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Abstract
Sea	anemones	are	diverse	and	ecologically	 successful	members	of	Anthozoa.	They	
are	 often	 found	 in	 intertidal	 and	 shallow	 waters,	 although	 a	 few	 of	 them	 inhabit	
harsher	living	conditions,	such	as	deep-	sea	hydrothermal	vents.	Here,	we	sequenced	
the	transcriptome	of	the	vent	sea	anemone	Alvinactis	sp.,	which	was	collected	from	
Edmond	vent	along	the	central	Indian	Ocean	ridge	at	a	depth	of	3275 m,	to	explore	the	
molecular	mechanisms	related	to	adaptation	to	vents.	Compared	with	another	deep-	
sea anemone (Paraphelliactis xishaensis)	and	five	shallow	water	sea	anemones,	a	total	
of	117	positively	 selected	genes	and	46	 significantly	expanded	gene	 families	were	
found	 in	Alvinactis	sp.	specifically	that	may	be	related	to	 its	vent-	specific	aspect	of	
adaptation.	In	addition,	127	positively	selected	genes	and	23	significantly	expanded	
gene	families	that	were	found	in	both	Alvinactis sp. and P. xishaensis.	Among	these,	vent-	
specific	adaptations	of	Alvinactis	 sp.	may	 involve	genetic	alterations	 in	peroxisome,	
ubiquitin-	mediated	protein	degradation,	oxidative	phosphorylation,	and	endocytosis,	
and	its	deep-	sea	adaptation	may	involve	changes	in	genetic	information	processing.	
Differentially	 expressed	 genes	 between	 Alvinactis	 sp.	 and	 the	 deep-	sea	 anemone	
P. xishaensis	were	enriched	 in	 a	 variety	of	 pathways	 related	 to	 adaptation,	 such	 as	
energy	metabolism,	genetic	 information	processing,	endocytosis,	 and	peroxisomes.	
Overall,	 we	 provided	 the	 first	 transcriptome	 of	 sea	 anemones	 that	 inhabit	 vents,	
which	 enriches	 our	 knowledge	 of	 deep-	sea	 hydrothermal	 vent	 adaptation	 and	 the	
diversity	of	sea	anemones.
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1  |  INTRODUC TION

Deep-	sea	 hydrothermal	 vents	 are	 geologically	 active	 areas	 that	
are	usually	located	on	an	ocean	ridge,	back	arc	basin,	or	active	sea-
mount.	They	discharge	heated,	reduced	fluids	enriched	with	hydro-
gen	 sulfide	 (H2S),	methane,	 and	 heavy	metals	 (Tyler	 et	 al.,	2002), 
which	 result	 in	 harsh	 living	 conditions	 that	 include	highly	 variable	
and	sometimes	high	temperature,	high	hydrostatic	pressure,	chronic	
hypoxia,	and	high	concentrations	of	H2S	and	heavy	metals.	However,	
chemoautotrophic	 bacteria	 at	 vents	 utilize	 the	 reducible	materials	
to	synthesize	nutrients	and	to	act	as	primary	producers	to	support	
dense	 macrofaunas	 like	 shrimp	 (Yuan	 et	 al.,	 2020),	 mussels	 (Sun	
et al., 2017;	 Zheng	 et	 al.,	 2017),	 or	 gastropods	 (Sun	 et	 al.,	2020). 
Vents	 are	 oases	 within	 a	 relatively	 lifeless	 deep	 sea	 floor	 where	
>600	species	have	been	 reported	 (Van	Dover	et	al.,	2002). These 
endemic	macrofaunas	have	high	biomass,	but	low	biodiversity,	and	
biologists	 are	 curious	 to	know	how	 they	have	adapted	 to	 such	an	
environment.

Some	 distinct	morphological	 and	 physiological	 traits	 related	 to	
vent	animals	have	been	observed.	In	general,	vent	macrofaunas	can-
not	tolerate	high	temperatures	for	a	long	time	and	prefer	cooler	tem-
peratures	(Matabos	et	al.,	2008;	Mickel	&	Childress,	1982a, 1982b; 
Smith et al., 2012),	and	escaping	from	high	temperatures	by	moving	
away	from	the	sources	represents	an	easy	and	adaptive	way	against	
rapid	temperature	fluctuations	and	fluid	toxicity	(Bates	et	al.,	2010). 
Also,	enzymes	in	vent	macrofaunas	are	less	likely	to	be	affected	by	
variable	 temperatures	 compared	with	 their	 shallow	water	 relatives	
(Lallier	&	Truchot,	1997; Sanders et al., 1988;	Truchot,	1992).	When	
confronted	with	hypoxia,	some	Polychaeta	exhibited	greatly	enlarged	
gill	surface	areas	to	obtain	more	oxygen	from	the	hypoxic	water,	and	
their	respiratory	pigments	(hemoglobins	and	hemocyanins)	exhibited	
very	high	intrinsic	oxygen	affinities	(Hourdez	&	Lallier,	2007).

In	 the	presence	of	hydrogen	 sulfide	 (H2S),	 the	defense	against	
sulfide	poisoning	is	to	oxidize	it	 into	less	toxic	forms,	such	as	thio-
sulfate	 by	mitochondria	 (Somero	 et	 al.,	1989; Vetter et al., 1987). 
The	detoxification	 system	can	be	highly	efficient	because	no	 free	
sulfide	can	be	found	in	cells	(Vetter	et	al.,	1987).	Heavy	metals	can	
be	 sequestrated	 by	 metallothionein,	 phytochelatin,	 or	 ferritin	 to	
avoid	 their	 toxicity	 (Chen	 et	 al.,	 2015;	Wong	 et	 al.,	 2015;	 Zapata	
et al., 2009).	The	in	vivo	effect	of	metals	(like	reactive	oxygen	spe-
cies	[ROS])	causes	these	organisms	to	respond	by	the	function	of	de-
toxification	of	superoxide	dismutase	(SOD),	catalase,	or	glutathione	
peroxidase	(Genard	et	al.,	2013; Marie et al., 2006).

