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Abstract: This study investigates the fabrication and characterization of an acetone 

microsensor with a ring oscillator circuit using the commercial 0.18 μm complementary 

metal oxide semiconductor (CMOS) process. The acetone microsensor contains a sensitive 

material, interdigitated electrodes and a polysilicon heater. The sensitive material is  

α-Fe2O3 synthesized by the hydrothermal method. The sensor requires a post-process to 

remove the sacrificial oxide layer between the interdigitated electrodes and to coat the  

α-Fe2O3 on the electrodes. When the sensitive material adsorbs acetone vapor, the sensor 

produces a change in capacitance. The ring oscillator circuit converts the capacitance of  

the sensor into the oscillation frequency output. The experimental results show that  

the output frequency of the acetone sensor changes from 128 to 100 MHz as the acetone 

concentration increases 1 to 70 ppm. 
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1. Introduction 

Gas sensors are important devices for several industrial, environmental, foodstuff and biomedical 

applications, etc. Most of the methods for detecting diabetes are invasive ones that take blood samples 

and inspect blood sugar, but their deficiencies are painful for patients with diabetes. The breath of 
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diabetes patients had a higher acetone concentration than that of healthy persons. Therefore, acetone 

sensors could be used to detect diabetes [1]. The benefits of this method are its non-invasiveness and 

non-painful inspection for diabetic patients. 

The advantages of gas microsensors include small volume, low cost, high performance and easy 

mass-production [2]. Recently, micro-electromechanical system (MEMS) technology has been used to 

develop various gas microsensors. For instance, Kim et al. [3] fabricated a hydrogen gas microsensor 

using MEMS technology. The sensor contained a sensitive material, a Pt heater and Pt electrodes on an 

alumina substrate. The sensitive material was a SnO2-Ag2O-PtOx composite prepared by the sol-gel 

method. Pandya et al. [4] proposed an ethanol microsensor manufactured by MEMS technology.  

The sensor was composed of a sensitive film, aluminum electrodes and a nickel heater on a silicon 

substrate. The ethanol sensitive film was zinc oxide nanoflakes, and the film was deposited on  

the aluminum electrodes using thermal evaporation. Zhang et al. [5] utilized MEMS technology to 

make a gas sensor with heaters for detecting volatile organic compounds. The sensitive film of the 

sensor was zinc oxide nanosheets. The sensor had a high sensitivity to acetaldehyde and formaldehyde 

at working temperature of 220 °C. 

Several studies have employed MEMS technology to fabricate acetone microsensors. For instance, 

Zeng et al. [6] proposed an acetone microsensor manufactured using MEMS technology. The sensitive 

material of the sensor was ZnO nanorods prepared by an aqueous solution method. The sensor was  

a resistive type, and it had a response of 30 at 100 ppm acetone. Liu et al. [7] reported a gas 

microsensor for detecting acetone, and the sensor was fabricated using micromachining technology. 

The sensitive film of the sensor was SnO2-TiO2 doped with Ag prepared by the sol-gel method, and  

the film was coated onto the interdigitated electrodes on an alumina substrate using screen printing. 

Srivastava et al. [8] utilized MEMS technology to develop a gas sensor for sensing acetone, methanol 

and propanol. The sensor consisted of silver electrodes, a sensing layer and a heater on an alumina 

substrate. The sensing layer was SnO2 doped with PbO synthesized by sol-gel method and coated on 

the silver electrodes. Inyawilert et al. [9] manufactured a gas microsensor for detection of acetone 

using micromachining technology. The sensor contained a sensitive film and Au electrodes on Al2O3 

substrate, which the sensitive film was In2O3 fabricated by a sparking method. 

The smallest sensing concentration of the acetone sensor proposed by Liu et al. [7] was 200 ppm, 

and the sensor was not integrated with circuitry on chip. The acetone sensor without circuits on chip, 

developed by Srivastava et al. [8], had a smallest sensing concentration of 500 ppm. Inyawilert et al. [9] 

presented an acetone sensor also without circuits on chip, and its smallest sensing concentration  

was 50 ppm. Acetone sensors for medical application, such as detecting diabetes, require having  

a capability of low concentration detection under 1 ppm, so the sensors described in [7–9] are not 

suitable for application in detecting diabetes patients. In this work, we develop an acetone sensor with 

a smallest sensing concentration of 1 ppm. The acetone microsensors [6–9] were not integrated with 

circuitry on-a-chip. The advantages of microsensors with circuitry on-a-chip are low noise, high 

performance and low package cost [2]. In this study, an acetone sensor integrated with a ring oscillator 

circuit on-a-chip is developed. 

