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Abstract

Chromatin immunoprecipitation coupled with sequencing (ChIP-seq) is a technique used to identify protein–DNA interaction sites
through antibody pull-down, sequencing and analysis; with enrichment ‘peak’ calling being the most critical analytical step.
Benchmarking studies have consistently shown that peak callers have distinct selectivity and specificity characteristics that are
not additive and seldom completely overlap in many scenarios, even after parameter optimization. We therefore developed ChIP-
AP, an integrated ChIP-seq analysis pipeline utilizing four independent peak callers, which seamlessly processes raw sequencing
files to final result. This approach enables (1) better gauging of peak confidence through detection by multiple algorithms, and (2)
more thoroughly surveys the binding landscape by capturing peaks not detected by individual callers. Final analysis results are then
integrated into a single output table, enabling users to explore their data by applying selectivity and sensitivity thresholds that best
address their biological questions, without needing any additional reprocessing. ChIP-AP therefore presents investigators with a more
comprehensive coverage of the binding landscape without requiring additional wet-lab observations.

Keywords: ChIP-seq, integrated analysis pipeline, multiple peak callers, automated analysis pipeline, transcription factor binding,
histone mark

Introduction

Chromatin immunoprecipitation coupled with sequenc-
ing (ChIP-seq) is used to identify DNA-binding location
and recognition motifs of DNA-interacting proteins such
as transcription factors [1, 2], histone-modifiers [3] and
novel DNA-binding proteins. Since ChIP-seq’s inception
[2, 4, 5], its computational analysis has been a com-
plex, multi-step, command-line driven process requiring
knowledge and experience in computing and program-
ming [6]. For each step within an analysis, many analo-
gous programs have been developed complicating deci-
sions of which programs to use in conjunction with one-
another. Additional complications arise when attempting
to run these tools sequentially as input/output inconsis-
tencies necessitate manual intervention, format conver-
sions, or even, data filtering between steps. Therefore,
two different analysis methodologies, even if appearing
superficially similar, will most certainly report different
results, leading to potentially conflicting conclusions [7,
8]. For these reasons, it is difficult for researchers inexpe-

rienced with ChIP-seq computational analysis to process
their own data without dedicating a significant amount
of time to learn coding, research the required tools and
then determine how to best integrate everything together
to produce valid results.

Of all the programs required for a ChIP-seq analysis,
the choice of peak caller is the most critical [7]. In
2016, Steinhauser et al. [8] compared 20 peak callers
and reported poor peak agreement between all profiled
callers. This and other studies show that peak callers
have distinct selectivity and specificity characteristics
that are often not additive and seldom completely
overlap in many scenarios even after optimizing config-
uration parameters [7–11]. Consequently, such differing
operating characteristics results in inconsistency across
reported regions of enrichment (and associated genes)
with downstream effects on functional analysis that can
result in differing and potentially conflicting results from
the same dataset. The performance of a peak caller is
also drastically affected by the distribution and quality
of the sequenced reads [8–12]. An individual peak caller
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can show superior performance in certain datasets,
but not others. Therefore, relying on a one-caller-fits-
all approach when analyzing ChIP-seq datasets with
different DNA-binding proteins, immunoprecipitation
and library preparation protocols, is objectively not the
most robust approach to extract the most reliable or
comprehensive results from a particular dataset.

We therefore rationalized that to improve the reli-
ability and comprehensiveness of ChIP-seq analyses,
one should improve the consistency, confidence and
comprehensiveness of the peak detection step without
requiring additional wet-lab observations. To address
this, we developed an integrated ChIP-seq Analysis
Pipeline (ChIP-AP), which caters to all user proficiencies
by being accessible through either graphical interface, or
command-line. ChIP-AP seamlessly performs all analysis
steps processing raw sequencing files to final result,
utilizes four peak callers [13–17] and generates a single
integrated output file. By integrating the results of mul-
tiple peak callers, users can focus on addressing specific
questions. For example, the biological question may be
to identify the best consensus binding site for a certain
transcription factor. In other cases, the aim is to identify
as many possible gene targets. No individual peak caller
can address all the different questions in any given
dataset. ChIP-AP enables the user to investigate peak
subsets acquired by different peak calling algorithms to
obtain the best possible answer without requiring data
re-analysis. ChIP-AP can therefore become an effective
tool by providing substantial improvements to peak
capturing and analysis confidence, aiding in avoiding the
frequent cases where using only one peak caller leads to
the conclusion that the experiment produced no useful
results.