Some	 molecular	 mechanisms	 for	 adaptation	 to	 vent	 environ-
ments	have	also	been	elucidated.	For	instance,	transcriptome	anal-
ysis	 of	 the	 shrimp,	 Alvinocaris longirostris,	 from	 the	 Iheya	 North	
hydrothermal	 vent	 found	multiple	 copies	 of	 enzymes	 to	 eliminate	
toxic	 xenobiotics	 and	 various	 differentially	 expressed	 genes	 re-
lated	 to	 sulfur	 metabolism,	 detoxification,	 and	 mitochondria	 (Hui	
et al., 2018).	In	vent	polynoid	scale	worms,	tetra-	domain	hemoglo-
bin	was	found	under	rapid	evolution	in	Branchipolynoe,	and	single-	
domain	hemoglobin	was	highly	 expressed	 in	Lepidonotopodium sp. 
(Zhang,	Sun,	Chen,	et	al.,	2017).	These	studies	provided	some	insight	

into	 adaptive	 mechanisms	 for	 those	 organisms,	 but	 the	 adaptive	
mechanisms	of	vent	sea	anemones	have	been	reported	rarely.

Sea	 anemones	 are	 common	 and	 conspicuous	 species	 in	 many	
mid-	ocean	 ridge	 hydrothermal	 vent	 ecosystems	 in	 the	 Atlantic,	
Pacific,	 and	 Indian	 Oceans	 (Zelnio	 et	 al.,	 2009).	 Morphologically,	
deep	 sea	 and	 chemosynthetic	 sea	 anemones	 have	 some	 distinct	
features;	 common	 deep-	sea	 sea	 anemones	 overall	 are	 larger	 in	
form	(like	Actinernus elongatus and Glyphoperidium bursa) than that 
of	 shallow	water	 anemones.	 Some	deep-	sea	 clades	 (e.g.,	Bolocera, 
Liponema,	 presumably	 Iosactis)	 have	 long,	deciduous	 tentacles	and	
tend	 to	 have	 a	 short	 column	 (Rodríguez,	 2012).	 Members	 of	 the	
deep-	sea	 and	polar	 clade	Actinostolina	have	 smooth	 columns	 and	
often	perform	 internal	brooding	 to	protect	offspring	 from	 the	ex-
treme	environment	 (Rodríguez	 et	 al.,	2013),	 and	 the	deep	 sea	 cu-
ticulate	clade	in	Metridioidea	usually	have	thick	columns	that	bear	
cuticles	 and	 tubercles	 (Rodríguez	&	Daly,	2010).	 The	 symbiosis	 of	
deep-	sea/vent	sea	anemones	with	chemoautotrophic	bacteria	is	un-
known,	except	 for	one	species	 reported	 from	vents	 in	 the	Gulf	of	
California	(Goffredi	et	al.,	2021).

The	research	on	genomes	of	sea	anemones	has	provided	many	
surprises.	The	genome	sequence	of	Nematostella vectensis, which was 
published	in	2007,	showed	that	this	morphologically	simple	creature	
had	a	complex	genomic	composition	 like	vertebrates	that	 indicated	
that	 this	eumetazoan	ancestor	already	 formed	a	 “gene	box	 toolkit”	
about	500	million	years	ago	(Putnam	et	al.,	2007).	Another	study	re-
vealed	different	functions	of	hox	genes	in	sea	anemone	development	
compared	with	hox	genes	 in	vertebrates	 (He	et	al.,	2018).	Because	
sea	anemones	are	at	the	sister	branch	of	all	bilaterians,	it	is	valuable	
to	use	sea	anemones	to	understand	the	origin	and	evolution	of	genes,	
tissues,	 and	organs	 (Bosch	et	 al.,	 2017). In addition, sea anemones 
may	provide	insights	into	related	adaptations	of	cnidarians.

The	 morphology,	 anatomy,	 and	 phylogeny	 of	 some	 vent	 sea	
anemones	have	been	described	(Rodríguez	et	al.,	2014;	Rodríguez	&	
Daly,	2010;	Zelnio	et	al.,	2009),	but	their	genomes	or	transcriptomes	
have	not	been	elucidated	until	recently.	Here,	we	sequenced	the	first	
transcriptome	of	a	deep-	sea	vent	sea	anemone	 (Alvinactis sp.) col-
lected	from	the	Edmond	vent	field	on	the	Central	Indian	Ridge	(CIR)	
at	a	depth	of	3275 m.	According	to	in	situ	videos,	we	found	white	sea	
anemones	thrived	around	the	vents,	and	they	comprised	a	large	part	
of	the	vent	fauna	together	with	shrimp	and	gastropods.	The	investi-
gation	of	transcriptomes	of	vent	sea	anemones	will	contribute	to	the	
knowledge	of	adaptive	mechanisms	of	vent	 faunas	and,	 therefore,	
increase	our	understanding	of	vent	ecosystems.

2  |  MATERIAL S AND METHODS

2.1  |  Sample collection, RNA extraction, and 
sequencing

Sea	 anemones	 were	 collected	 on	 the	 Edmond	 vent	 field	 from	
the	 CIR	 by	 the	manned	 submersible	 Shenhaiyongshi	 at	 a	 depth	 of	
3275 m	 (Figure 1c).	 After	 being	 collected,	 specimens	 were	 frozen	
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immediately	onboard	in	liquid	nitrogen	and	then	stored	at	−80°C	be-
fore	mRNA	was	extracted.	Tissues	from	the	body	walls	of	three	sam-
ples	were	sequenced	separately.	A	TRIzol	kit	(Invitrogen)	was	used	
to	 extract	 total	 RNA,	 which	 followed	 the	manufacturer's	 instruc-
tions.	Sequencing	libraries	were	constructed	using	a	NEBNext	RNA	
Library	Prep	Kit	for	Illumina	(NEB),	which	followed	the	manufactur-
er's	recommendations,	and	sequencing	was	done	using	an	Illumina	
Hiseq	2500	for	paired	end	sequence	with	a	read	length	of	150 bp.

