 0.81

MUFOLD-SSW 0.94 0.81

JPred4 0.90 0.75

TMPSS 0.97 0.78

Trans, transmembrane region; Non-trans, non-transmembrane region. Bold fonts

represent the best experimental results.

However, apart from SSpro5 (with templates), the remaining
servers performed similarly with the maximum Q3 deviation of
0.02, and some servers, such as JPred4, even performed worse.
Many methods refused to accept sequences of more than a
certain length. By comparison, TMPSS was user-friendly with no
length limitation of input and had the highest output efficiency
among the existing methods with an acceptable Q3 of 0.84 in the
full chain.

It is worth emphasizing that this comparison shown in
Table 2 is “unfair” for our experimental tool. Firstly, the
existing secondary structure predictors cannot distinguish the
transmembrane “H’s” from non-transmembrane “H’s”, whereas
ours can. Secondly, some tools, such as SSpro5, uses templates,
which cannot be found whenmaking predictions about unknown
structural sequences and not recommended to use under
normal circumstances.

However, the tools suitable for water-soluble proteins may
not be suitable for handling the residues in the transmembrane
region of TMPs since they cannot distinguish transmembrane
helices from non-transmembrane helices. To assess different
servers’ secondary structure prediction ability in the different
transmembrane regions, we calculated the precision of both
transmembrane and non-transmembrane residues and listed
the results in Table 3. As expected, TMPSS achieved the
best Q3 performance among all exemplified servers in the
transmembrane region, which signified that almost all the
transmembrane helices were identified by our method.

As for topology prediction, we compared TMPSS to state-
of-the-art topology predictors, including HMMTOP 2 (Tusnady
and Simon, 2001), OCTOPUS (Viklund and Elofsson, 2008),
TOPCONS (Tsirigos et al., 2015), Philius (Reynolds et al.,
2008), PolyPhobius (Jones, 2007), SCAMPI (Bernsel et al.,
2008), and SPOCTOPUS (Viklund et al., 2008). As illustrated
in Table 4, TMPSS obtains the best ACC (= 0.90) and MCC
(= 0.76) performance on TEST50 in the full chain among
the listed methods. The most probable cause is that the joint
feature learning helped two prediction tasks promote each other.
According to this, the deep convolutional BiLSTM extracted

TABLE 4 | Comparison of TMPSS with state-of-the-art topology predictors on

TEST50 in the full chain.

Method ACC MCC

HMMTOP 2 0.84 0.64

OCTOPUS 0.87 0.71

TOPCONS 0.88 0.72

Philius 0.87 0.71

PolyPhobius 0.88 0.72

SCAMPI 0.87 0.70

SPOCTOPUS 0.87 0.71

TMPSS 0.90 0.76

Bold fonts represent the best experimental results.

TABLE 5 | Effect of loss weight during multi-task learning.

Loss weight (λ1:λ2) SS Q3 Topo ACC

1:0.1 0.832 0.887

1:0.3 0.833 0.892

1:0.5 0.835 0.896

1:0.7 0.825 0.892

1:1 0.830 0.894

1:5 0.811 0.889

1:10 0.794 0.892

Bold fonts represent the best experimental results.

the most effective information though there are only two
features exploited.

Multi-Task Learning
Secondary structure prediction and topology structure prediction
of alpha-helical TMPs are highly related tasks since the
residues labeled “T” (transmembrane helix) in topology structure
prediction also have the label of “H” (helix) in secondary
structure prediction (Chen et al., 2002). Therefore, we put these
two tasks together to support multi-task learning (Zhang and
Yeung, 2012) and generated a 3-class secondary structure and
a 2-class topology structure simultaneously. With the help of
multi-task learning, our model’s computational complexity was
significantly reduced compared with other methods based on
cascaded deep learning networks. The joint loss function could
be formulated as follows:

L ({si, ti}) = λ1
N

∑
Ls (si, si

∗) + λ2
N

∑
Lt (ti, ti

∗) (8)

where Ls (si, si
∗) = −si

∗log(si) and Lt (ti, ti
∗) = −[ti

∗log(ti) +
(1 − ti

∗)log(1 − ti)] are respective loss functions for secondary
structure and topology structure prediction, si and ti are
predicted probabilities (softmax output) of secondary structure
labels and topology structure labels, respectively, si

∗ and ti
∗

are ground-truth labels of secondary structure and topology
structure, respectively, λ1 and λ2 are loss weight of combined loss
function, and N is the total number of residues. Table 5 shows
the effect of different loss weights (λ1 : λ2) during multi-task
learning on the validation dataset, and we set λ1 = 1, λ2 = 0.5
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FIGURE 5 | Visualize the input features and the features learned by convolutional BiLSTM, respectively, using PCA. (A) Input of TMPSS in SS prediction. (B) Output of

convolutional BiLSTM in SS prediction. (C) Input of TMPSS in TOPO prediction. (D) Output of convolutional BiLSTM in TOPO prediction.

for balancing two joint feature learning tasks and regularization
terms in the end.

Visualization of the Features Learnt by
Convolutional BiLSTM
As an automatic feature extraction process, deep learning can
learn high-level abstract features from original inputs (Farias
et al., 2016). To further explore the effectiveness of convolutional
BiLSTM, Principal Component Analysis (PCA) (Shlens, 2014)
was utilized to visualize the input features and each LSTM unit’s
output in the last bidirectional layer with TEST50. Figure 5
shows the PCA scatter diagrams before and after TEST50 was fed
into our network, respectively.