ChIP-AP is available through GitHub (https://github.
com/JSuryatenggara/ChIP-AP). Alternatively, for users
without compatible hardware, ChIP-AP has been incor-
porated into the CSI NGS Web Portal [18] for easy access
(https://csibioinfo.nus.edu.sg/csingsportal).

Materials and methods
ChIP-AP constituent programs
ChIP-AP is an analysis pipeline that seamlessly inte-
grates multiple command line tools into a single work-
flow. At time of publication (ChIP-AP version 5.0), these
tools include FastQC [19], Clumpify and BBDuk from the
BBMap Suite [20], Trimmomatic [21], BWA [22], Samtools
[23], deepTools [24], MACS2 [25], GEM [16], SICER2 [26],
HOMER [15], Genrich [13], IDR [27] and the MEME-Suite
[28]. However, it is best to refer to the GitHub repository
for the latest citation list that would include any addi-
tional tools incorporated into ChIP-AP since publication.

Tissue culture/SNU-398 cell culture
The SNU-398 cell line was obtained from the American
Type Culture Collection (ATCC). The cells were main-
tained in RPMI medium supplemented with 10% fetal

bovine serum (FBS) at 37◦C in a humidified atmosphere
of 5% CO2 as recommended by ATCC.

SNU-398 SALL4 ChIP-seq preparation and
sequencing
20 million SNU-398 cells were cross-linked with 1%
formaldehyde for 10 min at room temperature. The
reaction was terminated by adding 2 M glycine to a
final concentration of 125 mM. Cells were then washed
with 1× PBS and resuspended in 1 ml of cell lysis buffer
(20 mM Tris pH 8.0, 85 mM KCl, 0.5% nonidet P-40,
protease inhibitor). After 10 min of incubation on ice,
cells were spun down and the cell pellet resuspended
in another 1 ml of cell lysis buffer. After another
5 min of incubation on ice, cells were spun down and
cell pellet resuspended in 1 ml of nuclear lysis buffer
(10 mM Tris-HCl pH 7.5, 1% nonidet P-40, 0.5% sodium
deoxycholate, 0.1% SDS, protease inhibitor). After 10 min
of incubation on ice, chromatin was sheared to 500 bp.
Antibody-protein A/G Dynabead conjugate was prepared
by adding 0.75 μg of SALL4 rabbit monoclonal antibody
(Cell Signaling Technology #8459) to pre-washed 50 μl
of protein A/G Dynabeads (Life Technologies) with 1 h
incubation at 4◦C with rotation. Sheared chromatin was
then added to the antibody–protein A/G conjugate and
incubated overnight at 4◦C with rotation. After overnight
incubation, the beads were washed sequentially with
the following buffers: twice with RIPA/500 mM NaCl
buffer (0.1% deoxycholate, 0.1% SDS, 1% Triton X-100,
500 mM NaCl, 1 mM EDTA, 20 mM Tris-HCl pH 8.1),
twice with LiCl buffer (0.25 M LiCl, 1% nonidet P-40,
1% sodium deoxycholate, 1 mM EDTA, 10 mM Tris-HCl
pH 8.1), twice with TE buffer (10 mM Tris-HCl pH 8.0,
1 mM EDTA pH 8.0). Protein complexes were reverse
cross-linked with 50 μl of ChIP Elution Buffer (10 mM
Tris-HCl pH 8.0, 5 mM EDTA, 300 mM NaCl, 0.1% SDS)
and 8 μl of Reverse Crosslink Mix (250 mM Tris-HCl
pH 6.5, 1.25 M NaCl, 62.5 mM EDTA, 5 mg/ml proteinase K,
62.5 μg/ml RNase A) at 65◦C for 5 h. Reverse cross-linked
DNA was cleaned up using SPRI beads (Beckman Coulter)
and eluted in 10 mM Tris-HCl pH 8.0. To generate libraries
for deep sequencing, the eluted DNA was end-repaired
using End-It DNA End-Repair Kit (Epicenter #ER0720)
and A-tailing was then carried using Klenow (3′–5′ exo-)
enzyme (New England Biolabs). Illumina sequencing
adaptors were ligated to the DNA fragments and adaptor-
ligated DNA fragments were enriched with 14 cycles of
PCR. DNA libraries were gel purified and analyzed on
Bioanalyzer (Agilent) for their size distribution. Libraries
were sequenced on Illumina HiSeq 2500 sequencer with
single-end 35 bp settings.