2.2  |  Data filtering, transcriptome assembly, and 
function annotation

The	raw	sequencing	reads	were	first	evaluated	using	FASTQC	(www.
bioin	forma	tics.babra	ham.ac.uk/proje	cts/fastq	c/).	 Adapters	 and	
low-	quality	 reads	 were	 trimmed	 by	 TRIMMOMATIC	 version	 0.39	
(Bolger et al., 2014).	The	resultant	clean	reads	were	assembled	de	
novo	using	TRINITY	version	2.9.1	(Grabherr	et	al.,	2013)	with	default	
settings.	 To	 remove	 redundant	 gene	 isoforms,	 only	 isoforms	with	
the	 longest	 length	were	 retained.	 Redundancy	 of	 transcripts	 was	
further	 removed	using	CD-	HIT-	EST	 version	4.8.1	 (Fu	 et	 al.,	2012) 
with	 a	 threshold	 of	 ≥95%	 sequence	 similarity.	 The	 completeness	
of	 the	 assembly	was	 evaluated	 by	 BUSCO	 version	 4.8.4	with	 the	
mode	of	transcripts	(Manni	et	al.,	2021).	TRANSDECODER	version	
5.5.0	(http://github.com/Trans	Decod	er/Trans	Decoder)	was	utilized	
to	 predict	 coding	 regions	 of	 all	 the	 remaining	 transcripts	 and	 to	
translate	 them	 into	 protein	 sequences	 with	 a	 default	 minimum	
protein	length	of	100	aa.

All	predicted	protein	sequences	were	aligned	to	the	NCBI	non-	
redundant	database	(NR)	and	the	Swiss-	Prot	database	using	BLASTp	
(E-	value	<1 × e−7)	 to	 produce	 annotation	 results.	 EggNOG-	mapper	
(Huerta-	Cepas	et	 al.,	2019)	was	used	 to	perform	genome	annota-
tion	and	gene	ontology	annotation.	The	KEGG	(Kyoto	Encyclopedia	
of	 Genes	 and	 Genomes)	 Automatic	 Annotation	 Server	 (Moriya	
et al., 2007)	was	used	with	the	bidirectional	BLAST	method	to	iden-
tify	pathway	information.	Gene	function	enrichment	was	conducted	

using	 KABOS	 version	 3.0	 (Xie	 et	 al.,	 2011)	 with	 annotations	 for	
Nematostella vectensis	(sea	anemone)	as	background.

2.3  |  Species identification and public 
data selection

Three	 mitochondrial	 genes	 (12S,	 16S,	 and	 cox3)	 and	 two	 nuclear	
genes	 (18S	and	28S)	were	used	to	 identify	 the	vent	sea	anemone.	
The	 five	 genes	were	extracted	 from	 the	 assembled	 transcriptome	
and	 blasted	 against	 the	 online	 NCBI	 nt	 database.	 Based	 on	 the	
morphology	and	the	blast	results	(Table	S1),	we	identified	the	vent	
sample as Alvinactis	sp.	A	total	of	18	publicly	accessible	transcriptome	
or	 genome	 datasets	 were	 used	 for	 comparative	 analysis,	 which	
included	16	sea	anemones	(Table	S2), one Corallimorpharia, and one 
Scleractinia.	Among	 them	was	Paraphelliactis xishaensis, which is a 
deep-	sea	 anemone	 found	 in	 the	Xisha	 Trough	 in	 the	 South	China	
Sea	 at	 a	 depth	 of	 3230 m.	 The	 Corallimorpharia	 was	 Corynactis 
australis, and the Scleractinia was Acropora digitifera. Completeness 
of	 assemble	 transcripts	 or	 genes	 annotated	 from	 genome	 was	
confirmed	 by	 BUSCO	 version	 4.8.4	 (Manni	 et	 al.,	 2021) with a 
metazoan database (Table S1).

2.4  |  Identification of orthologs and 
phylogenetic analysis

OrthoFinder	version	2.3.11	(Emms	&	Kelly,	2015)	was	used	to	iden-
tify	 the	 orthologs	 among	 sea	 anemones	 with	 diamond	 (Buchfink	
et al., 2015)	chosen	for	protein	alignment.	Single	copy	orthologs	were	
aligned	by	MAFFT	(Katoh	et	al.,	2009), and conserved regions were 
contracted	 by	 Gblocks	 (Talavera	 &	 Castresana,	 2007).	 Then,	 they	
were	concatenated	and	used	to	construct	a	phylogenetic	tree	using	
IQtree	version	1.6.12	(Nguyen	et	al.,	2015)	with	a	bootstrap	of	1000	
and	 SH-	like	 approximate	 likelihood	 ratio	 test	 with	 the	 parameter	
“iqtree2	-	s	align.phy	–	alrt	1000	-	b	1000	-	T	AUTO.”	Corallimorpharia	

F I G U R E  1 Morphology	of	sea	
anemone Alvinactis	sp.	(a)	In	situ	
photo	that	shows	the	white	color	of	
vent sea anemones near the vent. (b) 
Morphology	of	vent	sea	anemones	on	
board.	(c)	Locations	of	vent	and	deep-	sea	
anemones.

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://github.com/TransDecoder/TransDecoder
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and	Scleractinia	were	designated	as	outgroups.	Based	on	the	phylo-
genetic	relationship	revealed	by	the	above	process,	six	sea	anemones	
(Paraphelliactis xishaensis, Calliactis polypus, Nemanthus annamensis, 
Exaiptasia diaphana, Metridium senile, and Diadumene lineata) together 
with	our	vent	sample	were	used	to	perform	the	following	positive	se-
lection	and	gene	family	expansion/contraction	analysis	 (Figure 2a). 
The	divergence	time	was	estimated	by	MCMCtree	(Yang,	2007) with 
time	calibrations	based	on	the	estimated	time	from	TIMETREE	(timet 
ree.org):	 Edwardsiidae-	Actinioidae-	Aiptasiidae	 338	 MYA	 (dos	 Reis	
et al., 2015;	Schwentner	&	Bosch,	2015)	and	Actiniidae-	Aiptasiidae	
334	MYA	(Schwentner	&	Bosch,	2015).

