CRYSTALLOGRAPHIC COMMUNICATIONS

ISSN 2056-9890

Received 30 January 2017
Accepted 9 February 2017

Edited by M. Weil, Vienna University of Technology, Austria

Keywords: crystal structure; discrete complex; cobalt(II) thiocyanate; 4-benzoylpyridine; hydrogen bonding.

CCDC reference: 1532114

Supporting information: this article has supporting information at journals.iucr.org/e


OPEN $\odot$ ACCESS

# Crystal structure of bis(acetonitrile- $\kappa N$ )bis(4-benzoylpyridine- $\kappa N$ )bis(thiocyanato- $\kappa N$ )cobalt(II) 

Stefan Suckert,* Julia Werner, Inke Jess and Christian Näther

Institut für Anorganische Chemie, Christian-Albrechts-Universität Kiel, Max-Eyth Strasse 2, D-24118 Kiel, Germany. *Correspondence e-mail: ssuckert@ac.uni-kiel.de

The crystal structure of the title compound, $\left[\mathrm{Co}(\mathrm{NCS})_{2}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{~N}\right)_{2}\left(\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{NO}\right)_{2}\right]$, consists of cobalt(II) cations that are octahedrally coordinated by the N atoms of two terminal thiocyanate anions, two acetonitrile molecules and two 4 -benzoylpyridine ligands. The discrete complexes are located on centres of inversion. They are connected by weak intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{S}$ hydrogen-bonding interactions between one of the pyridine H atoms and the carbonyl O atom, and between one of the methyl H atoms of the acetonitrile molecule and the thiocyanate S atoms into layers parallel to (101). No pronounced intermolecular interactions are observed between these layers.

## 1. Chemical context

In recent times, the synthesis of materials exhibiting cooperative magnetic properties has still been a topic of major interest in coordination chemistry (Zhang et al., 2011). A good approach for the preparation of such compounds is the use of small anionic ligands such as e.g. thiocyanate anions to link paramagnetic cations, enabling a magnetic exchange between the cations (Palion-Gazda et al., 2015; Massoud et al., 2013). During the last few years, our group has reported on a number of coordination polymers with thiocyanato ligands that show different magnetic phenomena, including a slow relaxation of the magnetization (Werner et al., 2014, 2015a,b,c,d). In the course of this project, we became interested in compounds based on 4-benzoylpyridine, for which at that time only three thiocyanato compounds had been reported (Drew et al., 1985; Soliman et al., 2014; Bai et al., 2011). During these investigations, we obtained a compound with composition $\left[\mathrm{Co}(\mathrm{NCS})_{2}(4 \text {-benzoylpyridine })_{2}\right]$ in which the $\mathrm{Co}^{\mathrm{II}}$ cations are linked by pairs of anionic ligands into chains. In contrast to all other such chain compounds where all ligands are always trans-coordinating, in this compound a cis-coordination of the N and the S atoms of the thiocyanate anions was observed (Rams et al., 2017). Therefore, we assumed that this compound might be metastable and that a second modification with the usual trans-coordination could be prepared by thermal annealing of precursors with terminal N -bonded thiocyanate anions. In this context, it is noted that there are many examples where different modifications or isomers have been obtained by this alternative route (Werner et al., 2015a,c; Suckert et al., 2016). In the course of these studies, crystals of the title compound, $\left[\mathrm{Co}(\mathrm{NCS})_{2}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{~N}\right)_{2}\left(\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{NO}\right)_{2}\right]$, were obtained and characterized by single crystal X-ray diffraction. Unfortunately, no pure crystalline powder could be obtained, which prevented further investigations of the thermal properties of this compound.