SNU-398 SALL4 ChIP-seq analysis and
comparisons
For this analysis, the union peak set was utilized. The
fingerprint plot (Figure 4A) was generated as part of
the ChIP-AP run with the flags outlined in the ST.
The upset plot (Figure 4B) was generated by taking the
‘venn.txt’ data from the ChIP-AP run output (Folder
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.The SALL4 ChIP-seq was processed with ChIP-AP (v5.1) using
hg38. Below is the settings table (ST) used.

Program Argument

fastqc1 -q
clumpify dedupe spany addcount qout=33
bbduk ktrim=l hdist=2
trimmomatic LEADING:20

SLIDINGWINDOW:4:20
TRAILING:20 MINLEN:20

fastqc2 -q
bwa_mem
samtools_view
plotfingerprint -bs 50 –centerReads

–ignoreDuplicates
fastqcs3 -q
macs2_callpeak
gem -Xmx30G –k_min 8 –k_max 12
sicer2
homer_findPeaks
genrich –adjustp –v
homer_mergePeaks
homer_annotatePeaks
fold_change_calculator –normfactor uniquely_mapped
homer_findMotifsGenome -size given -mask
meme-chip -neg background.fa

-meme-nmotifs 25 target.fa

21_peaks_merging) and plotting in R [29] (v4.0.3) with
the UpSetR [30] (v1.4.0) package. Irreproducible discovery
rate (IDR) distribution plots were generated using Prism
(v9.2.0) using the values reported in the final integrated
ChIP-AP output file.

The Cut&Run dataset was processed as outlined
previously [31] (using CnRAP) and is available from GEO,
Accession GSE136332. To overlap the three Cut&Run
replicates, HOMER’s mergePeaks was used with flags ‘-d
1500.’ Next, the Cut&Run peaks identified in at least two
replicates with at least a 4-fold change over IgG were
combined and compared to the SALL4 ChIP-seq union
peak set using HOMER’s mergePeaks with flag ‘-d 2000’.
This provided the list of overlapping regions, the number
of which was plotted in R (v4.0.3) with VennDiagram [32]
(v1.6.20). Different sized merge windows were used for
the overlapping and comparison owing to the different
peak shape characteristics of Cut&Run and ChIP-seq
peaks.

For the directed motif search within the SALL4 ChIP-
seq union peak set, HOMER’s findMotifsGenome was
used with flags ‘-find sall4_weighted_motif.motif.’ De
novo motif searching is incorporated into ChIP-AP and
was performed using HOMER and the MEME-Suite with
parameters shown in the ST. Motif logo files were gener-
ated using R (v4.0.3) and seqLogo [33] (v1.52.0).

The Gene Ontology (GO) analysis of the SALL4 ChIP-
seq was performed as part of the ChIP-AP run using the
flag ‘-goann’ which utilizes HOMER. To compare with
the processed SALL4 knock-down published results [31],
we started from Supplementary Tables 4 and 5, available

online at http://bib.oxfordjournals.org/, from the publi-
cation. Next, we overlayed the reported gene names from
the SALL4 ChIP-seq union peaks to those gene lists to
determine overlapping gene names.

Encode datasets utilized and processing
The IDR calculations for all peaks are integrated into
a ChIP-AP run. Once all individual peak callers have
run, the union peak set is generated by merging results
from all peak callers using HOMER’s mergePeaks with
parameters as shown in the ST. The union peakset set
is then ranked by (1) number of detecting peak callers,
and (2) fold change of sample signal over input. As the
IDR suite calculates peak reproducibility rate between
two replicates (i.e. peak sets) only, we chose as ‘replicates’
each individual peak caller set and the union peak set.
This allowed us to calculate reproducibility of all peaks
in the full (union) peaks list based in their detectability by
different individual peak callers and rank them accord-
ingly. We then copy the individual peak IDR information
to the union peak set giving us four −log10 IDR values
for every peak. These four −log10 IDR values are then
summed and converted into a final IDR value per peak.

