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Apathy and impulsivity are two major comorbid syndromes of Parkinson’s disease (PD) 
that may represent two extremes of a behavioral spectrum modulated by dopamine- 
dependent processes. PD is characterized by a progressive loss of dopaminergic neu-
rons in the substantia nigra pars compacta to which are attributed the cardinal motor 
symptoms of the disorder. Dopamine replacement therapy (DRT), used widely to treat 
these motor symptoms, is often associated with deficits in hedonic processing and
motivation, including apathy and depression, as well as impulse control disorders (ICDs). 
ICDs comprise pathological gambling, hypersexuality, compulsive shopping, binge
eating, compulsive overuse of dopaminergic medication, and punding. More frequently 
observed in males with early onset PD, ICDs are associated not only with comorbid
affective symptoms, such as depression and anxiety, but also with behavioral traits, such 
as novelty seeking and impulsivity, as well as with personal or familial history of alcohol 
use. This constellation of associated risk factors highlights the importance of inter-
individual differences in the vulnerability to develop comorbid psychiatric disorders in PD 
patients. Additionally, withdrawal from DRT in patients with ICDs frequently unmasks a 
severe apathetic state, suggesting that apathy and ICDs may be caused by overlapping 
neurobiological mechanisms within the cortico-striato-thalamo-cortical networks. We
suggest that altered hedonic and impulse control processes represent distinct prodro-
mal substrates for the development of these psychiatric symptoms, the etiopathogenic 
mechanisms of which remain unknown. Specifically, we argue that deficits in hedonic 
and motivational states and impulse control are mediated by overlapping, yet dissocia-
ble, neural mechanisms that differentially interact with DRT to promote the emergence 
of ICDs in vulnerable individuals. Thus, we provide a novel heuristic framework for basic 
and clinical research to better define and treat comorbid ICDs in PD.
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Idiopathic Parkinson’s disease (PD) is a neurodegenerative 
disorder, resulting mainly from the loss of dopaminergic (DA) 
neurons in the substantia nigra pars compacta (SNc) and char-
acterized by tremor, rigidity, and bradykinesia (1). Although 
classically defined by the resulting motor symptoms, this neuro-
logical disorder is also associated with a plethora of non-motor 
manifestations (2, 3). These non-motor symptoms, some of which 
predating the occurrence of overt motor impairment (2, 4–7), 
are now increasingly recognized to contribute detrimentally to 
the patients’ quality of life (6, 8). They include sensory (such as 
pain and a loss of smell or hyposmia) and autonomic dysfunc-
tions, alteration of sleep, as well as cognitive disturbances (2, 4, 
5, 7). Neuropsychiatric symptoms in PD range from dramatic 
deficits in hedonic processes, including a decrease in motivated 
behaviors (apathy) and mood/affective impairments, to impulse 
control disorders (ICDs) (5, 9–12). While the former are mostly 
expressed during the reduction, or withdrawal, of dopamine 
(DA) replacement therapy (DRT), the latter are considered as 
frequent complications of DRT [e.g., Ref. (10–12)]. ICDs include 
a heterogeneous group of behavioral addictions, such as patho-
logical gambling and hypersexuality, as well as punding and the 
compulsive misuse of dopaminergic medication (13). Despite 
dramatic social, occupational, and familial impacts, the etio-
logical and pathophysiological substrates of ICDs in PD remain 
unclear (14, 15). This may be partly due to the paucity of studies 
that have attempted to operationalize these comorbid symptoms 
in experimental animals, which, through longitudinal studies 
uniquely offered by preclinical models, would help identify the 
psychological, behavioral, and neural mechanisms subserving 
individual vulnerability to develop ICDs in PD patients.

Here, after a description of the phenomenology of ICDs and 
their associated risk factors, we discuss the evidence that high 
impulsivity trait and anhedonia-related behaviors play important 
contributory roles to the development and the expression of ICDs 
in PD. We next capitalize on the wealth of literature on the neu-
robiological mechanisms of impulsivity and anhedonia-related 
behaviors in PD to suggest that impulse control and hedonic/
motivational deficits may represent distinct prodromic gates for 
the development of ICDs, through compulsive enhancement 
seeking and self-medication failure, respectively. Based on these 
hypotheses, we propose a novel heuristic framework to imple-
ment relevant preclinical studies and improve the management 
of comorbid psychiatric symptoms in PD.

pHenoMenoLoGy oF iCds

What are iCds?
Impulse control disorders reported in patients with PD include 
pathological gambling [now termed as gambling disorder (16)], 
hypersexuality, compulsive shopping, and binge eating, with or 
without the presence of excessive creativity [e.g., Ref. (17)]. These 
aberrant behaviors reflect the maladaptive nature of the preoc-
cupations of the patients, their inability to control their urges or 
impulses, which trigger other compulsive behaviors, such as lying 
or stealing. On the severity scale of these behaviors, which should 
not occur exclusively within a manic episode, pathological state is 

defined as the presence of clear distress or interference with social, 
financial, or occupational functioning (9). Impulsive–compulsive 
behaviors or “behavioral addictions” (18–20), regardless of their 
clinical expressions (see below), impinge on the quality of life of 
the patients and can have serious or even dramatic familial, social, 
and economic consequences (9, 21–24).