## 2. Structural commentary

The asymmetric unit of the title compound consists of one cobalt(II) cation, one thiocyanato anion, one acetonitrile molecule and one neutral 4-benzoylpyridine ligand. The cobalt(II) cation is located on a center of inversion while the thiocyanato anion, the acetonitrile molecule and the 4 -benzoylpyridine ligand are located in general positions. The $\mathrm{Co}^{\mathrm{II}}$ cation is octahedrally coordinated by the N atoms of two terminal anionic ligands, two acetonitrile molecules and two 4-benzoylpyridine ligands (Fig. 1). As expected, the $\mathrm{Co}-\mathrm{N}$ bond lengths to the thiocyanate anions are significantly shorter $[2.0520(15) \AA]$ than those to the pyridine N atom of the neutral 4-benzoylpyridine ligand [2.1831 (13) Å]. All bond lengths are in agreement with values reported in the literature (Drew et al., 1985; Soliman et al., 2014). The 4-benzoylpyridine ligand is not planar; the dihedral angle between the phenyl and pyridine rings is $55.37(8)^{\circ}$. This is in agreement with values retrieved from the literature, which vary between 40.4 and $74.3^{\circ}$ (Escuer et al., 2000, 2004).

## 3. Supramolecular features

In the crystal structure of the title compound, the discrete complexes are linked by intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds between one of the pyridine ring H atoms and the

Table 1
Hydrogen-bond geometry ( $\AA,^{\circ}$ ).

| $D-\mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{C} 3-\mathrm{H} 3 A \cdots \mathrm{~S} 1^{\mathrm{i}}$ | 0.98 | 2.85 | $3.771(3)$ | 156 |
| $\mathrm{C} 11-\mathrm{H} 11 \cdots \mathrm{O} 11^{\mathrm{ii}}$ | 0.95 | 2.49 | $3.193(2)$ | 131 |

Symmetry codes: (i) $x, y-1, z$; (ii) $-x+\frac{1}{2}, y-\frac{1}{2},-z+\frac{3}{2}$.
oxygen atom of the 4-benzoylpyridine ligand of a neighboring complex into dimers, which are further connected into chains (Fig. 2, Table 1). These chains are further linked into layers parallel to (101) by centrosymmetric pairs of intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{S}$ hydrogen bonds between one of the acetonitrile hydrogen atoms and the neighbouring thiocyanato S atom (Fig. 3, Table 1). Pronounced intermolecular interactions are not observed between these layers.


Figure 1
View of a discrete complex of the title compound, showing the atomlabelling scheme. Displacement ellipsoids are drawn at the $50 \%$ probability level. [Symmetry code: (i) $-x+1,-y,-z+1$.]


Figure 2
View of the hydrogen-bonded layers extending parallel to (101). Hydrogen bonds are shown as dashed lines.

## 4. Database survey

To the best of our knowledge, there are only three coordination compounds with thiocyanato ligands and with 4-benzoylpyridine reported in the Cambridge Structural Database (Version 5.38, last update 2016; Groom et al., 2016). In two of these structures, $\mathrm{Co}^{\mathrm{II}}$ or $\mathrm{Ni}^{\mathrm{II}}$ cations are octahedrally coordinated by four 4-benzoylpyridine ligands and two thiocyanate anions (Drew et al., 1985; Soliman et al., 2014). In the third compound, $\mathrm{Cu}^{\mathrm{II}}$ cations are coordinated in a squareplanar mode by two 4-benzoylpyridine ligands and two thiocyanate anions (Bai et al., 2011). A general search for coordination compounds with 4-benzoylpyridine resulted in 22 structures including the aforementioned ones. One of these compounds consists of $\mathrm{Mn}^{\mathrm{II}}$ cations that are octahedrally coordinated by two 4-benzoylpyridine ligands as well as by four $\mu_{1,3}$-bridging azido ligands and linked into chains by the anionic ligands (Mautner et al., 2015).


Figure 3
Part of the crystal structure of the title compound, showing the hydrogenbonded layers. Hydrogen bonds are shown as dashed lines.

Table 2
Experimental details.
Crystal data
Chemical formula
$M_{\mathrm{r}}$
Crystal system, space group
Temperature (K)
$a, b, c(\AA)$
$\beta\left({ }^{\circ}\right)$
$V\left(\AA^{3}\right)$
Z
Radiation type
$\mu\left(\mathrm{mm}^{-1}\right)$
Crystal size (mm)
Data collection
Diffractometer
Absorption correction
$T_{\text {min }}, T_{\text {max }}$
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections $R_{\text {int }}$
$(\sin \theta / \lambda)_{\max }\left(\AA^{-1}\right)$
Refinement
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S \quad 0.036,0.096,1.04$
No. of reflections
No. of parameters H -atom treatment
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$

