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Abstract: WRKY transcription factors play central roles in developmental processes and stress
responses of wheat. Most WRKY proteins of the same group (Group III) have a similar function
in abiotic stress responses in plants. TaWRKY46, a member of Group III, was up-regulated by
PEG treatment. TaWRKY46-GFP fusion proteins localize to the nucleus in wheat mesophyll
protoplasts. Overexpression of TaWRKY46 enhanced osmotic stress tolerance in transgenic Arabidopsis
thaliana plants, which was mainly demonstrated by transgenic Arabidopsis plants forming higher
germination rate and longer root length on 1/2 Murashige and Skoog (MS) medium containing
mannitol. Furthermore, the expression of several stress-related genes (P5CS1, RD29B, DREB2A, ABF3,
CBF2, and CBF3) was significantly increased in TaWRKY46-overexpressing transgenic Arabidopsis
plants after mannitol treatment. Taken together, these findings proposed that TaWRKY46 possesses
vital functions in improving drought tolerance through ABA-dependent and ABA-independent
pathways when plants are exposed to adverse osmotic conditions. TaWRKY46 can be taken as a
candidate gene for transgenic breeding against osmotic stress in wheat. It can further complement
and improve the information of the WRKY family members of Group III.
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1. Introduction

Drought is one of the most hazardous environmental abiotic stressors, which adversely influences
the growth and development of wheat (Triticum aestivum L.) [1,2]. It has caused an average of 13.7%
loss in cereal production worldwide over the past few decades [3]. In Northwest China, wheat
is cultivated under rain-fed conditions and encounters severe water shortage because of the low
rainfall [4]. Uncovering the sophisticated underlying mechanisms that allow wheat to adapt to various
detrimental stresses has vital significance for the improvement of wheat drought tolerance [5,6]. Several
transcription factor (TF) families, such as WRKY, MYB, and NAC, have been reported to play key roles
in response to drought stress in plants.

WRKY TFs mediate signal transduction pathways by regulating the transcription of target DNA
and eventually leading to stress tolerance in plants [7–11]. The WRKY family is characterized by the
WRKY domain, which comprises a short conserved sequence WRKYGQK at the N-terminal and a zinc
finger motif at the C-terminal [12,13]. According to the number of WRKY domains and zinc-finger
structures, the WRKY family members are divided into three groups. Two WRKY domains and a C2H2

(CX4-5CX22-23HXH) zinc finger exist in Group I. Group II a-e and Group III contain one WRKY domain
and a C2H2 motif or a C2HC (CX7CX23HXC) motif, respectively [14]. The WRKY domain controls
transcription by specifically binding to the upstream W-box sequence of the target genes [15,16].
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As a hexaploid plant, the wheat genome consists of the A, B, and D genomes with 15,966 Mb
in size [17,18]. In a previous study, 171 WRKY TFs were identified in wheat [19]. Less than
one-third of wheat TaWRKYs have been functionally analyzed so far. Recent studies have emphasized
the involvement of TaWRKY TFs in various biotic and abiotic stress responses and plant growth
and development processes, such as pathogen defense [20], high salt stress [21,22], extreme
temperature [23,24], drought stress [21,22,25,26] and senescence [15].

The WRKY members of Group III have been identified as participants in abiotic stress responses
in plants. AtWRKY46 played roles in regulating plant responses to osmotic stress and stomatal
movement [27]. GhWRKY33 functioned as a negative regulator in drought stress response and
participates in the ABA signaling pathway [28]. The overexpression of VlWRKY48 enhanced plant
drought tolerance by multiple mechanisms. Additionally, VlWRKY48 controlled the resistance to
powdery mildew infection [29]. The function of the WRKY members that belonged to Group III
is conserved. Whether or not the wheat WRKY members of Group III play a role in abiotic stress
responses is still unclear.