At the clinical level, gambling behavior includes different 
activities like playing cards for money, betting on horses, dogs, 
or sports games, playing the stock or commodities market, 
buying lottery tickets, playing bingo, as well as gambling at a 
casino, with a marked preference for playing slot machines or 
gambling on internet, suggesting a bias toward immediate grati-
fication, and repetitive motor acts (9, 13, 25). Hypersexuality 
include inappropriate or excessive requests of sex from a spouse 
or a partner, permanent preoccupation with pornography, 
telephone sex lines, masturbation, or compulsive promiscuity 
and paraphilia (26). Frequently, after an orgasm the patient does 
not reach satisfaction, and the continuous necessity of perform-
ing, or thinking about, sex may ultimately generate anxiety and 
frustration. Compulsive shopping is more frequently present in 
women than in men and involves the excessive necessity to buy 
anything, often unnecessary things with severe financial con-
sequences (9, 27, 28). Binge eating is defined as the compulsive 
ingestion of a large amount of food in a short period of time, and 
compulsive eating is described as an abnormal ingestion of food 
in excess, during protracted periods of time, with no necessity to 
alleviate hunger. The first description of punding was made in the 
1970s and as a behavior observed in amphetamine addicts (29). 
Punding is a complex stereotyped behavior characterized by an 
intense fascination with repetitive, excessive non-goal-oriented 
manipulation (30). It can be simple (i.e., manipulating objects 
or instruments, sorting common objects) or complex hobbyism, 
such as hoarding, gardening, cleaning, singing, writing, point-
less driving or walkabouts, and engaging in extended monologs 
devoid of content (31–33). The behavior over which control is lost 
in punding has been shown to be related to previously learned 
professional skills, as for instance, an accountant is more likely to 
shuffle paper (33).

Dopamine dysregulation syndrome (DDS), also termed 
hedonistic homeostatic dysregulation syndrome (34), was 
recently recognized as a consequence of compulsive misuse of 
DRT, beyond the dose needed to control motor disability, with 
patients fulfilling criteria for addiction. This disorder, clinically 
characterized by walkabouts and marked fluctuations in mood 
and psychosis, is present in 4% of PD patients with severe 
levodopa-induced dyskinesias and ICDs (35–37).

The association between dopaminergic medications and ICDs 
in PD is now well established. Indeed, the prevalence of ICDs 
has been found to be similar in newly diagnosed, untreated PD 
patients and healthy controls, but increases significantly under 
DRT (23, 24, 38–41). Although the frequency of ICDs varies and 
depends on the evaluation method and scales used, a multicentre 
cross-sectional study including more than 3000 PD patients, 
reported an overall prevalence of ICDs of 13.6% with 3.9% of 
patients having two or more ICDs (42). Interestingly, ICDs 
appears more common in patients treated with dopaminergic 
agonists than without (i.e., only levodopa medication). Indeed, 

http://www.frontiersin.org/Psychiatry/
http://www.frontiersin.org
http://www.frontiersin.org/Psychiatry/archive


3

Houeto et al. Impulse Control Disorders in PD

Frontiers in Psychiatry | www.frontiersin.org May 2016 | Volume 7 | Article 91

the prevalence rate of ICDs in treated PD patients in UK and 
US clinics is considered to be 7% and up to 17% in PD patients 
without and with dopaminergic agonists, respectively (42). 
Specifically, 7.2% of patients with dopaminergic agonist suf-
fered from compulsive buying against 2.9% without, 6.4% from 
pathological gambling against 2.3%, 5.6% from binge eating 
disorder against 1.7%, and 4.4% from compulsive sexual behav-
ior against 1.7% (42). These prevalence rates, much higher than 
those observed in the general population, suggest that DRT, and 
especially dopaminergic agonists, probably in interaction with 
the pathophysiological substrates of PD, facilitate the emergence 
of impulsive/compulsive spectrum disorders (21, 43, 44).

Although the psychological, neural, and cellular substrates of 
vulnerability to ICDs in PD remain unknown, major risk factors 
have been identified. They are mostly related to early onset of 
PD in men, who are unmarried, with comorbid smoking habits, 
family history of gambling problems, and alcohol abuse (42). In 
these patients, ICDs were associated with high levels of novelty 
seeking, impulsivity, and depressed mood. They were related 
not only to treatment with DA receptor agonists or high dose of 
levodopa, but also to high-frequency subthalamic stimulation 
[(45, 46); but see Ref. (47)]. This neurosurgical treatment can 
also induce acutely hypomania [reviewed in Ref. (48)], thereby 
pointing to the role of this nucleus in impulsivity and the patho-
physiology of ICDs (49, 50).