Various microsensors and microactuators have been fabricated using the commercial CMOS 

process [10–14]. Microdevices manufactured by this process can be integrated with circuitry  

on-a-chip [15–17]. Hu et al. [18] used the commercial 0.18 μm CMOS process to manufacture a 
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humidity microsensor with a readout circuit on-a-chip, and the sensor was a resistive type. The 

sensitive material of the humidity sensor was titanium dioxide, and the readout circuit converted the 

resistance of the sensor into the output voltage. In this work, we employ the same process to develop  

a capacitive acetone microsensor with a ring oscillator circuit on-a-chip. The sensitive material of  

the acetone sensor is α-Fe2O3, because it had good sensitivity to acetone vapor [19,20]. The ring 

oscillator circuit converts the capacitance into the output frequency, which the output signal has  

a potential for application in wireless communication system. The acetone sensor has a capability to 

detect a low concentration of 1 ppm acetone. The sensor needs a post-process [21–23] to deposit the 

sensitive material. The post-process consists of removing the sacrificial oxide layer and coating  

the α-Fe2O3 film. 

2. Structure of the Acetone Sensor 

Figure 1 shows schematic structure of the acetone microsensor. The structure of the sensor contains 

a sensitive material, a polysilicon heater and interdigitated electrodes. The length, width and thickness 

of the interdigitated electrodes are 400 µm, 20 µm and 6 µm, respectively, and the gap between the 

electrodes is 10 µm. The polysilicon heater is located under the interdigitated electrodes, and it is 

employed to provide a working temperature of 265 °C to the sensitive material. The sensitive material 

of the sensor is α-Fe2O3 coated on the interdigitated electrodes. The sensor is a capacitive type. The 

capacitance of the sensor produces a variation when the sensitive material of α-Fe2O3 adsorbs or 

desorbs acetone vapor. The α-Fe2O3 is a n-type semiconductor. The sensing mechanism of α-Fe2O3 to 

acetone had been reported [19]. The reaction is based on the α-Fe2O3 surface adsorbed oxygen 

molecules, and the conduction band of the α-Fe2O3 is ionized by oxygen ions (O−, O2− or O2
−).  

The release electrons are trapped in the conduction band of the α-Fe2O3, resulting in the dielectric of 

the α-Fe2O3 changes. 

Figure 1. Schematic structure of the acetone microsensor. 

 

A ring oscillator circuit is utilized to convert the capacitance variation of the sensor into an 

oscillation frequency. Figure 2 illustrates the ring oscillator circuit for the acetone microsensor. The 

circuit is five-stage ring oscillator [24] where Vdd is the input voltage; Vss is the ground; Vout is  

the output voltage of the circuit; C1, C2, C3 and C4 are the load capacitance; Cs is the capacitance of  

the acetone sensor; M1, M3, M5, M7 and M9 are p-channel metal oxide semiconductor (PMOS); M2, M4, 
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M6, M8 and M10 are n-channel metal oxide semiconductor (NMOS). The simulation software, HSPICE 

(Synopsys lnc., Mountain View, CA, USA), is employed to simulate the performances of the circuit. 

Figure 3 illustrates the simulation results of the circuit for the acetone sensor. In the simulation, the 

input voltage Vdd of 3 V was adopted, and the capacitance of the sensor changed from 10 to 210 pF. 

The temperature was set at 265 °C. The simulation results showed that the output frequency of  

the circuit varied from 143 to 98 MHz when the capacitance of the sensor changed from 10 to 210 pF. 

Figure 2. Ring oscillator circuit for the acetone microsensor. 

 

Figure 3. Simulation results of the output frequency for the circuit. 

 

3. Preparation of the Sensitive Material 

The acetone sensitive material was fabricated by a hydrothermal method. The preparation steps of  

α-Fe2O3 were as follows [19,20]: ferric chloride (FeCl3·6H2O, 4 g) and ammonium sulfate ((NH4)2SO4, 

0.1 g) were dissolved in deionized water (50 mL) with vigorous stirring for 2 h until the solution was 

mixed uniformly. The concentration of α-Fe2O3 in the solution was 25 wt%. The mixing solution was 

transferred into a Teflon-lined stainless-steel autoclave, where the solution was sealed and maintained 

at 120 °C for 12 h. After completion of the reaction, the result was filtered and washed with  

deionized water and ethanol. Then, the product was coated on the substrate, followed by calcination at 

400 °C for 2 h. 