For each transcription factor, the corresponding
JASPAR binding motif was downloaded from MethMotif
[34] in MEME format and converted to HOMER’s motif
format. For the directed motif searches, HOMER’s
findMotifsGenome was utilized with flags ‘hg38 -
find binding_motif.motif.’ De novo motif searching is
incorporated into ChIP-AP and was performed using
HOMER and the MEME-Suite with parameters shown in
the ST. Motif logo files were generated using R (v4.0.3) and
seqLogo (v1.52.0). The GO results were generated as part
of HOMER’s annotatePeaks function for the required peak
sets. HOMER annotatePeaks was utilized with a known
motif provided with the ‘-m’ flag to include the distances
from all starting coordinate motif instances in each peak
to their respective peak starting coordinate. A custom
python script was utilized to extract the distances from
every peak’s weighted peak center to the midpoint
coordinate of the motif instance closest to the weighted
peak center. The weighted peak center for transcription
factor peaks is calculated using a separate custom script
(which is incorporated into a ChIP-AP analysis), and is
independent of any peak center defined by any individual
peak caller utilized. The density plots representing this
data were generated using R and ggplot2. Peak-Motif
percentages were plotted using Graphpad Prism v9.2.0.

ChIP-AP functionality and characteristics
Design and modularity
ChIP-AP’s design is inspired by, and copies modularity
concepts from ‘object-oriented’ paradigms but is not
‘object-oriented’ in the truest sense. To run ChIP-
AP, the location of the raw FASTQ files and a ST
are passed through the command line or graphical
interfaces (Figure 1—Input). ChIP-AP then constructs
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.A number of ENCODE datasets were downloaded and utilized; experiment IDs are listed below. Data were downloaded from ENCODE
March 2021.

Cell line Transcription factor ChIP experiment ID’s Control experiment ID’s

GM12878 MAX ENCFF000VXY ENCFF000VWF
ENCFF000VYA ENCFF000VWH

SPI1 ENCFF000OBS
ENCFF000OB

H1-hESC CTCF (Bernstein) ENCFF000AVU ENCFF036EGF
ENCFF000AVS ENCFF191QXK

CTCF (Myers) ENCFF000ONR ENCFF000OSP
ENCFF000OOF

REST (Bernstein) ENCFF794IGW ENCFF036EGF
ENCFF079NVQ ENCFF191QXK

REST (Myers) ENCFF000OQQ ENCFF000OSP
ENCFF000OQY

H3K79me2 (Bernstein) ENCFF000AYD ENCFF036EGF
ENCFF000AYF ENCFF191QXK

H3K79me2 (Ren) ENCFF580OHZ ENCFF835IOE
ENCFF519ZRJ ENCFF094GYG

HepG2 ZBTB33 ENCFF000PSP ENCFF000POH
ENCFF000PSW ENCFF000POC

CEBPB ENCFF000XQM
ENCFF000XQN

JUND (Myers) ENCFF000PKK
ENCFF000PKR

JUND (Snyder) ENCFF000XTQ
ENCFF000XTR

ENCFF002ECQ
ENCFF002ECU

K562 MAFF ENCFF000YSQ ENCFF002EFD
ENCFF000YSS ENCFF002EFF

JUN ENCFF000YJJ
ENCFF000YJL

GATA1 ENCFF000YND
ENCFF000YNF

MYC (Iyer) ENCFF000RWD ENCFF000RWS
ENCFF000RWE
ENCFF000RWG

MYC (Snyder) ENCFF000YKO ENCFF002ECS
ENCFF000YKR ENCFF002ECW

YY1 (Farnham) ENCFF000ZEK ENCFF000VEK
ENCFF000ZEJ

YY1 (Myers) ENCFF000QKF ENCFF000QET
ENCFF000QKI ENCFF000QEU

H3K4me1 (Bernstein) ENCFF000BXX
ENCFF000BYG

ENCFF000BWK
ENCFF994FIB
ENCFF283HQV
ENCFF156ECZ
ENCFF561WFK

H3K4me1 (Farnham) ENCFF000VDV ENCFF000VEK
ENCFF000VDU

H3K27me3 (Bernstein) ENCFF000BXP
ENCFF000BXN

ENCFF000BWK
ENCFF994FIB
ENCFF283HQV
ENCFF156ECZ
ENCFF561WFK

H3K27me3 (Farnham) ENCFF000VDN ENCFF000VEK
ENCFF000VDP

H3K36me3 (Bernstein) ENCFF000BXR
ENCFF000BXO

ENCFF000BWK
ENCFF994FIB
ENCFF283HQV
ENCFF156ECZ
ENCFF561WFK

H3K36me3
(Stamatoyannopoulos)

ENCFF001FWV
ENCFF001FWW

ENCFF001HTT

MEIS2 R1: ENCFF002EIU
ENCFF002EIW
R2: ENCFF002EIV
ENCFF002EIX

R1: ENCFF002EFF
ENCFF002EFD
R2: ENCFF002EFH
ENCFF002EFA

RUNX1 R1: ENCFF002DOZ
ENCFF002EGD
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Cell line Transcription factor ChIP experiment ID’s Control experiment ID’s