This non-exhaustive description of the epidemiology and 
phenomenology of ICDs emphasizes how much PD patients with 
ICDs resemble, in terms of neurobehavioral complications follow-
ing DRT, those who suffer from drug addiction (19, 20, 51–55). 
This is consistent with the conceptualization that PD patients 
with ICDs – as opposed to those without – might share with drug 
addicts some psychological, neural, cellular, and genetic factors of 
vulnerability to impulsive/compulsive behaviors (19, 20, 56–58). 
This is further supported by the fact that relative to PD patients 
without ICDs, PD patients with ICDs score higher on measures of 
depression state and trait, aggressiveness, and anxiety and display 
higher novelty seeking, impulsivity trait, and impulsive choices, 
thereby suggesting that impulsivity and anhedonia-related syn-
drome are two core components of the pathophysiology of ICDs 
(10, 39, 59, 60).

impulsivity as a Core symptom of iCds
Impulsivity is a multi-faceted entity consisting of maladaptive 
behavior and characterized by poorly conceived, prematurely 
expressed, unduly risky, or inappropriate actions often result-
ing in undesirable consequences (61). Impulsivity has been 
recently subdivided into two major processes linked to dif-
ferent neural network and activated by distinct experimental 
paradigm: cognitive impulsivity and motor impulsivity (61). 
Cognitive impulsivity often refers to an inability to tolerate 
delays of reinforcement and, therefore, prefer immediate 
smaller rewards over distant larger ones. It can also refer to 
altered decision making, risk taking – under stable probabilistic 
contingencies (explicit risk taking) or ambiguous risk taking 
in which the subject is unaware of the probabilistic contingen-
cies, perception of time (i.e., delay between the choice and the 
reception of the reward), and reversal learning (i.e., inability 

to reproduce behaviors that lead to positive outcome and to 
extinguish those that lead to negative outcomes) (61, 62). On 
the other hand, motor impulsivity refers to the ability to with-
hold an inappropriate response, the ability to stop an ongoing 
inappropriate response or, operationally, the speed with which 
we can inhibit an action that has, as a requisite of the task, 
become habitual (61, 62).

Cognitive Impulsivity in PD
Compared to PD patients without ICDs, PD patients with 
gambling disorder showed impaired decision-making (i.e., 
poorer performances on the Iowa Gambling Task) and cogni-
tive impulsivity (preference for immediate over future, larger, 
rewards) (63, 64), both being key features of cognitive deficits 
in drug addicts (59, 61). In delay discounting tasks, PD patients 
with ICDs made more impulsive choices, with a reduced reac-
tion time, than non-ICD PD patients, an effect further enhanced 
by DRT [e.g., Ref. (65)]. Thus, impulsive choice appears as a 
core symptom of ICDs, which is exacerbated by dopaminergic 
treatment in vulnerable PD patients. Neuroimaging studies 
have further suggested an increased impulsivity state in PD 
patients with ICDs. For instance, when submitted to gambling-
related cues, alternating with neutral stimuli and rest periods, 
PD patients with gambling disorder displayed, relative to PD 
controls, abnormal activation of bilateral anterior cingulate 
cortex (ACC), medial and superior frontal gyri, and precuneus, 
right inferior parietal lobule and ventral striatum, areas impli-
cated in impulse control (66). The over-activation of cingulate 
cortex and ventral striatum in PD/gamblers patients is again 
similar to that reported in addicted patients submitted to a drug 
craving situation (67). Another study, using [11C]-raclopride 
to compare D2 DA receptor availability during a control and 
a gambling task in two groups of PD patients, one with and 
the other without gambling disorder, both treated with dopa-
mine agonists, found that patients with gambling disorder had 
increased release of dopamine in the ventral striatum during 
the gambling task [(68); see also Ref. (69)]. Similar heightened 
response of reward circuitry to heterogeneous reward-related 
visual cues were observed in PD patients with single or multiple 
co-occuring ICDs relative to PD controls without (70, 71). 
These results likely reflect an inappropriate reward response or 
abnormal striatal DA function, suggestive of maladaptive plas-
ticity processes that could lead to defective top-down inhibitory 
control (70, 72).

Motor Impulsivity in PD
Relative to motor impulsivity, PD patients perform poorly on 
measures of response inhibition (62, 73). Of major interest, one 
of the most effective treatments for the motor symptoms of PD, 
namely, deep brain stimulation, exacerbates motor impulsivity 
both in humans [e.g., Ref. (74)] and rats (50, 75). Thus, subtha-
lamic nucleus-DBS (STN-DBS) causes blood flow changes in 
ACC that correlate with a change in response inhibition, suggest-
ing that the more DBS alters the function of inhibitory control-
related cortical structures, the more it exacerbates impulsivity 
(76). This was further confirmed by the recent evidence that 
STN-DBS impairs response inhibition, measured as a greater 

http://www.frontiersin.org/Psychiatry/
http://www.frontiersin.org
http://www.frontiersin.org/Psychiatry/archive