2.5  |  Positive selection analysis

Our	 vent	 sample	 Alvinactis	 sp.	 and	 the	 six	 sea	 anemones	 listed	
above	were	used	 to	 get	orthogroups	by	Orthofinder	 as	described	
above.	 Also,	 the	 proteins	 of	 all	 seven	 species	 were	 put	 into	 one	
file,	and	we	performed	an	all	vs	all	blast.	Orthogroups	with	at	least	
one ortholog in each sea anemone were selected, and then, we 
picked	 out	 the	 longest	 ortholog	 of	 P. xishaensis and the ortholog 
of	 the	 other	 six	 sea	 anemones	 that	 had	 the	 highest	 identity	 to	
P. xishaensis.	 Codon	 alignment	 was	 conducted	 by	 ParaAT	 (Zhang	
et al., 2012)	 for	PAML	with	parameter	 “ParaAT.pl	 -	a	 all.pep	 -	n	 all.
cds	-	h	single_copy_orthogroups	-	p	proc	-	f	paml	-	g,”	and	-	g	indicated	
no	 gap.	 Identification	 of	 positively	 selected	 genes	was	 performed	
using	Codeml	in	PAML	version	4.9	(Yang,	2007).	We	ran	Codeml	two	
times.	In	the	first	run,	we	set	the	vent	sea	anemone	Alvinactis sp. as 
foreground	to	identify	genes	that	were	particularly	related	to	vent	
adaption,	and,	in	the	second	run,	we	set	both	the	vent	sea	anemone	
Alvinactis	sp.	and	the	deep-	sea	anemone	P. xishaensis	as	foreground	
to	 identify	genes	related	to	deep-	sea	adaption	because	these	two	
species	 were	 both	 living	 in	 deep-	sea	 environments.	 Codeml	 was	
performed	 with	 an	 optimized	 branch-	site	 model	 combined	 with	
Bayesian	Empirical	Bayes	(BEB)	methods.	This	model	compared	two	
hypotheses	where	the	null	hypothesis	assumed	that	ω in all branches 
was <1,	and	the	alternative	hypothesis	assumed	that	ω	in	foreground	
branches was >1.	Chi-	square	tests	were	applied	to	check	whether	
two	 times	 the	 difference	 between	 the	 maximum	 likelihood	 value	
(lnL)	of	the	alternative	hypothesis	(ω =	1	and	Fix	ω =	0)	and	the	null	
hypothesis	(Fix	ω = 1) were two times greater than the threshold at 
the	given	free	ratio	and	p-	value.	The	function	p.adjust	in	R-	3.5.0	was	
used	to	get	the	adjusted	p-	value.

2.6  |  Gene family evolution

The	 expanded	 and	 contracted	 gene	 families	 on	 each	 branch	
were	 identified	by	CAFE5	 (Mendes	et	 al.,	2020) among seven sea 
anemones	used	in	above	positive	selection	analysis;	gene	counts	of	
each	orthogroup	and	an	ultrametric	 tree	calculated	by	MCMCtree	
were	 used	 as	 input	 for	 CAFE5.	 By	 comparing	 the	 expanded	 gene	
families	 of	 the	 vent	 sea	 anemone	Alvinactis	 sp.	 and	 the	 deep-	sea	

anemone P. xishaensis,	 gene	 families	 uniquely	 found	 in	 Alvinactis 
sp.,	but	not	in	P. xishaensis,	were	defined	as	vent-	specific	expanded	
gene	families.	Gene	families	both	found	in	the	two	anemones	were	
defined	as	deep-	sea	shared	expanded	gene	families.	A	Venn	diagram	
was	 used	 to	 show	 the	 relationships	 of	 expanded	 gene	 families	
between Alvinactis sp. and P. xishaensis (Figure 3b).

2.7  |  Differential gene expression

In	 vent	 or	 deep-	sea	 anemones,	 three	 replicates	 of	 transcriptomes	
from	 body	 walls	 were	 chosen.	 Relative	 levels	 of	 gene	 expression	
were	 calculated	 by	 mapping	 clean	 reads	 to	 their	 own	 species-	
specific	 assembled	 transcriptome	 using	 align_and_estimate_
abundance.pl	in	Trinity,	and	abundance_estimates_to_matrix.pl	was	
used	to	get	a	matrix	of	normalized	expression	values	with	the	TMM	
method implemented in edgeR (Robinson et al., 2010). Transcript 
abundances	were	estimated	as	TPM	(Transcripts	Per	Million	reads).	
Then,	we	used	the	orthologs	of	vent	and	deep-	sea	anemones	from	
the	 above	positive	 selection	 analysis	 to	 compare	 their	 differential	
ortholog	expression.	Some	normalization	steps	were	added	further	
for	 comparison	 of	 transcriptomes	 between	 different	 species	 (Gan	
et al., 2020;	 Zancolli	 et	 al.,	2022).	 First,	we	minimized	 the	effects	
of	technical	artifacts	by	quantile	normalization	on	log2-	transformed	
TPM	values,	 to	which	a	pseudo	counts	of	1	was	added	to	prevent	
log2(0)	scores.	Then,	we	used	ComBat	function	in	the	sva	R	package	
(Leek et al., 2012)	to	remove	the	batch	effects	caused	by	using	multiple	
species (Figure 4a).	EdgeR	was	used	for	differential	expression	with	
the	TPM	values	compared	(Robinson	et	al.,	2010).	A	q-	value	of	<0.05	
and	a	fold	change	of	>2	was	considered	significant.	The	DEGs	were	
annotated	functionally,	and	enrichment	was	analyzed	using	KOBAS	
(Bu	et	al.,	2021)	and	DAVID	(Sherman	et	al.,	2022).