In our previous work, 45 WRKY TFs which belonged to Group III were identified in
wheat [19]. To assess the function of wheat Group III members, a Group III gene TaWRKY46
(TRAES3BF051200110CFD_t1) is cloned in this study. Our results showed that overexpression of
TaWRKY46 promoted the germination rate and boosted the root growth in TaWRKY46-overexpressing
Arabidopsis plants under osmotic stress. Overexpression of TaWRKY46 also induced stress-related
genes in transgenic Arabidopsis plants, which suggested that TaWRKY46 played an important role in
enhancing osmotic tolerance through ABA-dependent and ABA-independent pathways. This study
provides more information for further investigation into the underlying mechanisms of TaWRKY genes
that are involved in osmotic-related regulatory networks.

2. Results

2.1. Identification of TaWRKY46 and its Transcription Profiles under Various Stress Conditions

TaWRKY46 comprised the splicing of three exons and two introns. The length of wheat WRKY46
was 1062 base pairs (bp). The sizes of the introns were 83 bp and 94 bp, respectively (Figure 1A).
TaWRKY46 and its orthologous from other plant species were used to construct a phylogenetic tree.
The result showed that TaWRKY46 had the closest relationship with Hv1065C13 (AK357930.1) from
Hordeum vulgare due to its high identity (Figure 1B). The TaWRKY46 protein had 294 amino acid
residues. A total of 71 amino acid residues (24% of sequence) had been modelled with 100% confidence
by the single highest scoring template. The image of the tertiary structure of TaWRKY46 was colored
by rainbow from N to C terminus. It had four β-sheets which were displayed in the tertiary structure.
The model dimensions of tertiary structures were also given in detail (Figure 1C). Multiple sequence
alignment revealed that all WRKYs had the conserved WRKYGQK motif and amino acid residues.
TaWRKY46 was assigned to Group III, due to the existence of one WRKY domain and a C2HC zinc
finger motif (Figure 1D).

To dissect potential functions, the expression of TaWRKY46 was investigated in different tissues
and various stress conditions by qRT-PCR. The results showed that TaWRKY46 was expressed
in all organs, with the higher and lower transcriptional levels in the leaf and root, respectively
(Figure 2A). Transcription of TaWRKY46 was not affected by low-temperature, but was repressed by
high-temperature and exogenous ABA treatments (Figure 2D–F). The TaWRKY46 gene was slightly
induced by NaCl at a maximum level of about 1.48-fold at 3 h (Figure 2C). TaWRKY46 was markedly
induced after PEG treatment, and increased by 3.57-fold at 3 h (Figure 2B).
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single highest scoring template. Image was colored by rainbow from N to C terminus. The number 

and capital letter represent the order and abbreviation of amino acids. (D) Sequence alignment of 

TaWRKY46 and its homologs. Black and grey background represent 100 and 75% similarity, 

respectively. The completed WRKY domain and C2HC zinc finger motif are circled in red boxes. 
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Figure 2. Transcription profiles of TaWRKY46. (A) Organ expression assay of TaWRKY46 in different 

wheat organs (leaf, root, and stem). Transcription profiles of TaWRKY46 under 20% PEG 6000 (B); 200 

mM NaCl (C); 4 C° (D); 42 C° (E); 100 μM ABA (F) treatments in wheat leaves. The transcriptional 

level at time point 0 (for the multiple stress experiments) and the leaf (for the organ expression assay) 

was defined as 1.0. 

Figure 1. Sequence analysis of TaWRKY46. (A) A schematic representation showing the gene structure
of TaWRKY46. (B) Phylogenetic relationship of TaWRKY46 with its orthologous in other plant species.
The accession numbers of the WRKYs are listed in Supplementary Table S1. (C) Tertiary structure of
TaWRKY46 protein. A total of 71 amino acid residues were modelled with 100% confidence by the
single highest scoring template. Image was colored by rainbow from N to C terminus. The number
and capital letter represent the order and abbreviation of amino acids. (D) Sequence alignment of
TaWRKY46 and its homologs. Black and grey background represent 100 and 75% similarity, respectively.
The completed WRKY domain and C2HC zinc finger motif are circled in red boxes.
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Figure 2. Transcription profiles of TaWRKY46. (A) Organ expression assay of TaWRKY46 in different
wheat organs (leaf, root, and stem). Transcription profiles of TaWRKY46 under 20% PEG 6000 (B); 200
mM NaCl (C); 4 ◦C (D); 42 ◦C (E); 100 µM ABA (F) treatments in wheat leaves. The transcriptional
level at time point 0 (for the multiple stress experiments) and the leaf (for the organ expression assay)
was defined as 1.0.