4

Houeto et al. Impulse Control Disorders in PD

Frontiers in Psychiatry | www.frontiersin.org May 2016 | Volume 7 | Article 91

number of errors during No-Go trials, these behavioral deficits 
being associated with reduced activation, as measured as H2

(15)O 
positron emission tomography (PET)-based blood flow, in areas, 
such as the left premotor cortex, pre-supplementary motor area, 
dorsal ACC, and inferior frontal cortex (77). These areas are 
thought to subserve retroactive response inhibition in which a 
stop-stimulus must be processed and acted upon in order for 
the inhibition to be successful, in agreement with other recent 
report (78). Together with the recent evidence that the dopa-
minergic agonist pramipexole marginally disrupted response 
inhibition by activating the left lateral prefrontal cortex, sparing 
motor impulsivity measured in a Go–No-Go task [(79); see also 
Ref. (74)], these data suggest a double dissociation between DRT 
and STN-DBS on impulsivity, the former potentially influencing 
circuits responsible for impulsive choices, whereas the latter may 
alter circuits subserving impulsive actions.

the neurobiological Mechanisms of 
impulsivity in pd
Loss of Dopaminergic Neurons May Promote 
Impulsivity in PD Patients
Although impulsive behaviors are aggravated under DRT, 
impulsivity levels may be overall higher in PD patients than 
in the  general population, irrespective of treatment. Indeed, 
the higher level of impulsive choices displayed by PD patients 
without ICDs in an intertemporal choice task was not reduced 
during “off ” medication periods (80). This might be due to a 
short withdrawal period, but similar results were observed in 
de novo, non- medicated patients (81), suggesting, as previously 
mentioned, that high impulsive choices are made by PD patients 
independently of the medication status, leading to the hypothesis 
that the loss of dopaminergic tone within the nigrostriatal path-
way contributes to exacerbate impulsivity (82).

The neural and cellular substrates of impulsivity have been 
broadly defined using a combination of preclinical and clinical 
studies [for review, see Ref. (61, 83–85)]. Nevertheless, in gen-
eral, attempts to recapitulate the co-occurrence of ICDs in PD 
using experimental animals have not been met with unequivo-
cal success. Thus, although dopamine-depleting, 1-methyl-
4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) administration 
in non-human primates increases reaction times for delayed 
rewards, suggestive of increased impulsivity, this effect may be 
confounded by the non-specific motor-impairing effects of MPTP 
(86). Furthermore, in rats, 6-OHDA lesions of the nigrostriatal 
dopaminergic system reduce their tolerance for delayed certain 
rewards, but not uncertain rewards (87, 88).

Taken together, these data support the hypothesis that dopa-
minergic cell loss within the nigrostriatal pathway contributes 
to increase impulsivity in PD (Figure 1). This has been further 
supported by PET studies showing not only a downregulation 
of D2/D3R binding in the caudate and putamen of PD patients 
that may be caused either by chronic DRT or the progressive 
decline of DA SNc neurons [(89); but see Ref. (90)] but also by 
a potential decrease in D3R binding in the ventral striatum of 
early-stage drug naive PD patients (91). Interestingly, a greater 
decrease in ventrostriatal D3R-binding in PD patients has been 

recently associated with the occurrence and the severity of 
ICDs (90). Additionally, in preclinical models of PD, bilateral 
DA denervation of the nigrostriatal system has been associ-
ated with an increase in DA levels in the nucleus accumbens 
(92). Although it deserves further investigation, such unique 
combination of diminished striatal D2/D3 receptors levels and 
increase in mesolimbic DA tone, both hallmark features of high 
impulsivity trait in humans and rats (93–96), may contribute to 
an increased propensity to develop impulsive behaviors in PD.

Dopaminergic Medication Enhanced Impulsivity 
in PD Patients
Nevertheless, dopaminergic medication does appear to be a 
key element in the development of ICDs in a subset of PD 
patients (13, 42, 97). The neural etiology of this interaction 
is unclear, but may have its origins either in an overdose of 
the mesolimbic system by DRT and/or in the extent of dopa-
mine depletion in the nigrostriatal and mesolimbic systems 
(Figure 1) (98). Thus, PD initially involves dopamine depletion 
that is restricted mainly to the dorsal striatum, whereas for 
more advanced stages of the disease, dopamine depletion pro-
gressively involves the ventral striatum as well (99, 100). This 
may explain the apparent paradox why l-DOPA both improves 
and impairs distinct cognitive functions in PD patients, as this 
presumably depends on the precise extent of dopaminergic 
pathology in the striatum (101, 102). The hypothesis that 
l-DOPA and other dopaminergic medications acutely lead 
to an “overdose” of the relatively spared ventral striatum, and 
consequently the emergence of ICDs, is compatible with evi-
dence that trait impulsivity is associated with increased activity 
of the mesolimbic system and the associated decreased D2/D3 
dopamine receptor-binding in the ventral striatum in both 
humans and rats (93–96).