3  |  RESULTS

3.1  |  De novo assembly and annotation of the vent 
sea anemone transcriptome

A	total	of	85,574,359	raw	reads	with	a	length	of	150 bp	of	Alvinactis 
sp.	were	generated.	After	trimming	reads	with	low	quality	and	adapt-
ers,	82,698,960	(96.64%)	reads	remained.	Transcriptome	assembly	got	
127,084	unigenes	with	an	N50	 length	of	1590 bp.	The	unigenes	hit	
90.4%	of	the	complete	orthologs	in	the	BUSCO	database,	which	in-
cluded	86.1%	single-	copy	and	4.3%	duplicated.	Among	these	unigenes,	
55.1%	of	them	were	annotated	by	at	least	one	database	(Table 1).

3.2  |  Species identification

With	the	blast	results	(Table	S1)	from	the	NCBI	BLAST	online	data-
base,	molecular	markers	12S,	16S,	and	COX3	indicated	our	vent	sea	
anemone was Alvinactis chessi	with	an	identity	>99.3%,	18S	indicated	

http://timetree.org
http://timetree.org
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Sagartiogeton erythraios	with	an	 identity	of	97.66%,	and	Kadosactis 
antartica	with	an	identity	of	97.75%.	28S	indicated	Anthosactis pear-
seae	with	an	identity	of	98.68%	and	Heteranthus verruculatus	NY411	
with	an	identity	of	97.45%.	Although	18S	and	28S	did	not	indicate	
Alvinactis chessi	with	the	highest	identity	score,	we	still	identified	our	
vent sea anemone as Alvinactis	sp.	due	to	its	morphological	similarity	
to Alvinactis	sp.	found	in	Pacific	Ocean	(Figure 1).

3.3  |  Phylogenetic tree and divergence time

A	 phylogenetic	 tree	 was	 built	 based	 on	 the	 alignment	 of	 75,298	
amino	acids	from	86	single-	copy	orthogroups	with	the	Scleractinia	
(Acropora digitifera) and Corallimorpharia (Corynactis australis) as 
outgroups	 (Figure 2a).	 This	 phylogenetic	 relationship	 among	 sea	
anemones	was	comparable	to	the	work	of	Rodríguez	et	al.	(2014). To 
make	sure	that	most	of	the	genetic	differences	were	from	different	
living	conditions	rather	than	phylogenetic	distance,	we	chose	these	

two	deep-	sea	anemones	and	another	five	shallow	water	anemones	
that	 were	 closely	 related	 phylogenetically	 (Figure 2a)	 to	 conduct	
the	following	positive	selection	and	gene	family	expansion/contrac-
tion	analysis.	Based	on	the	calibration	time	shown	in	the	TIMETREE	
(timet ree.org), we checked the divergence time among these sea 
anemones. Alvinnactis	 sp.	 diverged	 from	 other	 sea	 anemones	
around	148.8	MYA	(Cretaceous	Period),	and	the	deep-	sea	anemone	
P. xishaensis	 diverged	 from	other	 sea	anemones	around	93.4	MYA	
(Figure 2b, Table S8).

3.4  |  Positively selected genes

Environmental	forces	that	have	acted	on	species	can	be	reflected	by	
fitted	positively	selected	genes	(Nielsen,	2005). These genes encode 
proteins	with	some	novel	functions	to	acclimate	to	any	environmen-
tal	change.	We	used	Codeml	to	test	for	signatures	of	positive	selec-
tion.	When	we	designated	the	vent	sea	anemone,	Alvinactis sp., as 

F I G U R E  2 Phylogenetic	relationship	among	sea	anemones.	(a)	Maximum-	likelihood	phylogenetic	tree	of	sea	anemones.	Numbers	
above	branches	indicate	support	value,	number	in	left	of	the	slash	indicates	bootstrap	value,	and	the	number	on	the	right	indicates	SH-	like	
approximate	likelihood	ratio.	Red	label	represents	vent	sea	anemone,	blue	represents	deep-	sea	anemone,	orange	represents	outgroup,	and	
black	represents	shallow	water	sea	anemone.	Rectangle	with	blue	frame	contains	phylogenetically	closely	related	species	to	Alvinactis sp. (b) 
the	divergence	time	of	sea	anemones.

http://timetree.org
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the	foreground	branch,	117	(vent-	specific)	positively	selected	genes	
(PSGs)	were	identified	from	9649	orthogroups	(Table	S3).	When	we	
designated	 the	 deep-	sea	 anemones	 (Alvinactis sp. and P. xishaen-
sis)	 as	 foreground	branches,	 127	 (deep-	related)	 PSGs	were	 identi-
fied	 (Table	S4).	 Ten	PSGs	were	 shared	using	 the	 above	 two	 tests.	
Here,	we	regarded	vent-	specific	PSGs	as	more	 related	 to	vent	ad-
aptation.	Functions	of	the	vent-	specific	PSGs	(Table 2)	were	mainly	

enriched	 in	pathways	 related	 to	Peroxisome	 (ACOX1	and	EPHX2),	
ubiquitin-	mediated	 proteolysis	 (APC8,	 CDC20,	 CUL2,	 parkin,	
FBXW7,	and	BIRC2_3),	endocytosis	 (RAB7A,	EPS15,	and	CHMP7),	
apoptosis	 (BAK1,	 BIRC2_3,	 and	 PARAP1),	 and	 metabolism.	 The	
deep-	sea	related	PSGs	(Table 2)	were	enriched	in	pathways	related	
to	protein	processing	in	the	endoplasmic	reticulum	(EIF2S1,	SEC62,	
and	 UBE2G1),	 ubiquitin-	mediated	 proteolysis	 (BTRC,	 UBE2C,	 and	
UBC7),	autophagy	(EIF2S1,	PRKAA,	RAB1A,	and	RUBCN),	and	Wnt	
(WNT6,	BTRC,	and	PPP3C)	signaling	pathways.