2.2. Subcellular Location of TaWRKY46

The full coding region of TaWRKY46 was cloned into the pTF486-GFP vector under control of the
CaMV35S promoter and transformed into wheat leaf protoplasts. The empty vector was used as a
control. The GFP signal of 35S:TaWRKY46-GFP was exclusively observed in the nucleus, whereas GFP
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signal of the control was discovered in the cytoplasm and nucleus (Figure 3). Therefore, TaWRKY46
likely functioned as a transcription factor in the nucleus.
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Figure 3. Subcellular localization of the TaWRKY46. P35S:TaWRKY46-GFP and P35S:GFP control vectors
were transiently expressed in wheat leaf protoplasts. Scale bar = 10 µm.

2.3. Transcriptional Activation Assay of TaWRKY46 in Yeast

Transcriptional activation of TaWRKY46 was detected with the GAL4 yeast expression
system. Yeast strain AH109 was transformed with constructions pGBKT7-TaWRKY46 (1-294 aa),
pGBKT7-TaWRKY46 (1-191 aa), and pGBKT7-TaWRKY46 (192-294 aa), and pGBKT7 was taken
as a negative control. The yeast cells transformed with pGBKT7-TaWRKY46 (1-294 aa) and
pGBKT7-TaWRKY46 (192-294 aa) grew well on the SD-W/H/A medium (Figure 4). Meanwhile,
yeast cells transformed with pGBKT7-TaWRKY46 (1-191 aa) and empty vector pGBKT7 could only
survive on the SD-W medium. The yeast cells transformed with pGBKT7-TaWRKY46 (1-294 aa) and
pGBKT7-TaWRKY46 (192-294 aa) grew well on SD-W/H/A medium, and turned blue in the presence
of X-α-gal. The results demonstrated that the C-terminal region of TaWRKY46 functioned as a
transcriptional activator.
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Figure 4. Transcriptional activity assay of TaWRKY46 protein in yeast. A schematic diagram of fused
vectors exhibiting the truncated segments of TaWRKY46 that were fused to the vector pGBKT7. The
transformants were incubated on the SD-W, SD-W/H/A, and SD-W/H/A with X-α-gal medium.

2.4. Overexpression of TaWRKY46 Improved Osmotic Tolerance in Transgenic Arabidopsis Plants

The complementary DNA (cDNA) encoding TaWRKY46 was inserted into the pBI1304 vector
under the control of the CaMV35S promoter. The PCR and qRT-PCR analysis showed that TaWRKY46
was detected in the two selected TaWRKY46-overexpressing Arabidopsis plants (OE-7 and OE-16), but
not in the wild-type (WT) (Figure 5A,B). The water loss rate was evaluated at the indicated interval
for both WT and TaWRKY46-overexpressing Arabidopsis plants. Compared with the WT plants, the
detached leaves of TaWRKY46-overexpressing Arabidopsis plants possessed lower water loss rate
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(Figure 5C). The 24-day-old seedlings of WT and transgenic Arabidopsis plants were exposed to
drought conditions for 25 days. All leaves of WT Arabidopsis plants were severely curled and turned
yellow, while some leaves of the transgenic plants (OE-7 and OE-16) remained green (Figure 5D). After
withholding water for 25 d, 17.34% of the WT plants survived while the survival rates of the transgenic
Arabidopsis OE7 and OE16 lines were 61.13% and 63.33%, respectively (Figure 5E).
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Figure 5. The phenotype and tolerance assay of TaWRKY46-overexpressing Arabidopsis after drought
treatment. Gene validation of TaWRKY46 in transgenic Arabidopsis lines by PCR (A) and qRT-PCR (B). (C)
The water loss rate of the detached leaves. (D) The phenotype of TaWRKY46-overexpressing Arabidopsis
plants after water withholding for 25 days. (E) The survival rate of TaWRKY46-overexpressing
Arabidopsis plants after drought treatment. Asterisks indicate a significant difference between wild-type
(WT) and transgenic Arabidopsis lines (*** p < 0.001).