3347
$\left[\mathrm{Co}(\mathrm{NCS})_{2}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{~N}\right)_{2}\left(\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{NO}\right)_{2}\right]$
623.60

Monoclinic, $P 2_{1} / n$
200
10.0304 (6), 8.3355 (4),
18.2581 (12)
90.547 (8)
1526.46 (15)

2
Mo $K \alpha$
0.74
$0.16 \times 0.08 \times 0.02$

Stoe IPDS1
Numerical ( $X$-SHAPE and
X-RED32; Stoe, 2008)
0.897, 0.964

17991, 3347, 2895
0.032
0.640

189
H-atom parameters constrained $0.46,-0.69$

Computer programs: X-AREA (Stoe, 2008), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), XP in SHELXTL (Sheldrick, 2008), DIAMOND (Brandenburg, 1999) and publCIF (Westrip, 2010).

## 5. Synthesis and crystallization

$\mathrm{Co}(\mathrm{NCS})_{2}$ and 4-benzoylpyridine were purchased from Alfa Aesar. Crystals of the title compound suitable for single crystal X-ray diffraction were obtained by the reaction of $26.3 \mathrm{mg} \mathrm{Co}(\mathrm{NCS})_{2}(0.15 \mathrm{mmol})$ with 55.0 mg 4-benzoylpyridine ( 0.3 mmol ) in acetonitrile $(1.5 \mathrm{ml})$ after a few days.

## 6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. The C-bound H atoms were positioned with idealized geometry and were refined with fixed isotropic displacement parameters $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ for aromatic and $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$ for methyl H atoms using a riding model. The methyl H atoms were allowed to rotate but not to tip.

## Acknowledgements

We thank Professor Dr Wolfgang Bensch for access to his experimental facilities.

## Funding information

Funding for this research was provided by: Deutsche Forschungsgemeinschaft (award No. NA 720/5-1); State of Schleswig-Holstein.

## References

Bai, Y., Zheng, G.-S., Dang, D.-B., Zheng, Y.-N. \& Ma, P.-T. (2011). Spectrochim. Acta Part A, 79, 1338-1344.
Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Drew, M. G. B., Gray, N. I., Cabral, M. F. \& Cabral, J. de O. (1985). Acta Cryst. C41, 1434-1437.
Escuer, A., Mautner, F. A., Sanz, N. \& Vicente, R. (2000). Inorg. Chem. 39, 1668-1673.
Escuer, A., Sanz, N., Mautner, F. A. \& Vicente, R. (2004). Eur. J. Inorg. Chem. pp. 309-316.
Groom, C. R., Bruno, I. J., Lightfoot, M. P. \& Ward, S. C. (2016). Acta Cryst. B72, 171-179.
Massoud, S. S., Guilbeau, A. E., Luong, H. T., Vicente, R., Albering, J. H., Fischer, R. C. \& Mautner, F. A. (2013). Polyhedron, 54, 2633.

Mautner, F. A., Berger, C., Scherzer, M., Fischer, R. C., Maxwell, L., Ruiz, E. \& Vicente, R. (2015). Dalton Trans. 44, 18632-18642.
Palion-Gazda, J., Machura, B., Lloret, F. \& Julve, M. (2015). Cryst. Growth Des. 15, 2380-2388.
Rams, M., Tomkowicz, Z., Böhme, M., Plass, W., Suckert, S., Werner, J., Jess, I. \& Näther, C. (2017). Phys. Chem. Chem. Phys. 19, 32323243.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
Soliman, S. M., Elzawy, Z. B., Abu-Youssef, M. A. M., Albering, J., Gatterer, K., Öhrström, L. \& Kettle, S. F. A. (2014). Acta Cryst. B70, 115-125.
Stoe (2008). $X$-AREA, X-RED32 and $X$-SHAPE. Stoe \& Cie, Darmstadt, Germany.
Suckert, S., Rams, M., Böhme, M., Germann, L. S., Dinnebier, R. E., Plass, W., Werner, J. \& Näther, C. (2016). Dalton Trans. 45, 1819018201.