On the other hand, aberrantly increased activity of the mes-
olimbic system in highly impulsive individuals may contribute to 
an increased sensitivity of dopaminergic neurons of the ventral 
tegmental area (VTA) to dopamine-dependent oxidative stress 
and the neurodegenerative process in PD, thereby, influencing 
the pattern of dopaminergic denervation (Figure 1) so that DRT 
may interfere in these individuals with a partially denervated 
mesolimbic system that has lost the influence of phasic dopamine 
transmission. Thus, in highly impulsive individuals, the intact 
component of the mesolimbic system would be hyperactive and 
subjected to overdosing by DRT, whereas both the intact and 
denervated systems would be influenced abnormally by chronic 
stimulation of dopamine receptors by DRT. The two processes 
could independently or jointly contribute to an increased vulner-
ability to develop ICDs.

The notion that the ventral striatum, including the nucleus 
accumbens, integrates cortical and limbic inputs to regulate 
downstream structures involved in the inhibitory control of 
reward-related behaviors has gained considerable support in 
recent years (61, 103). A major unresolved question, however, 
is the precise role played by D2/D3 receptors in the inhibitory 
control of prepotent responses. One model posits that distinct 
populations of striatal cells mediate “Go” responses or “No-Go” 
responses (i.e., suppression of prepotent responses), the latter 
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modulated by D2 receptors and the indirect striatal pathway 
(102). Networks tonically “overdosed” by D2/D3 receptor ago-
nists (e.g., pramipexole and ropinirole) are thought to suppress 
reward-related learning by attenuating the effects of negative 
feedback on phasic dopamine release, thereby encouraging 

compulsive, perseverative behavior through the direct D1 recep-
tor pathway. Although this model does not differentiate between 
different parts of the striatum (i.e., dorsal vs. ventral striatum), 
the distinction between tonic and phasic modes of dopamine 
release may be important in the context of ICDs in PD. Thus, 
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tonic activation of D2 receptors is known to suppress PFC inputs 
to the ventral striatum and impair behavioral flexibility, whereas 
phasic activation of D1 receptors gates inputs to the ventral 
striatum from the ventral subiculum in the hippocampus (104). 
Therefore, excessive D2/D3 receptor activation by dopaminergic 
medications in PD may diminish inhibitory response control by 
the PFC and discourage flexibility of responding mediated within 
the direct and indirect striatal pathways. Interestingly, following 
6-OHDA lesions of the dorsal striatum, pramipexole increased the 
preference of rats for uncertain (risky) rewards, similar to sham-
operated control animals (87). Thus, excessive D2/D3 receptor 
activation may be a primary mechanism that generally promotes 
risk-taking impulsive behavior. Of interest, preferring D3 receptor 
agonists (pramipexole and ropinirole) appear to be more likely 
to cause ICDs in PD patients than relatively non-selective D2/D3 
receptor agonists, such as bromocriptine (105), thereby suggest-
ing that D3 dopamine receptors may be predominantly involved 
in DRT-induced ICDs; but for reasons that are not especially well 
understood, this provocation appears to be particularly apparent 
in some, but not all PD patients.

Impulsivity in PD: Beyond Dopamine
If progressive DA cell loss represents a major dysfunction in PD, 
other neurotransmitter systems, such as the serotoninergic and 
noradrenergic systems, which have been shown to contribute to 
impulse control (83, 106–109) are also affected in PD (110–112). 
Alteration of these other monoaminergic systems, which, in the 
case of noradrenaline, may precede the degeneration of dopamin-
ergic neurons (111), are likely to contribute, independently, or in 
conjunction with dopaminergic denervation, to the development 
of impulsive behavior in PD. Indeed, the noradrenaline reuptake 
inhibitor atomoxetine, which decreases impulsivity and the 
associated vulnerability with compulsive behavior in rats (109), 
as well as the selective serotonin reuptake inhibitor citalopram, 
have recently been shown to improve response inhibition in PD, 
as assessed in a SSRT or a Go–No-Go task (113–115). The effect 
of these monoaminergic treatments on impulsivity in PD patients 
was associated with a restoration of the activity of the right infe-
rior frontal gyrus and an improvement of its connectivity with 
the striatum (113–116).

Therefore, it appears that impulsivity in PD can be attributed, 
at least in part, to the degeneration of DA neurons and that it 
may facilitate the influence of DRT over the development of ICDs. 
But since impulsivity is not a unitary mechanism, but instead a 
complex multifactorial construct [e.g., Ref. (83)], associated with 
broad alterations within the corticostriatal networks and sero-
toninergic and noradrenergic dysfunctions, the neurobiological 
mechanisms contributing to the pathophysiology of impulsive 
behaviors in PD and their contribution to the development of 
ICDs may depend upon complex interactions between these sys-
tems, as it has been shown for compulsive drug seeking behaviors 
(96, 117–121).