To assess the osmotic stress tolerance of the transgenic Arabidopsis plants, WT and TaWRKY46-
overexpressing Arabidopsis seeds were sown on 1/2 MS medium containing mannitol (0 mM, 150 mM,
and 300 mM), and the seed germination rate was monitored for 4 days. Compared with WT,
TaWRKY46-overexpressing transgenic Arabidopsis seeds grown on 1/2 MS medium containing mannitol
showed remarkable differences in the germination rate (Figure 6A–C). More than 87.34% and 76.19% of
TaWRKY46 transgenic seeds germinated in 1/2 MS medium supplemented with 150 mM and 300 mM
mannitol, respectively, compared to 77.06% and 63.72% for WT seeds (Figure 6E,F). However, the
seeds planted on the 1/2 MS medium without mannitol had no obvious difference between the WT
and TaWRKY46-overexpressing transgenic Arabidopsis lines (Figure 6D). The results suggested that
overexpression of TaWRKY46 enhanced osmotic tolerance during seed germination in transgenic
Arabidopsis plants.
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Figure 6. The germination rate of overexpressing TaWRKY46 in Arabidopsis under osmotic stress. WT
and transgenic Arabidopsis seeds were sown on 1/2 MS medium containing 0 mM (A,D), 150 mM
(B,E), and 300 mM mannitol (C,F). Panels (A–C) are the photos of germination status on media after
4 days; (D–F) are the diagrams of germination rate calculated for 4 days. Asterisks indicate a significant
difference between WT and transgenic Arabidopsis lines (**p < 0.01; ***p < 0.001).

TaWRKY46-overexpressing Arabidopsis and WT seeds were grown vertically on 1/2 MS medium
at 22 ◦C. For the mannitol treatment, 5-old-day seedlings were then grown on 1/2 MS medium
supplemented with mannitol (0 mM, 150 mM, and 300 mM) in the same growth chamber for 10 days.
WT plants grew a little better on 1/2 MS medium without mannitol than the TaWRKY46-overexpressing
Arabidopsis plants (Figure 7A). In contrast, the overexpression lines grew noticeably better on the
mannitol medium than those of the WT (Figure 7B,C). The root length results further confirmed
the promoted tolerance of the overexpression of TaWRKY46 in transgenic Arabidopsis plants.
The root lengths of the TaWRKY46-overexpressing Arabidopsis plants were longer than those of
WT plants under mannitol treatments, although mannitol stress repressed the growth of both
TaWRKY46-overexpressing Arabidopsis and WT plants (Figure 7D–F). However, the root lengths
of WT and TaWRKY46-overexpressing Arabidopsis plants had no differences under 100 and 200 mM
NaCl treatments (Supplementary Figure S1).

2.5. TaWRKY46 Regulates the Expression of Stress-Related Genes Under Osmotic Stress in Arabidopsis Plants

The transcriptional levels of stress-related genes were detected in the 15-day-old WT
and TaWRKY46-overexpressing transgenic Arabidopsis seedlings after mannitol stress. We
selected six genes listed below for this experiment: ∆-1-pyrroline-5-carboxylate synthetase 1
(P5CS1), dehydration-responsive 29B (RD29B), dehydration-response element-binding protein 2A
(DREB2A), ABA-response element (ABRE) binding factor 3 (ABF3), C repeat/dehydration-responsive
element-binding factor 2 (CBF2), and CBF3. Compared with the WT plants, the six stress-related genes
analyzed were prominently up-regulated in the TaWRKY46-overexpressing transgenic Arabidopsis lines
when seedlings were exposed to 150 mM and 300 mM mannitol treatments (Figure 8). The results
demonstrated that the overexpression of TaWRKY46 enhanced osmotic tolerance by inducing the
expression of some stress-related genes in transgenic Arabidopsis plants.
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3. Discussion

WRKY TFs are one of the largest families of transcriptional regulators in plants, and have multiple
developmental and physiological functions in response to environmental stresses [30]. In plants such
as rice [31], soybean [16,32], cotton [33], Brachypodium distachyon [34,35], maize [36], and wheat [37], an
especially large number of WRKY proteins have been identified in recent years.