Werner, J., Rams, M., Tomkowicz, Z. \& Näther, C. (2014). Dalton Trans. 43, 17333-17342.
Werner, J., Rams, M., Tomkowicz, Z., Runčevski, T., Dinnebier, R. E., Suckert, S. \& Näther, C. (2015a). Inorg. Chem. 54, 2893-2901.
Werner, J., Runčevski, T., Dinnebier, R. E., Ebbinghaus, S. G., Suckert, S. \& Näther, C. (2015c). Eur. J. Inorg. Chem. 2015, 32363245.

Werner, J., Tomkowicz, Z., Rams, M., Ebbinghaus, S. G., Neumann, T. \& Näther, C. (2015d). Dalton Trans. 44, 14149-14158.
Werner, J., Tomkowicz, Z., Reinert, T. \& Näther, C. (2015b). Eur. J. Inorg. Chem. pp. 3066-3075.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
Zhang, S.-Y., Zhang, Z.-J., Shi, W., Zhao, B., Cheng, P., Liao, D.-Z. \& Yan, S.-P. (2011). Dalton Trans. 40, 7993-8002.

## supporting information

Acta Cryst. (2017). E73, 365-368 [https://doi.org/10.1107/S2056989017002201]

## Crystal structure of bis(acetonitrile- $\kappa N$ )bis(4-benzoylpyridine- $\kappa N$ )bis(thio-cyanato- $\kappa N$ )cobalt(II)

## Stefan Suckert, Julia Werner, Inke Jess and Christian Näther

## Computing details

Data collection: X-AREA (Stoe, 2008); cell refinement: X-AREA (Stoe, 2008); data reduction: X-AREA (Stoe, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: publCIF (Westrip, 2010).

Bis(acetonitrile- $\kappa \mathrm{N}$ )bis(4-benzoylpyridine- $\kappa \mathrm{N}$ ) bis(thiocyanato- $\kappa \mathrm{N}$ )cobalt(II)

## Crystal data

$\left[\mathrm{Co}(\mathrm{NCS})_{2}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{~N}\right)_{2}\left(\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{NO}\right)_{2}\right]$
$M_{r}=623.60$
Monoclinic, $P 2_{1} / n$
$a=10.0304$ (6) $\AA$
$b=8.3355$ (4) $\AA$
$c=18.2581(12) \AA$
$\beta=90.547$ ( 8$)^{\circ}$
$V=1526.46(15) \AA^{3}$
$Z=2$

## Data collection

Stoe IPDS-1
diffractometer
phi scans
Absorption correction: numerical
( $X$-SHAPE and $X$-RED32; Stoe, 2008)
$T_{\text {min }}=0.897, T_{\text {max }}=0.964$
17991 measured reflections
$F(000)=642$
$D_{\mathrm{x}}=1.357 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 17991 reflections
$\theta=2.7-27.1^{\circ}$
$\mu=0.74 \mathrm{~mm}^{-1}$
$T=200 \mathrm{~K}$
Block, purple
$0.16 \times 0.08 \times 0.02 \mathrm{~mm}$

3347 independent reflections
2895 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.032$
$\theta_{\text {max }}=27.1^{\circ}, \theta_{\text {min }}=2.7^{\circ}$
$h=-12 \rightarrow 12$
$k=-10 \rightarrow 10$
$l=-23 \rightarrow 23$

## Refinement

Refinement on $F^{2}$
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.036$
$w R\left(F^{2}\right)=0.096$
$S=1.04$
3347 reflections
189 parameters
0 restraints
Hydrogen site location: inferred from neighbouring sites

H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0604 P)^{2}+0.5217 P\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.46$ e $\AA^{-3}$
$\Delta \rho_{\text {min }}=-0.69$ e $\AA^{-3}$
Extinction correction: SHELXL2014
(Sheldrick, 2015),
$\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$
Extinction coefficient: 0.030 (3)