3.5  |  Expanded gene families

Gene	 duplication	 is	 one	 of	 the	main	 genomic	 resources	 for	 adap-
tive	evolution,	and	duplicated	genes	can	be	expressed	together	to	
enhance	 the	original	 function	or	 to	 evolve	 new	 functions.	Among	
the	23,655	gene	families	of	the	seven	sea	anemones	used	above,	69	
gene	families	were	expanded	in	Alvinactis	sp.,	and	277	gene	families	
were	expanded	 in	P. xishaensis (Figure 3a). Here, the last common 
ancestor	(the	nearest	internal	node)	of	Alvinactis sp. also represented 
the	common	ancestor	of	P. xishaensis and the two shallow water sea 
anemones Calliactis polypus and Nemanthus annamensis (Figure 3a); 
we	 did	 not	 use	 the	 expansion	 in	 the	 ancestor	 node	 to	 represent	
the	 expanded	 gene	 families	 shared	 by	 vent	 and	 deep-	sea	 anemo-
nes.	By	comparing	the	expanded	gene	families	of	Alvinactis sp. and 
P. xishaensis (Figure 3b),	we	found	46	gene	families	(12	of	them	can	
be	annotated	except	transposons)	 that	were	expanded	specifically	
(vent-	specific)	 in	Alvinactis sp. (Table S5).	 Twenty-	three	 expanded	
gene	 families	 (five	 of	 them	can	be	 annotated	 except	 transposons)	
were	 shared	 (deep-	sea	 shared)	 by	 Alvinactis sp. and P. xishaensis 

F I G U R E  3 Significantly	expanded	gene	
families	in	Alvinactis	sp.	(a)	The	expansion	
and	contraction	of	gene	families	among	
sea	anemones,	black	colored	number	
indicates	expansion	and	gray	colored	
number	indicates	contraction.	(b)	The	
intersection	of	expanded	gene	families	
between	vent	and	deep-	sea	anemone.	
(c)	Heatmap	of	the	expanded	gene	
families.	X-	axis	indicates	species	used	for	
comparison,	which	are	roughly	ordered	
by	phylogenetic	distance	to	vent	sea	
anemone; y-	axis	indicates	annotation/
function	of	gene	families.	Color	correlates	
with	gene	number.

TA B L E  1 Summary	of	assembly	and	annotation	for	the	deep	sea,	
hydrothermal	vent	sea	anemone	Alvinactis sp.

Alvinactis sp.

Trinity	assembly

Number	of	contigs 249,865

Average	contig	length 884.47

Number	of	unigenes 127,084

N50	length	of	unigenes 1590

Average	length	of	unigenes 691.05

Annotation

Annotated	proteins 32,870

PFAM 19,603	(49.1%)

KEGG 15,826	(48.1%)

GO 13,214	(40.2%)

NR 16,234	(49.4%)

SWISS-	Prot 16,568	(50.4%)

At	least	one	database 28,078	(55.1%)

Abbreviations:	GO,	Gene	ontology;	KEGG,	Kyoto	Encyclopedia	of	
Genes	and	Genomes;	NR,	non-	redundant	database;	PFAM,	Protein	
family.
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(Table S6),	and	the	shared	expanded	gene	families	may	relate	to	the	
deep-	sea	related	part	of	adaptation	by	vent	sea	anemones.

None	 of	 the	 69	 expanded	 gene	 families	 in	 Alvinactis	 sp.,	 46	
vent-	specific	 expanded	 gene	 families	 or	 23	 deep-	shared	 gene	
families	 could	 be	 enriched	 in	 any	 pathways.	 These	 vent-	specific	
expanded	 gene	 families	 contained	 ACSF2	 that	 was	 related	 to	 o-	
succinylbenzoate-	CoA	ligase	activity	and	genes	only	with	annotated	
function	 like	ubiquitin	protein	 ligase	binding,	hemicentin,	collagen,	
MATH	domain	containing,	helicase,	regulation	of	mitotic	cell	cycle,	
protein	ubiquitination,	 and	Fibrinogen-	related	domains.	The	deep-	
sea	shared	expanded	gene	 families	contained	EDIL3	 related	 to	 in-
tegrin	binding,	ATAD5	related	to	negative	regulation	of	the	intrinsic	
apoptotic	signaling	pathway	in	response	to	DNA	damage,	and	genes	
only	with	annotated	 functions	 like	double-	stranded	DNA	5′-	3′	ex-
odeoxyribonuclease	activity	and	AMP-	binding	enzyme	(Figure 3c).

3.6  |  Differentially expressed orthologs among 
vent and shallow- water sea anemones

After	the	normalization	steps	(Figure 4a),	there	were	1197	orthologs	
differentially	 expressed	 (Figure 4b) between Alvinactis sp. and 

P. xishaensis.	A	total	of	374	orthologs	were	upregulated	in	Alvinactis 
sp.,	and	823	orthologs	were	downregulated	in	it.	We	combined	the	
upregulated	and	downregulated	expression	orthologs	as	altered	ex-
pressed	orthologs	to	learn	their	functions	related	to	vent	adaptation.	
Functions	of	these	orthologs	were	enriched	in	a	variety	of	pathways	
(Table S7, Figure 4c),	such	as	protein	synthesis	(protein	processing	in	
endoplasmic	reticulum	and	ribosome	biogenesis	in	eukaryotes,	pro-
teasome),	metabolic	pathways	 (pyruvate	metabolism,	 fructose	and	
mannose	metabolism,	beta-	alanine	metabolism,	propanoate	metab-
olism,	fatty	acid	degradation,	lysine	degradation,	and	N-	glycan	bio-
synthesis),	energy	metabolism	(oxidative	phosphorylation	and	TCA	
cycle),	genetic	information	processing	(mRNA	surveillance	pathway,	
RNA	transport,	and	spliceosome),	and	immune-	related	process	(en-
docytosis,	autophagy,	mitophagy),	and	peroxisomes.