Scanning electron microscopy (SEM, JEOL JSM-6700F, Tokyo, Japan) was used to measure the 

surface morphology of the α-Fe2O3. Figure 4 shows a SEM image of the α-Fe2O3. The α-Fe2O3 exhibits 
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urchin-like nanorod shapes. Figure 5 shows the X-ray diffraction (XRD) pattern of the α-Fe2O3. The 

diffraction peaks showed that the material was α-Fe2O3 structure. The elements of the α-Fe2O3 were 

measured by an energy dispersive spectrometer. Figure 6 shows the measurement results of the  

α-Fe2O3 using an energy dispersive spectrometer. The results depicted that the α-Fe2O3 was composed 

of 32.09 wt% O and 67.91 wt% iron. 

Figure 4. SEM image of the α-Fe2O3. 

 

Figure 5. XRD pattern of the α-Fe2O3. 

 

Figure 6. Elements of the α-Fe2O3 measured by energy dispersive spectrometry. 
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4. Fabrication of the Acetone Sensor 

The acetone microsensor was fabricated using the commercial 0.18 μm CMOS process of Taiwan 

Semiconductor Manufacturing Company (TSMC, Taipei, Taiwan). Figure 7 illustrates the fabrication 

flow of the acetone microsensor. Figure 7a presents the cross-sectional view of the acetone sensor after 

the CMOS process. The thickness of passivation, metal and polysilicon was 0.75 μm, 6.43 μm and  

0.2 μm, respectively. The acetone sensor needed a post-processing step to etch the sacrificial layer, and 

to coat the sensitive material of α-Fe2O3 after completion of the CMOS process. The sacrificial layer 

between the interdigitated electrodes was silicon dioxide. Figure 7b displays that the sacrificial layer of 

silicon dioxide is removed. A wet etching of buffer etch oxide (BOE) etchant was used to etch the 

sacrificial oxide layer [25–27] and to expose the interdigitated electrodes. Figure 8 shows a SEM 

image of the acetone sensor after the wet etching. The interdigitated electrodes were exposed.  

Figure 7c shows that the sensitive material of α-Fe2O3 is coated. The α-Fe2O3 was dropped onto the 

interdigitated electrodes using a precision-control micro-dropper. The volume of the drop was about 

1.5 × 10−3 mL. The thickness of the coating was about 10 μm. Finally, the α-Fe2O3 was sintered at  

400 °C in air for 2 h. Figure 9a shows an optical image of the acetone sensor before the post-process. 

Figure 9b an optical image of the acetone sensor after the post-process. 

Figure 7. Fabrication flow of the acetone microsensor, (a) after the CMOS process;  

(b) removing the sacrificial oxide layer; (c) coating the sensitive α-Fe2O3 material. 
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Figure 8. SEM image of the acetone sensor after the wet etching. 

 

Figure 9. Optical image of the acetone microsensor, (a) before the post-process; (b) after 

the post-process. 

 

5. Results and Discussion 

A spectrum analyzer, a test chamber, an infrared thermometer and a LCR meter were used to 

measure the performance of the acetone microsensor. The infrared thermometer was utilized to detect 

the heater temperature. The LCR meter was adopted to measure the capacitance of the acetone sensor, 

and the spectrum analyzer was used to record the output frequency of the oscillator circuit. The test 

chamber contained a calibration acetone sensor, a control valve and a pump. The acetone concentration 

in the test chamber could be tuned by the control valve. The pump is used to exhaust the acetone in  

the test chamber after completion of testing. The calibration acetone sensor monitored the acetone 

concentration in the test chamber. The acetone microsensor was set in the test chamber. 

The function of the heater in the sensor was tested using the infrared thermometer. Figure 10 shows 

the tested results of heating temperature for the heater. When supplying a power of 1.24 W, the heater 

generated a heating temperature of 265 °C. To characterize the optimum working temperature of the 

acetone microsensor, the sensor was tested under different temperatures. The heater provided different 
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temperatures to the sensor, and the test chamber maintained at a constant 3 ppm acetone. The 

capacitance of the sensor was recorded using the LCR meter Figure 11 shows the response of the 

sensor at different temperatures. The response is defined as, 
஼ି஼బ஼బ × 100%, where C is the capacitance 

variation of the sensor reacted with acetone gas and C0 is the original capacitance of the sensor.  

The results showed that the optimum working temperature of the acetone microsensor was 265 °C. 

Figure 10. Measured results of heating temperature for the heater. 

 

Figure 11. Response of the sensor at different temperatures. 