In the present study, multiple sequence alignment showed that TaWRKY46 possessed the
conserved WRKYGQK domain and a C2HC (CX7CX23HXC) motif (Figure 1D). The TaWRKY46-GFP
fusion protein was exclusively localized to the nucleus of wheat protoplasts in a transient expression
assay (Figure 3). It was in agreement with its putative role as a transcription factor and similar to
previous reports on some other WRKY TFs [38,39]. Transcriptional activation analysis illuminated that
the sequence of TaWRKY46 has transcriptional activation activity (Figure 4). It was in accordance with
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a senescence-associated transcription factor TaWRKY7 [15]. The transcriptional activation of truncated
segments of TaWRKY46 illuminated that the C-terminal sequence of TaWRKY46 has transcriptional
activation activity.

The WRKY TF members are known to be a vital section in drought stress and the ABA signal
pathway [30,40]. The activation of the ABA signal transduction pathway also elevated plant drought
tolerance by repressing transpiration, stomata opening, and the growth retardation factors [41]. But
the expression patterns of TaWRKY46 seemed to be inconsistent under PEG and ABA treatments
(Figure 2B,F). The underlying mechanism will need further exploration.

The structural conservation of WRKY proteins determines the functional specificity in regulating
gene expression. Investigations showed that most WRKY proteins of the same group have a similar
function in many plant species. Gene expression of TaWRKY46, which belonged to Group III, was
induced in the leaf under PEG treatment (Figure 2B). It implied that TaWRKY46 might play a key role
in response to osmotic stress. It was similar to the expression profiles of AtWRKY46 and AtWRKY63.
AtWRKY46 plays important functions in responses to osmotic stress and stomatal movement [27].
AtWRKY63, a member of Group III, mediated responses to exogenous ABA and drought stress in
Arabidopsis [42]. All these currently available data suggested that they may possess conserved functions
in abiotic stress signaling.

The water loss rate of the detached leaves has been widely used to reflect drought tolerance in
plants. The detached leaves of TaWRKY46-overexpressing Arabidopsis plants exhibited lower rates
of water loss compared to the WT plants (Figure 5C). TaWRKY46-overexpressing Arabidopsis plants
had the higher survival rate after drought treatment, and possessed the higher germination rate at
different concentrations of mannitol (Figures 5E and 6). Further phenotypic analysis showed that
overexpression of TaWRKY46 altered the length of roots in transgenic Arabidopsis plants under osmotic
stress (Figure 7). All the results suggested that overexpression of TaWRKY46 enhanced osmotic
tolerance in transgenic Arabidopsis plants. Similar findings were also verified in some other WRKY
transcription factors [22]. However, a remarkable difference was not observed in the root length of
WT and TaWRKY46-overexpressing Arabidopsis plants after 100 mM and 200 mM NaCl treatments
(Supplementary Figure S1). It was mainly because of the low induction of TaWRKY46 gene expression
under NaCl treatment.

To gain further insight into the mechanism of action of TaWRKY46 in osmotic stress at the
molecular level, six stress-related genes were detected at the transcriptional level. P5CS1 is one of the
core enzymes involved in proline biosynthesis. Proline is a widely distributed osmolyte that regulates
the osmotic balance [43]. Herein, we found that P5CS1 was greatly induced in transgenic Arabidopsis
plants (Figure 8). It indicated that AtP5CS1 was possibly regulated by TaWRKY46. There was also a
possibility that the resistance ability was given by WRKY SNPs mutations [44]. Fortunella crassifolia
WRKY40 could also specifically bind to and activate the promoter of FcP5CS1 under salt stress [45].
The promoted expression of P5CS1 could lead to the accumulation of osmolytes that can maintain the
osmotic capacity, thus sustaining the water content.