Special details
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters ( $\AA^{2}$ )

|  | $x$ | $y$ | $z$ | $U_{\text {iso }} * / U_{\text {eq }}$ |
| :---: | :---: | :---: | :---: | :---: |
| Col | 0.5000 | 0.0000 | 0.5000 | 0.02109 (12) |
| N1 | 0.65155 (15) | 0.11822 (18) | 0.55359 (9) | 0.0322 (3) |
| C1 | 0.71187 (17) | 0.2142 (2) | 0.58531 (10) | 0.0313 (4) |
| S1 | 0.79948 (6) | 0.34828 (9) | 0.62877 (5) | 0.0698 (3) |
| N2 | 0.49639 (16) | -0.17253 (18) | 0.58858 (8) | 0.0311 (3) |
| C2 | 0.50846 (19) | -0.2619 (2) | 0.63506 (10) | 0.0317 (4) |
| C3 | 0.5267 (3) | -0.3769 (3) | 0.69412 (13) | 0.0514 (6) |
| H3A | 0.5739 | -0.4714 | 0.6757 | 0.077* |
| H3B | 0.4395 | -0.4093 | 0.7128 | 0.077* |
| H3C | 0.5791 | -0.3276 | 0.7337 | 0.077* |
| N11 | 0.35979 (14) | 0.15671 (16) | 0.55624 (7) | 0.0234 (3) |
| C11 | 0.37171 (18) | 0.1751 (2) | 0.62899 (9) | 0.0281 (4) |
| H11 | 0.4386 | 0.1159 | 0.6543 | 0.034* |
| C12 | 0.29053 (18) | 0.2770 (2) | 0.66876 (9) | 0.0283 (4) |
| H12 | 0.3009 | 0.2853 | 0.7204 | 0.034* |
| C13 | 0.19360 (17) | 0.36697 (18) | 0.63229 (9) | 0.0240 (3) |
| C14 | 0.18049 (17) | 0.3477 (2) | 0.55676 (9) | 0.0266 (3) |
| H14 | 0.1153 | 0.4065 | 0.5299 | 0.032* |
| C15 | 0.26444 (17) | 0.2409 (2) | 0.52146 (9) | 0.0262 (3) |
| H15 | 0.2538 | 0.2267 | 0.4701 | 0.031* |
| C16 | 0.10657 (17) | 0.4749 (2) | 0.67758 (9) | 0.0253 (3) |
| C17 | 0.06203 (16) | 0.63359 (18) | 0.64974 (9) | 0.0238 (3) |
| C18 | 0.13193 (17) | 0.7173 (2) | 0.59627 (10) | 0.0296 (4) |
| H18 | 0.2059 | 0.6687 | 0.5729 | 0.036* |
| C19 | 0.0930 (2) | 0.8723 (2) | 0.57732 (12) | 0.0390 (4) |
| H19 | 0.1417 | 0.9300 | 0.5416 | 0.047* |
| C20 | -0.0159 (2) | 0.9428 (2) | 0.61001 (12) | 0.0396 (5) |
| H20 | -0.0419 | 1.0484 | 0.5966 | 0.048* |
| C21 | -0.08743 (19) | 0.8590 (2) | 0.66259 (11) | 0.0361 (4) |
| H21 | -0.1631 | 0.9070 | 0.6845 | 0.043* |
| C22 | -0.04865 (17) | 0.7059 (2) | 0.68300 (10) | 0.0293 (4) |
| H22 | -0.0968 | 0.6497 | 0.7195 | 0.035* |
| O11 | 0.07747 (15) | 0.43077 (16) | 0.73898 (7) | 0.0373 (3) |

Atomic displacement parameters $\left(\AA^{2}\right)$

|  | $U^{11}$ | $U^{22}$ | $U^{33}$ | $U^{12}$ | $U^{13}$ | $U^{23}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Co1 | $0.02286(18)$ | $0.01851(17)$ | $0.02185(17)$ | $0.00227(11)$ | $-0.00268(11)$ | $-0.00305(10)$ |
| N1 | $0.0281(7)$ | $0.0316(8)$ | $0.0370(8)$ | $-0.0008(6)$ | $-0.0050(6)$ | $-0.0088(6)$ |