 

To characterize the capacitance variation of the acetone sensor, the sensor without the oscillator 

circuit was tested. The acetone sensor was set in the test chamber, and the heater supplied a working 

temperature of 265 °C to the sensor. The LCR meter recorded the capacitance variation of the sensor 

under different acetone concentration. Figure 12 presents the reaction of the acetone sensor at 0–70 ppm 

acetone. The nonlinear envelope of the peaks in Figure 12 was due to the time intervals adopted. The 

results showed that the initial capacitance of the sensor was 15.5 pF, and its capacitance changed to 

188.6 pF at 70 ppm acetone. As shown in Figure 12, the sensor had a response time of 19 s at 14 ppm 

acetone and a recovery time of 44 s at 70 mm acetone. Figure 13 presents the reaction of the acetone 

sensor at 0-6 ppm acetone. The results depicted that the acetone sensor had a capacitance of 26 pF  

at 1 ppm acetone and a capacitance of 32 pF at 2 ppm acetone. Figure 14 shows the relation between 



Sensors 2014, 14 12743 
 
the capacitance and acetone concentration for the acetone sensor, and the results are obtained in 

accordance with the data in Figures 12 and 13. The capacitance of the acetone sensor increased  

from 26 to 188.6 pF as the acetone concentration varied from 1 to 70 ppm. The curve of capacitance in 

Figure 14 reveals a nonlinear variation that results from the intrinsic characteristics of α-Fe2O3 material. 

Figure 12. Reaction of the acetone sensor at 0–70 ppm acetone. 

 

Figure 13. Reaction of the acetone sensor at 0–6 ppm acetone. 

 

Figure 14. Relation between capacitance and acetone concentration for the acetone sensor. 
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The acetone sensor with the oscillator circuit was set in the test chamber and measured the output 

signal. The oscillator circuit converted the capacitance of the acetone sensor into the output frequency. 

The power supply provided a bias voltage of 3 V to the oscillator circuit, and the heater supplied  

a working temperature of 265 °C to the sensor. The spectrum analyzer measured the output frequency 

of the oscillator circuit. Figure 15 shows the measured results of output frequency for the acetone 

sensor with the circuit. The results revealed that the output frequency of the acetone sensor was  

130.3 MHz in air, and the sensor had an output frequency of 128 MHz at 1 ppm acetone and  

an output frequency of 100 MHz at 70 ppm acetone. The curve of output frequency in Figure 15 

reveals a nonlinear variation that results from the oscillator circuit. The phenomenon could be 

improved by modifying the design of oscillator circuit. 

Figure 15. Output frequency of the acetone sensor with the oscillator circuit. 

 

To compare the simulation and experiment of output frequency for the acetone sensor, the relation 

between the output frequency and capacitance was plotted as shown in Figure 16, where the data of 

experiment was combined the results in Figure 14 with Figure 15, and the data of simulation was from 

the results in Figure 3. As shown in Figure 16, the experimental results are in agreement with the simulated 

results. The output frequency of the sensor was more linearity in the capacitance rang of 75–185 pF. 

Figure 16. Relation between output frequency and capacitance for the acetone sensor. 
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To understand the selectivity of the sensor, it was tested with different gases. Figure 17 shows  

the response of the sensor under acetone, ethanol, methanol, isopropyl alcohol and ammonia. In this 

measurement, the concentration of all gases was controlled at 15 ppm and the working temperature of 

the sensor was 265 °C. The results showed that the sensor for acetone had a best response of 385%. 

Therefore, the sensor had an excellent selectivity for sensing acetone. 

Figure 17. Response of the sensor under different gases. 

 

6. Conclusions 

An acetone microsensor with a polysilicon heater and a ring oscillator circuit has been fabricated 

using the commercial 0.18 μm CMOS process and a post-processing step. The sensitive material was 

α-Fe2O3 prepared by a hydrothermal method. A heater was used to provide a optimum working 

temperature of 265 °C for the acetone sensor. When the α-Fe2O3 sensitive material adsorbed or 

desorbed acetone gas, the sensor generated a change in capacitance. The ring oscillator circuit 

converted the capacitance variation of the sensor into the output frequency. The post-process employed 

a wet etching to remove the sacrificial oxide layer and coated the sensitive material on the 

interdigitated electrodes. The experimental results showed that the capacitance of the acetone sensor 

changed from 15.53 to 188.58 pF as the acetone concentration increased from 0 to 70 ppm. The acetone 

sensor with the ring oscillator circuit had an output frequency of 128 MHz at 1 ppm acetone and an 

output frequency of 100 MHz at 70 ppm acetone. 
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