However, impaired inhibitory control and underlying neuro-
biological substrates may not be the sole mechanisms that facili-
tate the development of ICDs upon DRT. Indeed, as postulated 
by the self-medication hypothesis of drug addiction, apathy, and 
anhedonia may contribute to the development of compulsive 

DRT use and associated ICDs within a negative reinforcement 
process (122–125).

FroM anHedonia to iCds

phenomenology and Clinical definitions 
of apathy and anhedonia
Alongside impulse control deficits, many PD patients develop 
apathy and anhedonia-related behaviors during the course of 
their disease (2, 11, 126, 127). Because the phenomenological 
and clinical description of anhedonia, apathy and mood disor-
ders in PD has been extensively reviewed elsewhere [e.g., Ref. 
(11, 126, 128–130)], we will focus, here, on the elements that 
are of direct relevance for this review.

Apathy, previously defined as an absence or lack of feeling, 
emotion, interest, or concern, is currently viewed as a quan-
titative reduction of self-generated voluntary and purposeful 
behavior, resulting in low levels of activity, loss of socialization, 
and interest in sources of reinforcement (11, 131–133). The 
prevalence of apathy in PD varies from 13.9 to 70% depend-
ing on the population studied, the nature (instrument) of the 
assessment, and the period of investigation. Risk factor for 
apathy in PD are (i) being male (131, 134), (ii) lower educa-
tion level (135), (iii) longer disease duration (136), (iv) severity 
of motor symptoms, and (v) executive dysfunction (135, 137, 
138). However, psychiatric comorbidity greatly contributes to 
the vulnerability to apathy in PD since the highest prevalence 
is observed in PD patients with depression and/or cognitive 
dysfunction and apathy without depression and/or cognitive 
dysfunction ranges from 3 to 47.9% (138). Thus, although apathy 
is a clinical construct on its own with defined clinical sub-
dimensions (see below), which is clearly distinct from anhedonia 
and depression (139–141), it frequently overlaps with anhedonia 
in PD (12, 130, 142, 143).

Anhedonia refers to a reduced ability to experience pleasure 
in response to stimuli usually perceived as rewarding (16). In PD, 
it has a prevalence of 5–46%, and it is significantly correlated 
with anxiety and depression (144). Anhedonia is not only a core 
symptom of depression in PD, but it has also been suggested to 
be a component of apathy, thereby contributing to the overlap 
that exists in PD between apathy and depression (145, 146). 
Thus, while anhedonia has been recognized as a symptom of 
both apathetic and depressive disorders (147), it may be, in the 
case of PD, a phenomenon secondary to these disorders [(130); 
but see Ref. (148)]. The recent subdivision of anhedonia into 
consummatory (inability to experience pleasure) and anticipa-
tory (inability to link pleasure with a specific action) components 
may help to clarify the relationship between anhedonia and 
apathy, as well as depression in PD (142, 149). Specifically, as a 
motivational deficit, apathy in PD patients may be particularly 
related to the anticipatory subcomponent of anhedonia (142). 
Thus, a cross-sectional study performed in 95 untreated early-
stage PD patients, reported apathy in roughly 19% of individu-
als, which was strongly associated with fatigue and anhedonia 
(143). These findings were further supported by the observation 
that PD patients experiencing clinically significant apathy also 
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reported experiencing greater anticipatory anhedonia, thereby 
linking apathy to anticipatory, but not consummatory, hedonic 
deficits (150).

Because apathy is frequently associated with anhedonia, 
depression, and anxiety in PD [e.g., Ref. (12, 128, 130)], it has 
been suggested that these symptoms cluster into “hypodopamin-
ergic behaviors” in order to facilitate the clinical management 
of such psychiatric manifestations in PD (18, 151, 152). These 
neuropsychiatric manifestations may, therefore, as we hypoth-
esize here, share, at least in part, a common pathophysiological 
substrate.

At the clinical level, apathy has been conceptualized and opera-
tionalized as diminished goal-oriented behavior subdivided into 
three subtypes: emotional, cognitive, and auto-activation deficits, 
which are neurobiologically dissociable, in that they each depend 
upon a specific corticostriatal network (132). Thus, dysfunction of 
emotional processing, manifested as failure to associate affective 
and emotional signals, that would result in a reduced willingness 
to act (loss of will, loss of goal) or maintain ongoing action as 
well as the ability to evaluate the consequence of future action 
has been associated with alterations in the dopamine-controlled 
reward-related learning circuit encompassing the dopaminergic 
innervation from the VTA/SNc of the orbito-ventromedial PFC, 
ACC, amygdala, and ventral striatum (132). Similarly, dysfunc-
tion of cognitive processing, manifested as failure to manipulate 
goals, generates new rules or set shifting that would impaired 
action, has been associated with alterations in the dorsolateral 
PFC-striato-pallido-thalamo-cortical circuit. Finally dysfunction 
of self-activating processing, manifested as failure to self-generate 
behavior (contrasting with preserved response elicited by exter-
nal-stimuli), reminiscent of a previously described behavioral 
syndrome termed “athymormia” (153, 154), has been associated 
with lesions affecting dorsal-medial PFC-supplementary motor 
area and ACC along with the limbic and associative territories of 
the thalamus and pallidum (132). This neuropsychological inter-
pretation may be relevant to the neural mechanisms involved in 
the development of apathy and anhedonia in PD, which reflects 
in part the multidimensional facet of apathy with respect to fac-
tors such patterns of VTA vs. SNc denervation, disease duration, 
depression, and cognitive dysfunction. This may explain the 
failure of structural and functional studies to provide a unique 
anatomical pattern underlying apathy/anhedonia in PD [for 
review, see Ref. (11, 138, 155)].