supporting information

| C1 | $0.0233(8)$ | $0.0312(9)$ | $0.0393(9)$ | $0.0064(7)$ | $-0.0022(7)$ | $-0.0102(7)$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| S1 | $0.0407(3)$ | $0.0604(4)$ | $0.1081(6)$ | $-0.0008(3)$ | $-0.0150(3)$ | $-0.0554(4)$ |
| N2 | $0.0377(8)$ | $0.0274(7)$ | $0.0281(7)$ | $0.0052(6)$ | $0.0022(6)$ | $0.0011(6)$ |
| C2 | $0.0358(9)$ | $0.0264(8)$ | $0.0330(9)$ | $0.0051(7)$ | $0.0027(7)$ | $-0.0012(7)$ |
| C3 | $0.0766(17)$ | $0.0344(11)$ | $0.0432(11)$ | $0.0146(10)$ | $0.0073(11)$ | $0.0130(9)$ |
| N11 | $0.0255(7)$ | $0.0208(6)$ | $0.0239(6)$ | $0.0034(5)$ | $-0.0014(5)$ | $-0.0021(5)$ |
| C11 | $0.0338(9)$ | $0.0275(8)$ | $0.0230(8)$ | $0.0076(7)$ | $-0.0034(7)$ | $0.0008(6)$ |
| C12 | $0.0371(9)$ | $0.0287(8)$ | $0.0192(7)$ | $0.0064(7)$ | $-0.0013(6)$ | $-0.0004(6)$ |
| C13 | $0.0280(8)$ | $0.0210(7)$ | $0.0232(7)$ | $0.0014(6)$ | $0.0001(6)$ | $-0.0010(6)$ |
| C14 | $0.0279(8)$ | $0.0277(8)$ | $0.0240(8)$ | $0.0078(6)$ | $-0.0048(6)$ | $-0.0031(6)$ |
| C15 | $0.0292(8)$ | $0.0281(8)$ | $0.0211(7)$ | $0.0053(6)$ | $-0.0048(6)$ | $-0.0044(6)$ |
| C16 | $0.0283(8)$ | $0.0241(7)$ | $0.0235(7)$ | $-0.0008(6)$ | $0.0000(6)$ | $-0.0058(6)$ |
| C17 | $0.0229(8)$ | $0.0223(7)$ | $0.0262(8)$ | $0.0002(6)$ | $-0.0023(6)$ | $-0.0068(6)$ |
| C18 | $0.0278(8)$ | $0.0250(8)$ | $0.0361(9)$ | $0.0009(6)$ | $0.0023(7)$ | $-0.0016(7)$ |
| C19 | $0.0414(11)$ | $0.0280(9)$ | $0.0477(11)$ | $0.0002(8)$ | $0.0017(9)$ | $0.0040(8)$ |
| C20 | $0.0456(11)$ | $0.0236(8)$ | $0.0495(11)$ | $0.0083(8)$ | $-0.0084(9)$ | $-0.0052(8)$ |
| C21 | $0.0304(9)$ | $0.0328(9)$ | $0.0450(11)$ | $0.0082(7)$ | $-0.0051(8)$ | $-0.0162(8)$ |
| C22 | $0.0265(8)$ | $0.0308(8)$ | $0.0305(8)$ | $0.0003(7)$ | $0.0008(7)$ | $-0.0108(7)$ |
| O11 | $0.0517(8)$ | $0.0352(7)$ | $0.0254(6)$ | $0.0055(6)$ | $0.0083(6)$ | $-0.0005(5)$ |

Geometric parameters ( $A,{ }^{\circ}$ )