4  |  DISCUSSION

Although	sea	anemones	are	considered	among	the	most	ecologically	
successful	 cnidarians	at	all	 latitudes	and	depths	of	 the	ocean,	 it	 is	
still amazing to see Alvinactis	sp.	live	so	abundantly	around	the	harsh	
environment	of	deep-	sea	vents.	The	systematic	relationship	among	

Input 
number

Background 
number p- Value

Corrected 
p- value

Term	(vent-	specific)

Ubiquitin	mediated	
proteolysis

5 92 0 .0021

Apoptosis	–		multiple	
species

2 15 .0024 .0401

mRNA	surveillance	
pathway

2 62 .0316 .1737

Peroxisome 2 66 .0353 .1737

Ubiquinone	and	other	
terpenoid-	quinone	
biosynthesis

1 8 .0384 .1737

Metabolic	pathways 8 908 .0460 .1737

Autophagy	–		animal 2 79 .0484 .1737

Endocytosis 3 116 .0492 .1823

Term	(deep-	sea	related)

Autophagy	–		animal 3 79 .0076 .1250

Ubiquitin	mediated	
proteolysis

3 92 .0114 .1250

Mitophagy	–		animal 2 32 .0120 .1250

Protein processing in 
endoplasmic	reticulum

3 105 .0161 .1250

Cysteine	and	methionine	
metabolism

2 38 .0164 .1250

Valine,	leucine,	and	
isoleucine	biosynthesis

1 5 .0290 .1839

Wnt	signaling	pathway 2 59 .0361 .1961

Notch	signaling	pathway 1 9 .04794 .2163

TA B L E  2 Functional	enrichment	
of	vent-	specific	and	deep-	sea	related	
positively	selected	genes	in	vent	sea	
anemone (Alvinactis sp.)
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sea	anemones	 in	our	 study	was	consistent	with	previous	 research	
(Rodríguez	et	al.,	2014).	Adding	the	deep-	sea	anemone	P. xishaensis 
to	our	analysis	helped	track	genetic	changes	related	to	deep-	sea	ad-
aptation in the sea anemone Alvinactis	sp.	Also,	the	relatively	large	
number	of	shallow	water	sea	anemones	used	in	our	analysis	makes	
the	results	more	solid.	Genetic	changes	related	to	Alvinactis sp. can 
be	 categorized	mainly	 into	 vent-	specific	 adaptation	 and	 deep-	sea	
adaptation.

4.1  |  Changes related to vent- specific adaptation

Hydrothermal	vent	fluids	are	commonly	enriched	in	metals	and	metal	
sulfides,	and	metal	exposure	can	generate	an	imbalance	in	ROS.	ROS	
can	in	turn	cause	lipid	peroxidation,	protein	modifications,	and	DNA	
damage	 (Lushchak,	 2011).	 Metals	 also	 influence	 many	 metabolic	

processes	 directly	 or	 indirectly,	 including	 metabolism,	 membrane	
transport,	and	protein	synthesis,	and	may	act	on	DNA	by	interference	
with	genetic	control	and	repair	mechanisms	(Company	et	al.,	2006; 
Hartwig, 1994;	Hassoun	&	Stohs,	1996; Yamada et al., 1993). The 
vent-	specific	PSGs	EPHX2	and	ACOX	(Table	S3) are related to per-
oxisome.	EPHX2	participates	in	epoxide	metabolism,	which	belongs	
to	the	antioxidant	system,	and	it	can	detoxify	xenobiotic	compounds	
(Marowsky	et	al.,	2017).	ACOX	 is	 involved	 in	 the	 first	step	of	per-
oxisomal	 β-	oxidation	 by	 catalyzing	 the	 desaturation	 of	 fatty	 acid-	
derived	side	chains	(Zhang	et	al.,	2015).	Moreover,	DEGs	were	also	
enriched	 in	 the	 peroxisome	 pathway	 (Table	 S7, Figure 4c), which 
suggested	 that	 they	play	 a	 role	 in	 interacting	with	ROS	 to	 reduce	
oxidative	stress	(Company	et	al.,	2006; Marie et al., 2006).	PSGs	in	
the	ubiquitin-	mediated	proteolysis	 pathway	may	be	 a	 response	 to	
protein	modification	and	misfolding	caused	by	ROS;	these	changes	
may	result	in	degradation	of	mis-	folded	proteins	or	be	less	sensitive	

F I G U R E  4 Comparisons	of	transcriptomes	between	vent	and	deep-	sea	anemones.	(a)	Expression	levels	after	log2	transformation	and	
normalization.	(b)	Differentially	expressed	orthologs	between	deep-	sea	and	vent	sea	anemone.	(c)	Functional	enrichment	of	differentially	
expressed	orthologs.	The	x-	axis	shows	the	enriched	ratio	between	input	and	background.
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to	protein	modifications.	Six	PSGs	that	were	involved	(F-	BOX,	cul2,	
cdc20,	 apc8,	 Parkin,	 and	 IAPs)	 belonged	 to	 the	 RING	 finger	 type	
E3 ligase (Table S3);	 genes	 (only	 annotated	 their	 function)	 related	
to	ubiquitin	protein	 ligase	binding	and	protein	ubiquitination	were	
also	 expanded	 (Figure 3c).	 In	 addition,	DEGs	 related	 to	metabolic	
pathways,	protein	 synthesis,	 and	DNA-	related	genetic	 information	
processing (Figure 4c)	may	also	be	a	response	and	adaptation	to	ex-
posure	to	metals	near	vents.