TABLE 6 | Effect of different combination ways of the attention mechanism on

TEST50.

Model SS Q3 Topo ACC

Attention with multiscale CNNs 0.826 0.893

Attention with BiLSTM 0.835 0.896

Attention with dropout 0.742 0.866

Bold fonts represent the best experimental results.

As described earlier, the input data had 52 features (i.e., 52
dimensions). PCA reduced the input features’ dimensionality
to two principal dimensions and visualized it. As we can
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see in Figures 5A,C, no clear cluster can be found. However,
after feeding the data into the convolutional BiLSTM that
contains 1,400 dimensions (twice of the unit number in a
simple LSTM) at the top layer, the data points showed apparent
clustering tendency (see Figures 5B,D). This visualization
experiment strongly proved the feature extraction efficiency of
the convolutional BiLSTM.

It is worth mentioning that since multi-task joint feature
learning was performed in our network, the label-based
visualization results also revealed the internal relation
between secondary structure prediction and topology
structure prediction. We found that the points representing
“helices” of secondary structure and the ones representing
“transmembrane helices” of topology structure have almost
completely overlapping distributions under different label-
orientated predictions. This experimental phenomenon
also directly confirmed the strong correlation between the

TABLE 7 | An ablation study on TEST50.

Model SS Q3 Topo ACC

Without multiscale CNNs 0.832 0.895

Without BiLSTM layers 0.759 0.743

Without multi-task learning 0.825 0.891

Without attention mechanism 0.828 0.892

TMPSS 0.835 0.896

Bold fonts represent the best experimental results.

two prediction tasks and the necessity and effectiveness of
multi-task learning.

More results, such as the prediction performance analysis
at the residue level, feature analysis, implementation details
of multi-task learning, implementation details of attention
mechanism, and an ablation study, can be found in the
Supplementary Material.

Attention Mechanism
The attention mechanism can stimulate the model extracting
features more effectively, speeding up reaching or even
improving the best performance of prediction (Choi et al.,
2016). To verify the effect of various binding ways of attention
mechanism, which acted as a simple full-connect layer in our
model, we combined it with different network layers, and the
results are shown in Table 6. It can be seen that when we attached
an attention layer to BiLSTM layers, the prediction results (SS
Q3 = 0.835 and Topo ACC = 0.896) were better than doing
the same thing to multiscale CNNs or the Dropout layer as
expected. One reason could be that the attention mechanism
enhanced the process of feature extraction. Another reason could
be that BiLSTM layers just learned the most abundant contextual
features, making it achieve the best effect when combining
attention layer with BiLSTM layers.

Ablation Study
To discover whether a certain component of our proposed
method was vital or necessary, we carried out an ablation
study by removing some network elements in this section. The
experiments performed in our ablation study shared the same

FIGURE 6 | Visualization of secondary structure and topology structure prediction results generated by TMPSS with PyMOL: take 6KKT_A as an example.
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features and hyperparameters. From the results on TEST50
presented inTable 7, we found that those BiLSTM layers were the
most contributing and effective component in our model since
the Q3 accuracy of secondary structure prediction dropped to
75.9% when we roughly removed this part from the network.
Multiscale CNNs were also essential for good performance as
they were particularly good at dealing with local information
of protein sequences. Furthermore, multi-task learning and
attention mechanism were necessary at the same time because
their application made contributions to the robustness of our
method with the proof of study results.

Case Study
To further demonstrate the effectiveness of TMPSS on predicting
the secondary structure and topology structure of alpha-helical
TMPs, we randomly took 6KKT_A as an example of our case
study. 6KKT is a kind of transport protein of Homo sapiens
released on 2019-10-23 that plays vital roles in cell volume
regulation, ion transport, and salt reabsorption in the kidney
(Liu et al., 2019). The prediction result of TMPSS is visualized
in Figure 6 using PyMOL (DeLano, 2002).

As can be seen, our model correctly identified the helices
in the transmembrane region (colored blue) and the non-
transmembrane region (colored green). Additionally, most of the
coils in the non-transmembrane region (colored orange) were
also successfully distinguished.

CONCLUSION

In this study, we proposed a deep learning-based predictor,
TMPSS, to predict the secondary structure and topology
structure of alpha-helical TMPs from primary sequences.
TMPSS’s Q3 accuracy of secondary structure prediction in the
full chain performed on par with the state-of-the-art methods
statistically, and our model had the highest output efficiency with
no length restriction of input at the same time. Moreover, our
method achieved the best Q3 performance in the transmembrane
region and significantly outperformed other topology structure
predictors on the independent dataset TEST50.

TMPSS applied a deep learning network with grouped
multiscale CNNs and stacked attention-enhanced BiLSTM layers
for capturing local and global contexts. Multi-task learning was
exploited to improve prediction performance and reduce our

method’s computational expense by considering the interactions
between different protein properties. A series of visualization
experiments and comparative tests was taken to verify the validity
of the model components mentioned above.

Furthermore, we implemented TMPSS as a publicly available
predictor for the research community. The pre-trained model
and the datasets we used in this paper could be downloaded
at https://github.com/NENUBioCompute/TMP-SS. Finally, we
sincerely hope that the predictor and the support materials we
released in this study will help the researchers who need them.
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