| $\mathrm{Col}-\mathrm{N} 1^{\text {i }}$ | 2.0520 (15) | C13-C14 | 1.393 (2) |
| :---: | :---: | :---: | :---: |
| Col-N1 | 2.0520 (15) | C13-C16 | 1.506 (2) |
| $\mathrm{Co} 1-\mathrm{N} 2$ | 2.1647 (15) | C14-C15 | 1.388 (2) |
| $\mathrm{Co} 1-\mathrm{N} 2{ }^{\text {i }}$ | 2.1648 (15) | C14-H14 | 0.9500 |
| $\mathrm{Co} 1-\mathrm{N} 11^{\text {i }}$ | 2.1831 (13) | C15-H15 | 0.9500 |
| Co1-N11 | 2.1831 (13) | C16-O11 | 1.218 (2) |
| N1-C1 | 1.155 (2) | C16-C17 | 1.485 (2) |
| C1-S1 | 1.6244 (18) | C17-C18 | 1.394 (2) |
| N2-C2 | 1.135 (2) | C17-C22 | 1.406 (2) |
| C2-C3 | 1.453 (3) | C18-C19 | 1.392 (3) |
| C3-H3A | 0.9800 | C18-H18 | 0.9500 |
| С3-H3B | 0.9800 | C19-C20 | 1.380 (3) |
| C3-H3C | 0.9800 | C19-H19 | 0.9500 |
| N11-C15 | 1.341 (2) | C20-C21 | 1.392 (3) |
| N11-C11 | 1.341 (2) | C20-H20 | 0.9500 |
| C11-C12 | 1.386 (2) | C21-C22 | 1.384 (3) |
| C11-H11 | 0.9500 | C21-H21 | 0.9500 |
| C12-C13 | 1.392 (2) | C22-H22 | 0.9500 |
| C12-H12 | 0.9500 |  |  |
| N1- ${ }^{\text {i }}$ Col-N1 | 180.0 | C11-C12-H12 | 120.3 |
| $\mathrm{N} 1{ }^{\text {i }}$ - $\mathrm{Co} 1-\mathrm{N} 2$ | 91.13 (6) | C13-C12-H12 | 120.3 |
| N1-Col-N2 | 88.88 (6) | C12-C13-C14 | 118.03 (15) |
| $\mathrm{N} 1{ }^{\mathrm{i}}-\mathrm{Col}-\mathrm{N} 2^{\mathrm{i}}$ | 88.87 (6) | C12-C13-C16 | 117.70 (14) |
| $\mathrm{N} 1-\mathrm{Co} 1-\mathrm{N} 2^{\text {i }}$ | 91.13 (6) | C14-C13-C16 | 124.24 (15) |
| $\mathrm{N} 2-\mathrm{Co} 1-\mathrm{N} 2^{\text {i }}$ | 180.0 | C15-C14-C13 | 118.79 (15) |


| $\mathrm{N} 1-\mathrm{Co} 1-\mathrm{N} 11^{\mathrm{i}}$ | $88.05(6)$ |
| :--- | :--- |
| $\mathrm{N} 1-\mathrm{Co} 1-\mathrm{N} 11^{\mathrm{i}}$ | $91.95(6)$ |
| $\mathrm{N} 2-\mathrm{Co} 1-\mathrm{N} 11^{\mathrm{i}}$ | $88.24(5)$ |
| $\mathrm{N} 2 \mathrm{i}^{\mathrm{i}} \mathrm{Co} 1-\mathrm{N} 11^{\mathrm{i}}$ | $91.76(5)$ |
| $\mathrm{N} 1-\mathrm{Co} 1-\mathrm{N} 11$ | $91.95(6)$ |
| $\mathrm{N} 1-\mathrm{Co} 1-\mathrm{N} 11$ | $88.05(6)$ |
| $\mathrm{N} 2-\mathrm{Co} 1-\mathrm{N} 11$ | $91.76(5)$ |
| $\mathrm{N} 2-\mathrm{Co} 1-\mathrm{N} 11$ | $88.24(5)$ |
| $\mathrm{N} 11-\mathrm{Co} 1-\mathrm{N} 11$ | $180.00(5)$ |
| $\mathrm{C} 1-\mathrm{N} 1-\mathrm{Co} 1$ | $162.48(14)$ |
| $\mathrm{N} 1-\mathrm{C} 1-\mathrm{S} 1$ | $178.75(18)$ |
| $\mathrm{C} 2-\mathrm{N} 2-\mathrm{Co} 1$ | $172.91(16)$ |
| $\mathrm{N} 2-\mathrm{C} 2-\mathrm{C} 3$ | $178.8(2)$ |
| $\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$ | 109.5 |
| $\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$ | 109.5 |
| $\mathrm{H} 3 \mathrm{~A}-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$ | 109.5 |
| $\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{C}$ | 109.5 |
| $\mathrm{H} 3 \mathrm{~A}-\mathrm{C} 3-\mathrm{H} 3 \mathrm{C}$ | 109.5 |
| $\mathrm{H} 3 \mathrm{~B}-\mathrm{C} 3-\mathrm{H} 3 \mathrm{C}$ | $117.74(14)$ |
| $\mathrm{C} 15-\mathrm{N} 11-\mathrm{C} 11$ | $123.36(11)$ |
| $\mathrm{C} 15-\mathrm{N} 11-\mathrm{Co1}$ | $118.85(11)$ |
| $\mathrm{C} 11-\mathrm{N} 11-\mathrm{Co} 1$ | $122.79(15)$ |
| $\mathrm{N} 11-\mathrm{C} 11-\mathrm{C} 12$ | 118.6 |
| $\mathrm{~N} 11-\mathrm{C} 11-\mathrm{H} 11$ | 118.6 |
| $\mathrm{C} 12-\mathrm{C} 11-\mathrm{H} 11$ | $119.35(15)$ |
| $\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13$ |  |