ABA, a vital hormone, is involved in plant gene regulation networks by an ABA-dependent or
ABA-independent pathway when plants combat adverse environmental stresses [5,46]. The expression
of ABF3 and RD29B (ABA-dependent) and DREB2A, CBF2, and CBF3 (ABA-independent) genes
were enhanced in TaWRKY46-overexpressing transgenic Arabidopsis plants (Figure 8). It suggested
that TaWRKY46 appeared to be a regulator involved both in ABA-dependent and ABA-independent
pathways. Similar findings were also found in the functional characterizations of TaWRKY2, TaWRKY19,
TaWRKY93, and TaMYB73 transcription factors [21,22,47]. It was partly because that a single WRKY
TF can be involved in regulating several seemingly disparate processes [30,44]. These results were in
accordance with previous findings that plants promoted their responses to abiotic stresses by enhancing
the expression of stress-related genes [48–53]. Therefore, inducing stress-related genes may be the
dominant mechanism to enhancing osmotic stress tolerance. If TaWRKY46 could directly bind to the
upstream region of these genes is an idea that needs to be further explored, which will illuminate
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the underlying molecular mechanism of TaWRKY46 involved in the osmotic stress signal pathway
in wheat.

4. Materials and Methods

4.1. Hydroponic Wheat and Stress Treatments

Winter wheat variety Zhengyin 1 (drought-sensitive) was utilized in the experiment. The seeds
were sterilized in 75% ethanol (v/v) for 10 min, rinsed six times with distilled water, and germinated in
a glass dish with wet filter paper (Zhejiang, China) for 36 h in the dark. The germinated seeds were
transferred into pots filled with 1/2 Hoagland solution (Qingdao, China, Supplementary Figure S2A).
The pots were cultured in a growth chamber with a day/night temperature of 25 ◦C/20 ◦C and 16 h/8
h photoperiod at 180 µmol m−2 s−1 illumination. The 1/2 Hoagland solution was refreshed every 2
days. When the second leaf fully expanded, 8-day-old seedlings (Supplementary Figure S2B) were
treated with 1/2 Hoagland solution containing 20% PEG 6000, 200 mM NaCl, and 100 µM ABA for
24 h under the same chamber. Low- and high-temperature treatments were conducted at 4 ◦C and
42 ◦C chambers for 24 h, respectively. Seedlings cultivated in free 1/2 Hoagland solution were taken
as a control. For the multiple stress experiments, the leaves were sampled at 0, 1, 3, 6, 12, and 24 h
after PEG, NaCl, ABA, and low- and high-temperature treatments. For the organ expression analysis,
the leaf, root, and stem were collected from control seedlings at 0 h. All the samples were immersed
immediately into liquid nitrogen and stored at −80 ◦C for RNA extraction. The specific gene primers
were listed in Supplementary Table S2.

4.2. Gene Isolation and Bioinformatics Analysis of TaWRKY46

The complete coding sequence of TaWRKY46 was amplified by PCR using specific primers
(Supplementary Table S2). The PCR product was ligated to the pMD19-T vector (TaKaRa, Dalian,
China) and then sequenced by the company (Sangon Biotech, Shanghai, China). The exon–intron
structure of TaWRKY46 was obtained by the Gene Structure Display Server 2.0. TaWRKY46 and its
highest homologies in other species including monocotyledonous grasses (barley, rice, and maize), and
dicotyledonous soybean and Arabidopsis, were selected to generate a phylogenetic tree. The tree was
constructed by MEGA 6 software using the Neighbor-Joining (NJ) method with 1000 bootstrap replicates.
The accession numbers of the WRKYs were listed in Supplementary Table S1. The tertiary structure of
TaWRKY46 protein was acquired through the Phyre2 tool (http://www.sbg.bio.ic.ac.uk/phyre2) and
further edited by Chimera 1.11.2 software. Multiple sequence alignment was performed by DANMAN
software (Lynnon Biosoft, San Ramon, California, USA).