Constant	 exposure	 to	H2S	 can	 limit	 the	 ability	 of	 organism	 to	
survive	 and	 to	 reproduce.	 H2S	 can	 inhibit	 cytochrome	 c	 oxidase	
(COX)	in	the	mitochondrial	respiratory	chain,	which	interferes	with	
ATP	production	(Cooper	&	Brown,	2008).	The	first	 line	of	defense	
against	 sulfide	poisoning	 is	 to	oxidize	 it	 to	 a	 less	 toxic	 form,	 such	
as	thiosulfate	(Vetter	et	al.,	1987).	The	pathway	for	oxidative	phos-
phorylation	 suggests	 a	 nexus	 of	 H2S	 toxicity	 and	 detoxification.	
Specifically,	 sulfide	 oxidation	 to	 thiosulfate	 is	mediated	 by	 sulfide	
quinone	reductase	(SQR),	sulfur	dioxygenase,	and	sulfur	transferase.	
Two	vent-	specific	genes	for	sulfur	transferase	(Table	S3) were pos-
itively	 selected	 (i.e.,	 GAL3ST1,	which	 encodes	 galactosylceramide	
sulfotransferase	 and	 HS3ST3B1,	 which	 encodes	 heparan	 sulfate	
glucosamine	 3-	O-	sulfotransferase	 3B1).	 Genes	 in	 oxidative	 phos-
phorylation	were	also	differentially	expressed.

Endocytosis	is	another	pathway	enriched	by	vent-	specific	PSGs	
(Table 2)	and	DEGs	(Table	S7).	Numerous	deep-	sea	macrofauna	that	
live	 near	 vents	 form	 symbiotic	 associations	 with	 chemosynthetic	
bacteria,	but	this	association	has	not	been	documented	in	sea	anem-
ones	 previously.	 For	 example,	 the	 sea	 anemone	Ostiactis pearseae 
that	inhabits	vents	in	the	Gulf	of	California	was	confirmed	to	have	
chemosynthetic	symbiosis	(Goffredi	et	al.,	2021).	Endocytosis	is	re-
ported	to	be	related	to	the	acquisition	of	endosymbionts.	Moreover,	
widespread	 environmental	 viruses	 and	 bacteria	 around	 vents	 can	
take	 advantage	 of	 the	 endocytosis	 machinery	 to	 penetrate	 cyto-
sol	 and	 use	 cells	 of	 host	 organisms	 as	 protected	 sites	 for	 replica-
tion	(Cossart	&	Helenius,	2014).	Three	vent-	specific	genes	showed	
signals	of	positive	 selection	 (Table	S3)	 in	endocytosis.	Eps15	 is	 an	
endocytic	adaptor	protein	involved	in	membrane	morphology	and	is	
required	for	early	stages	of	clathrin-	mediated	endocytosis	 (Gucwa	
&	Brown,	2014;	Wang	et	al.,	2016).	Rab7	is	an	important	regulator	
of	 late	 endocytic	membrane	 traffic	 (Feng	 et	 al.,	 1995).	 CHMP7	 is	
related to endosomal sorting (Horii et al., 2006).	The	positively	se-
lected gene Bak (Table S3)	is	among	the	core	regulators	of	apoptosis,	
which	can	mediate	the	permeabilization	of	the	outer	membrane	of	
mitochondria	 (Peña-	Blanco	&	García-	Sáez,	2018)	 and	 can	 regulate	
the	homeostasis	of	the	host-	symbiont	system.	Therefore,	the	alter-
ation	in	endocytosis	pathway	may	be	an	adaptation	to	the	microbe-	
rich vent environment.

4.2  |  Changes related to the deep- sea environment

High	hydrostatic	 pressure	 can	 cause	DNA	damage	 and	 form	unfa-
vorable	 structures	of	nucleic	acids	and	proteins,	which	may	hinder	
the	 processing	 of	 genetic	 information	 (Bourns	 et	 al.,	1988). In this 

study,	 genes	 related	 to	helicase	were	 expanded	 in	 vent	 sea	 anem-
one (Table S6, Figure 3c).	Helicase	can	unwind	the	double-	stranded	
nucleic	acid	and	function	in	DNA	modification	processing,	including	
DNA	replication,	DNA	repair,	recombination,	transcription,	and	trans-
lation	(Jankowsky	&	Fairman,	2007).	The	expansion	of	helicase	gene	
family	may	help	sustain	the	normal	genetic	information	processing	in	
Alvinactis	sp.	Genes	related	to	integrin	were	also	expanded	(Table	S6, 
Figure 3c),	 integrins	are	a	 large	family	of	 transmembrane	receptors	
that	connect	cells	 to	 the	extracellular	matrix	and	help	cells	 receive	
environmental	information	(Wu	et	al.,	2017).

5  |  CONCLUSION

In	summary,	we	reported	the	first	transcriptome	of	a	hydrothermal	
vent	sea	anemone,	and	we	identified	positively	selected	genes,	ex-
panded	gene	families,	and	differentially	expressed	genes	in	Alvinactis 
sp.,	which	 provides	 insights	 into	 the	molecular	 adaptations	 to	 the	
vent	environment.	Due	to	changes	in	nucleotide	sequences	and	ex-
pression	levels,	some	distinct	genes	and	pathways	like	peroxisome,	
ubiquitin-	mediated	proteolysis,	oxidative	phosphorylation,	and	ge-
netic	 information	processing	have	been	altered	 in	Alvinactis	sp.	All	
these	changes	may	help	Alvinactis	 sp.	 to	gain	new	molecular	 func-
tions	and	to	develop	an	efficient	regulatory	network	to	adapt	to	this	
harsh	environment.	However,	our	 results	 are	mainly	based	on	 the	
functional	interpretation	of	homolog	genes,	and	the	specific	role	of	
these	changes	needs	to	be	confirmed	and	investigated	further.	This	
work	provides	genomic	resources	and	clues	for	understanding	the	
genetic	adaptations	of	sea	anemones	around	hydrothermal	vents.
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