R2: ENCFF002EGE
ENCFF002DPH

ATF4 R1: ENCFF081USS
ENCFF565KLI
R2: ENCFF069VNL
ENCFF682IGK

MCF7 H3K9me3
(Bern-
stein)

ENCFF656BIN ENCFF318ZNB
ENCFF640MKX
ENCFF222VRH
ENCFF595BTS

ENCFF517BLK
ENCFF600JOS

H3K9me3
(Farn-
ham)

ENCFF000VFE ENCFF000VHL
ENCFF000VHMENCFF000VFJ

ENCFF000VFG

.All ENCODE datasets were processed with ChIP-AP (v5.1), using
hg38 with the following ST.

Program Argument

fastqc1 -q
clumpify dedupe spany addcount

qout=33 fixjunk
bbduk ktrim=l hdist=2
trimmomatic LEADING:20

SLIDINGWINDOW:4:20
TRAILING:20 MINLEN:20

fastqc2 -q
bwa_mem
samtools_view
plotfingerprint -bs 50 –centerReads

–ignoreDuplicates
fastqcs3 -q
macs2_callpeak
gem -Xmx30G –k_min 8

–k_max 12
sicer2
homer_findPeaks
genrich –adjustp -v
homer_mergePeaks
homer_annotatePeaks
fold_change_calculator –normfactor

uniquely_mapped
homer_findMotifsGenome -size given -mask
meme-chip -meme-nmotifs 25

a structured folder hierarchy and generates analysis
sub-scripts for each stage of analysis. Each sub-script
script is, in essence, an ‘object’ with defined inputs
and outputs. ChIP-AP therefore provides a platform
wherein individual stages can be modularly swapped
with equivalent steps without changes to the flow
of analysis provided users are mindful of adjoining
objects requisite parameters. This compartmentalization
enables exponential customization of ChIP-AP for
users.

Peak caller selection
Improving the confidence and comprehensiveness of
peak detection is the key focus of ChIP-AP. For our
selection, a peak caller needed to be actively maintained
and be capable of handling experimental replicates

internally (which results in better specificity [8]). We
also selected callers that have reasonable sensitivity and
specificity characteristics when run in default settings
as presented in published benchmarking studies, have
reasonable operating characteristics when handling
datasets with varying sequencing depths and signal-
to-noise ratios, and have the ability to vary their peak
scanning windows. Peak callers were also selected based
on their input requirements, output file format, soft-
ware dependencies, stability and computing resources
required when running.

Our final criterion for candidate callers related to the
implemented algorithm for peak calling. We selected
peak callers that generate a statistical model of the
background signal to ascertain a peak significance, as
this has been shown to have superior performance
to other approaches [35]. MACS2 [25] and HOMER
[15], two commonly cited and well benchmarked peak
callers despite their relative age [8], utilize Poisson
distributions to generate background models prior to
statistical testing for peak significance between ChIP
and control samples. In contrast, GEM utilizes a binomial
test and supplements this by also considering presence
of enriched motifs in potential peaks [16]. As GEM is
only suited for narrow transcription factor style peaks,
for broad histone mark peaks, the alternate peak caller
selected was SICER2, an updated release of the SICER
peak caller [17]. SICER works by performing spatial
clustering of enriched windows to identify broad peaks;
an approach that has shown solid performance in
recognizing broad peaks [17]. SICER is also a very well-
cited and well performing broad peak caller despite its
age. The final peak caller selected, Genrich, utilizes a
unique approach as it assumes a background model
with a log-normal distribution and calls peaks by testing
whether the read pileups have a total area under the
curve (AUC) above a significant threshold [13]. Owing to
this disparate approach, we chose to include Genrich, as
a relatively new peak caller despite lacking citations or
formal benchmarking. In summary, we have primarily
selected peak callers that show favorable performance
in peer-reviewed, published benchmarking papers, as
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Figure 1. ChIP-AP functionality and characteristics. An overview of ChIP-AP’s structure. For input, ChIP-AP requires ST [be it customized for a
specific analysis or the default (DST)] in conjunction with the location of the raw sequencing FASTQ files. Data can be entered through the
wizard (Supplementary Figure 1A available online at http://bib.oxfordjournals.org/) or the dashboard (Supplementary Figure 1B available online at
http://bib.oxfordjournals.org/) or the command-line. Once all data are entered, ChIP-AP constructs a folder hierarchy, each with sub-scripts that have
defined input/output characteristics performing a singular task. The core stages of analysis include QC & Filtering, Alignment and Peak Calling. For
output, ChIP-AP generates an integrated results table that can be viewed in any spreadsheet program like Excel, and can select the union peak set, the
consensus peak set or any sub-set in-between as required. Integrated into the output file is all the peak callers that called said peak as well as the peak’s
IDR. Optionally, users can run pathway and GO analysis which (if run) have their results merged into the main text output file as well. Users can also
optionally run motif enrichment analysis using HOMER and/or MEME-ChIP, which will report results in separate output folders for viewing.