4.3. Subcellular Localization Analysis of TaWRKY46

The cDNA encoding full-length TaWRKY46 without the stop codon was inserted into the
pTF486-GFP vector [54] after it was cloned by PCR using specific primers (Supplementary Table S2) with
BamHI restriction site. Wheat leaf protoplasts were isolated from 10-day-old seedlings according to the
method of Shan [55]. pTF486-TaWRKY46-GFP was transformed into protoplasts by the PEG-mediated
method and then incubated at 22 ◦C for 12 h in the dark. Empty vector was used as a control. GFP
fluorescence signals were visualized using a laser confocal microscope (Andor, Belfast, UK) at an
excitation wavelength of 488 nm.

4.4. Analysis of Transcriptional Activation in Yeast

The TaWRKY46 protein had 294 amino acid residues. The 1-191 amino acid residues contained
the completed WRKY domain and C2HC zinc finger motif. The 191th amino acid position was chosen
for truncation. The full-length coding sequence and truncated segments of TaWRKY46 were fused
to the pGBKT7 vector [56] with EcoRI and BamHI restriction sites. The specific primers were listed
in Supplementary Table S2. The various constructions were named pGBKT7-TaWRKY46 (1-294 aa),

http://www.sbg.bio.ic.ac.uk/phyre2
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pGBKT7-TaWRKY46 (1-191 aa), and pGBKT7-TaWRKY46 (192-294 aa), respectively. Empty vector
pGBKT7 was taken as a control. These constructions were introduced into the yeast strain AH109 by
the lithium acetate method. The yeast cells were grown on selective medium (SD) medium without
tryptophan (SD-W) and screened by PCR. The positive clones were cultured on the SD-W, SD without
tryptophan, histidine, and adenine (SD-W/H/A) and SD-W/H/A with X-α-D-Galactosidase (X-α-gal)
medium at 30 ◦C. The images were photographed after 3 d to detect the transcriptional activation.

4.5. Plant Transformation and Generation of TaWRKY46-Overexpressing Arabidopsis Plants

The complete coding sequence of TaWRKY46 was ligated into a binary vector pBI1304 [57] with
NcoI and SpeI restriction sites under control of Cauliflower mosaic virus 35S (CaMV35S) promoter using
the specific primers (Supplementary Table S2). The construction was introduced into Agrobacterium
tumefaciens strain GV3101 by the freeze–thaw method. The floral dip method was used for generating
transgenic Arabidopsis lines [58]. T1 plants were screened on 1/2 MS medium containing 1% sucrose,
1% agar, and 25 µg ml−1 hygromycin. T1 seedlings were confirmed by PCR and selfed through two
more generations to generate T3 transgenic progeny. Sixteen independent transgenic T3 lines were
acquired, and the transcriptional level of TaWRKY46 in the two selected overexpression (OE) lines was
validated by PCR and qRT-PCR.

4.6. Water Loss Rate and Survive Rate Assays

Wild-type (WT) and TaWRKY46-overexpressing Arabidopsis seeds were sterilized in 10% (v/v)
sodium hypochlorite (NaClO) for 10 min, rinsed six times with sterilized distilled water and vernalized
at 4 ◦C for 3 days. Arabidopsis was grown on Jiffy-7-Peat Pellets (Jiffy Group) and cultivated in a growth
chamber kept at 22 ◦C at 80 µmol m−2 s−1 illumination in a 16 h/8 h day/night cycle. For water loss
rate assay, the detached leaves from 24-day-old WT and TaWRKY46-overexpressing Arabidopsis T3

seedlings were placed on filter papers at room temperature for 0, 1, 2, 3, 4, 5, 6, and 12 h, and the mass
of the leaves was weighted at the indicated interval. Three replicates were performed. The 24-day-old
seedlings were subjected to water withholding for 25 days, and 60 seedlings from each line were used
to determine the survival rate.

4.7. Seed Germination Rate Assay

For the seed germination rate assay, WT and TaWRKY46-overexpressing transgenic Arabidopsis T3

seeds were sterilized and grown on 1/2 MS medium supplemented with 0 mM, 150 mM, and 300 mM
mannitol for 4 days. The seed germination rate was recorded every day. At least 50 seeds were sown
for one replicate of three parallel replicates. Three independent experiments of germination rate assay
were performed. Measurements were repeated three times.