| $\mathrm{C} 15-\mathrm{C} 14-\mathrm{H} 14$ | 120.6 |
| :--- | :--- |
| $\mathrm{C} 13-\mathrm{C} 14-\mathrm{H} 14$ | 120.6 |
| $\mathrm{~N} 11-\mathrm{C} 15-\mathrm{C} 14$ | $123.27(15)$ |
| $\mathrm{N} 11-\mathrm{C} 15-\mathrm{H} 15$ | 118.4 |
| $\mathrm{C} 14-\mathrm{C} 15-\mathrm{H} 15$ | 118.4 |
| $\mathrm{O} 11-\mathrm{C} 16-\mathrm{C} 17$ | $120.68(15)$ |
| $\mathrm{O} 11-\mathrm{C} 16-\mathrm{C} 13$ | $118.05(15)$ |
| $\mathrm{C} 17-\mathrm{C} 16-\mathrm{C} 13$ | $121.22(14)$ |
| $\mathrm{C} 18-\mathrm{C} 17-\mathrm{C} 22$ | $119.48(16)$ |
| $\mathrm{C} 18-\mathrm{C} 17-\mathrm{C} 16$ | $122.27(15)$ |
| $\mathrm{C} 22-\mathrm{C} 17-\mathrm{C} 16$ | $118.06(15)$ |
| $\mathrm{C} 19-\mathrm{C} 18-\mathrm{C} 17$ | $119.76(17)$ |
| $\mathrm{C} 19-\mathrm{C} 18-\mathrm{H} 18$ | 120.1 |
| $\mathrm{C} 17-\mathrm{C} 18-\mathrm{H} 18$ | 120.1 |
| $\mathrm{C} 20-\mathrm{C} 19-\mathrm{C} 18$ | $120.58(19)$ |
| $\mathrm{C} 20-\mathrm{C} 19-\mathrm{H} 19$ | 119.7 |
| $\mathrm{C} 18-\mathrm{C} 19-\mathrm{H} 19$ | 119.7 |
| $\mathrm{C} 19-\mathrm{C} 20-\mathrm{C} 21$ | $119.97(18)$ |
| $\mathrm{C} 19-\mathrm{C} 20-\mathrm{H} 20$ | 120.0 |
| $\mathrm{C} 21-\mathrm{C} 20-\mathrm{H} 20$ | 120.0 |
| $\mathrm{C} 22-\mathrm{C} 21-\mathrm{C} 20$ | $120.19(17)$ |
| $\mathrm{C} 22-\mathrm{C} 21-\mathrm{H} 21$ | 119.9 |
| $\mathrm{C} 20-\mathrm{C} 21-\mathrm{H} 21$ | 119.9 |
| $\mathrm{C} 21-\mathrm{C} 22-\mathrm{C} 17$ | $120.00(17)$ |
| $\mathrm{C} 21-\mathrm{C} 22-\mathrm{H} 22$ | 120.0 |
| $\mathrm{C} 17-\mathrm{C} 22-\mathrm{H} 22$ | 120.0 |

Symmetry code: (i) $-x+1,-y,-z+1$.

Hydrogen-bond geometry ( $A,{ }^{\circ}$ )

| $D — \mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{C} 3 — \mathrm{H} 3 A \cdots \mathrm{~S} 1^{\mathrm{ii}}$ | 0.98 | 2.85 | $3.771(3)$ | 156 |
| $\mathrm{C} 11 — \mathrm{H} 11 \cdots \mathrm{O} 11^{\mathrm{iii}}$ | 0.95 | 2.49 | $3.193(2)$ | 131 |

Symmetry codes: (ii) $x, y-1, z$; (iii) $-x+1 / 2, y-1 / 2,-z+3 / 2$.