Mechanisms of anhedonia and apathy: 
the Case for dopamine and Beyond
At the neurobiological level, anhedonia and apathy have been 
suggested to depend upon alterations of the dopaminergic 
systems in PD. Not only are apathy and anhedonia observed 
early in the disease, in de novo untreated patients, or even before 
the onset of motor symptoms (5, 52, 128, 156), but they are 
also displayed later on with the progression of dysexecutive 
syndromes (134). In this instance, they are likely related to the 
spread of synucleinopathy to the cortex (11, 157). Morever, 
apathy and anhedonia are also revealed as major side effects of 
STN-DBS (35, 48, 158).

Role of Hypodopaminergic States in Anhedonia and 
Apathy in PD
Especially at early stages of the disease or following STN-DBS, 
these hedonic and motivational deficits are alleviated by DRT, 
and particularly with D2/D3R agonists, such as pramipexole 
(142, 159, 160), thereby confirming that altered DA transmission 
may lie at the core of the pathophysiology of these non-motor 
symptoms. Consistently, several functional imaging studies in 
humans have reported positive correlations between the sever-
ity of apathy, depression, and anxiety in PD and the extent of 
the DA denervation in different regions of the corticostriatal 
circuitry including the ventral and the dorsal striatum and the 
prefrontal cortex, suggestive of a contribution of a denervation 
of both the nigrostriatal and mesocorticolimbic pathways to 
these hedonic/motivational deficits (152). This has been further 
supported by the recent evidence that apathy/anhedonia and 
anxiety in untreated early PD patients have been correlated 
to a decrease in DAT levels in the ventral and dorsal striatum, 
respectively (161, 162). In light of the recent evidence that a 
reduced striatal dopamine transporter availability predates the 
development of DRT-related ICDs (163), this study suggests that 
the striatal neurobiological underpinnings of apathy/anhedonia 
may represent a risk factor for the development of DRT-related 
ICDs.

Preclinical studies have confirmed this causal relationship 
between dopaminergic denervation and apathy/anhedonia. 
Apathetic- and anhedonic-like behaviors have been observed 
in MPTP-lesioned monkeys (56, 164, 165), and we have dem-
onstrated that bilateral and partial DA lesion of the nigrostriatal 
system in rats, which caused no or mild motor deficits, dramati-
cally impaired instrumental behaviors and induced depression- 
and anxiety-like behaviors (166–168). These motivational- and 
affective-related deficits following nigrostriatal DA denervations, 
replicated in other lesion-based rodent approaches, were shown 
to be fully corrected by DRT, and notably D2/D3R agonists 
[reviewed in Ref. (169)]. Taken together, these preclinical data 
strongly suggest that anhedonia-related behaviors in PD stem 
from the degeneration of SNc DA neurons (Figure 1).

Beyond Dopamine
However, preclinical studies have also indicated that affective-
related deficits induced by 6-OHDA lesions in rodents also 
respond to serotoninergic receptor agonists or serotonin and/
or noradrenaline reuptake inhibitors, therefore pointing to 
the implication other monoaminergic systems in the patho-
physiology of apathy/anhedonia in PD (169, 170). This is 
consistent with imaging studies suggesting that mood impair-
ments and fatigue in PD are also related to serotoninergic 
or noradrenergic dysfunctions (110, 112, 152) [but see Ref. 
(171, 172)]. Additionally, different and multiple dysfunctions of 
the corticostriatal circuits may account for the occurrence of 
hedonic-related deficits in PD, depending on the stage of the 
disease. For instance, DOPA-resistant forms of apathy, often 
related to cognitive decline, have recently been shown to be 
associated with atrophy of the ventral striatum in PD patients 
(173). In addition, and while it remains controversial, it is 
also suggested that STN-DBS may induce, or aggravate, apathy 
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and depression, independently of DA, by interfering with the 
neuronal activity of the non-motor territories of the STN or 
by stimulation of nuclei or fiber tracts in close vicinity to the 
STN (169, 174–177). Therefore, and as already mentioned, the 
pathophysiology of apathy and related affective impairments 
in PD is multifactorial [see also Ref. (178)], and the implica-
tion of the nigrostriatal DA system may be limited to specific 
forms of anhedonia-related behaviors in PD, particularly those 
responsive to DRT.