4.8. Stress Tolerance Assay and Expression Analysis of Stress-Related Genes in TaWRKY46-Overexpressing
Arabidopsis Plants

WT and TaWRKY46-overexpressing Arabidopsis seeds were surface sterilized and planted on
1/2 MS medium containing 1% sucrose and 1% agar after 3 days of stratification at 4 ◦C. The plates were
cultured vertically in a growth chamber at 22 ◦C under continuous illumination at 80 µmol m−2 s−1.
For the salt stress assay, 5-day-old seedlings were transferred to 1/2 MS medium supplemented with 0,
100 and 200 mM NaCl. For the osmotic stress assay, 5-day-old seedlings were transferred to 1/2 MS
medium supplemented with 0 mM, 150 mM, and 300 mM mannitol. The root lengths were measured
using the software ImageJ after 10 days treatment. 15-day-old WT and transgenic Arabidopsis seedlings
were collected from the 1/2 MS medium under 0, 150 and 300 mM mannitol treatments for further gene
expression analysis. The expression of stress-related genes was detected by qRT-PCR. The specific
primers were listed in Supplementary Table S2. Measurements were repeated three times.
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4.9. RNA Extraction and qRT-PCR Analysis

Total RNA was isolated using the Trizol extraction protocol (Invitrogen, Carlsbad, California,
USA) following the manufacturer’s instructions. Complementary DNA (cDNA) was synthesized from
1 µg total RNA by the PrimeScript™ II 1st Strand cDNA Synthesis Kit (TaKaRa, Dalian, China), and
the quantitative real-time PCR (qRT-PCR) was carried out using SYBR® Premix Ex Taq™ II (TaKaRa,
Dalian, China) on a CFX96 Touch RealTime PCR Detection System (BioRad, Hercules, California, USA).
The specific gene primers were designed by Primer Premier 6.0 software and listed in Supplementary
Table S2. The relative gene expression was calculated through the formula 2-∆∆CT method [59]. Three
biological and three technical replicates were performed in gene expression analysis. Three independent
experiments were performed.

4.10. Statistical Analysis

Microsoft Office Excel 2013 was first used to analyze the data, and the mean values were calculated
from three parallel experiments with their standard errors. Duncan’s method was performed using the
SPSS Statistics 20.0 software. GraphPad Prism 7, Adobe Photoshop CC, and Adobe Illustrator software
were used to generate charts.

5. Conclusions

A wheat Group III gene, TaWRKY46, was up-regulated by PEG treatment. Overexpression of
TaWRKY46 activated the stress-related genes, increased the germination rate, and promoted the root
growth in transgenic Arabidopsis plants under osmotic stress. These findings indicated that TaWRKY46
was a new positive regulator of osmotic stress. It played an important role in improving osmotic
tolerance through ABA-dependent and ABA-independent pathways when plants were exposed to
osmotic stress.

Supplementary Materials: The following are available online at http://www.mdpi.com/1422-0067/21/4/1321/s1,
Supplementary Materials consist of two tables and two figures. Supplementary Table S1: The accession numbers
of the WRKYs used to construct phylogenetic tree in Figure 1. Supplementary Table S2: List of primers used in
this study. F and R represent the forward and reverse primers from 5’ end to 3’ end. Supplementary Figure S1:
Salt stress assay of TaWRKY46-overexpressing Arabidopsis plants. (A-C) The root length statistics of seedlings after
treatments with 0 mM,100 mM, and 200 mM NaCl for 10 days. Lowercase letters represent significance at p < 0.05
between WT and transgenic Arabidopsis lines under the same condition, as determined by Duncan’s multiple
range test. Supplementary Figure S2: The growth status of wheat seedlings. The overview of hydroponic wheat
in plastic pots filled with 1/2 Hoagland solution (A) and the phenotype of 8-day-old seedlings before various
treatments (B).
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Abbreviations

ABF ABA-response element-binding factor
CBF C repeat/dehydration-responsive element-binding factor
GFP green fluorescent protein
OE overexpression
P5CS ∆-1-pyrroline-5-carboxylate synthetase
RD dehydration-responsive
TFs transcription factors
WT wild type
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