apathy and anhedonia: a Gateway for the 
development of iCds?
Irrespective of the precise heterogeneity of the pathophysiologi-
cal mechanisms contributing to the development of anhedonia/
apathy in PD, several studies have established a clear relation-
ship between these emotional deficits, impulsivity, and ICDs. 
Indeed, depression and anxiety have been found to overlap with 
impulsivity in the same patients (9, 40). This is in agreement with 
the evidence that anhedonia tends to be more pronounced in PD 
patients with a gambling disorder (179) than in patients without, 
an interesting correlation already observed in non-parkinsonian 
pathological gamblers, who scored higher than controls on items 
of the Beck Depression Inventory (BDI) related to anhedonia and 
apathy (e.g., “loss of pleasure,” “loss of interest in other people,” or 
“loss of interest in sex”) (180). Similarly, Leroi et al. showed that 
both apathetic and ICDs PD patients presented a higher rate of 
anxiety and depressive symptoms than PD controls, suggesting 
that apathy and ICDs may share a common psychobiological 
substrate (14).

In this context, one may speculate that gambling in PD patients 
with high anhedonia/apathy reflects a compulsive behavioral 
process, initially aiming at self-medicating the anhedonic state 
that went awry. This is further supported by the evidence that 
compulsive DRT use is associated not only with ICDs but also 
with depression and anxiety (13, 71, 181, 182). Interestingly, 
depressive symptoms have been shown to increase in parallel 
with the development of new ICDs in PD patients (183), thereby 
suggesting that the more impulsive/compulsive behaviors the 
patient expresses as a consequence of DRT medication, the worse 
is his hedonic/emotional state, a conjecture highly reminiscent 
of the hedonic allostasis theory of addiction (124, 184). One of 
the predictions of this theory is that drug use in patients trying 
to self-medicate a hedonic deficit eventually further recruits 
between-system adaptations impinging on the stress and reward 
system, so that a strong emotional distress occurs upon with-
drawal from the drug (123, 185, 186). This is exactly what was 
observed in 30 out 63 PD patients with a preoperative hyper-
dopaminergic profile (including, DDS, with compulsive use of 
medication, and various others ICDs) who developed apathy, 
depression, and anxiety with marked anhedonia and irritability 
following a marked reduction in their DRT after the initiation 
of STN-DBS (18, 158). Similar findings were observed in PD 
with ICDs in whom DRT were decreased (53), thereby suggest-
ing that the specific vulnerability to ICDs brought by apathy/
anhedonia may be related to an addiction-like state depending 
on the development of a compulsive attempt to self-medicate an 

internal distress, which will be worsen by a compulsive use of 
DRT (Figure 1).

ConCLUsion: a “tWo Head” 
HypotHesis oF iCds in pd

Taken together, the above analysis suggests that apathy/anhedo-
nia/depression and impulsivity are dissociable symptoms along 
the same behavioral spectrum, but can overlap and contribute to 
ICDs in medicated PD patients.

On this ground, we propose in Figure  1 two different 
pathways underlying the development of ICDs in PD: one 
dependent on trait impulsivity and exacerbated by nigrostriatal 
DA denervation, which we hypothesize, interacts with DRT to 
facilitate the development of ICDs in specific PD individuals. 
The second pathway is dependent on the influence of the process 
on emotional, motivational, and hedonic states, resulting in a 
severe hedonic allostatic state, which vulnerable individuals may 
attempt to self-medicate through DRT and seek enhancement. 
These two putative psychobiological mechanisms should not, 
however, be viewed as contradictory. Indeed, along the progres-
sion of the disease, a complex combination of the degenerative 
process and of a premorbid weakness in inhibitory control are 
likely to occur and will act synergistically in order to create 
within or between disequilibria of the corticostriatal circuits, 
that will be exacerbated by DRT and notably D2/D3R agonists.

The iatrogenic hypothesis of ICDs suggests that repeated, 
pulsatile, and heightened stimulation of the DA mesolimbic 
system in PD with DRT induces maladaptive neuronal plasticity 
and hyperactivity of this system (12, 68, 70, 187), leading in turn 
to the development of aberrant reward sensitivity, as postulated 
by the incentive-sensitization theory of drug addiction (188). 
Although it allows interesting parallels between the mechanisms 
underlying addiction-like behaviors and dyskinesias in PD (9, 
189), this hypothesis does not explain why only a subset of PD 
patients develop ICDs. Nevertheless, it would be possible to test 
the hypotheses developed in this article in longitudinal studies, 
in rodents as well as in PD patients, to investigate the interac-
tion between different premorbid impulsivities (e.g., cognitive 
vs. motor), disease pathology, and the effect of dopaminergic 
medications. Delineation of these factors of vulnerability is a 
major challenge in the field to understand the pathophysiology 
and pathogenesis of ICDs and so better define and treat this 
comorbidity in PD.
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