benchmarking of peak callers is beyond the scope of this
publication.

Analysis customization and reproducibility
through the settings table
An on-going issue in science is irreproducibility of results
[36]. In spite of journals enforcing stricter reporting
of methods, ChIP-seq processing steps consistently
lack essential details with omission of key program
modification parameters or entire steps. To circumvent
this and ensure ChIP-AP analysis reproducibility, we
implemented a standardized ST. The ST lists all the
programs used in ChIP-AP and their optional program
arguments for an analysis. If no table is provided,
ChIP-AP will use a default ST (DST; Figure 1—Input,
Table 1), which we have compiled based on our testing
and found to yield consistently adequate results.
(Additional ST parameter tuning beyond the DST is
advised only for advanced users who have consulted the
documentation for the relevant programs.) To reproduce
any analysis performed by ChIP-AP, users need only
provide the ST and the raw FASTQ files. As such, the

dissemination of the ST is essential alongside results.
The ST can be included as a supplemental table or
as a processed data file when submitting to public
repositories. The ST ensures analysis reproducibility
in a consistent and convenient format for published
works.

ChIP-AP graphical interfaces
Multi-step ChIP-seq analyses require coding experience
and proficiency to be performed correctly. To cater to
users with no coding experience, platforms such as
Galaxy, or software suites such as Partek have been
developed to make analyses accessible, albeit occa-
sionally behind subscription-based services. However,
for ChIP-seq analyses, these platforms utilize a single
peak caller with limited customization options that
can result in incomplete surveying of the binding
landscape as previously noted. In contrast, ChIP-
AP incorporates its own graphical interfaces to aid
users in completing analyses and is open-sourced
software.
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Table 1. ChIP-AP default ST

Program Argument

fastqc1 -q
clumpify dedupe spany addcount

qout=33 fixjunk
bbduk ktrim=l hdist=2
trimmomatic LEADING:20

SLIDINGWINDOW:4:20
TRAILING:20 MINLEN:20

fastqc2 -q
bwa_mem
samtools_view -q 20
plotfingerprint
fastqc3 -q
macs2_callpeak
gem -Xmx10G –k_min 8

–k_max 12
sicer2
homer_findPeaks
genrich –adjustp -v
homer_mergePeaks
homer_annotatePeaks
fold_change_calculator –normfactor

uniquely_mapped
homer_findMotifsGenome -size given -mask
meme_chip -meme-nmotifs 25

Note: The default ST used by ChIP-AP if no user provided table is provided.
The left column lists the constituent programs of ChIP-AP with their optional
modification parameters/flags found in the right column. A copy of the ST
utilized by any ChIP-AP run can always be found in the analysis output folder.

To cater to the breadth of proficiencies in the scientific
community, two interfaces have been implemented
as part of ChIP-AP. The first interface, the Wizard
(Figure 1 and Supplementary Figure 1A, available online
at http://bib.oxfordjournals.org/), guides users through
analysis configuration via a series of windows, each
asking for a single input. For more experienced users, we
implemented the Dashboard, which enables inputting all
the required information from a single window (Figure 1
and Supplementary Figure 1B—Data Input, available
online at http://bib.oxfordjournals.org/). Additionally, the
dashboard contains a command line translation panel
(Supplementary Figure 1B—Command Line Translation,
available online at http://bib.oxfordjournals.org/) that
dynamically updates to reflect additional/changed
inputs enabling users to link graphical elements to
command line arguments that control pipeline behavior.
This implementation will aid some researchers more
confidently transition from interface to command line
usage of ChIP-AP. Independent of whether the wizard
or dashboard is utilized, users will be questioned to
use either a custom ST or the DST. This enables full
customization of analyses independent of its mode
of use.

Results
Consensus peaks increase the accuracy of motif
and gene ontology analyses
A cornerstone of scientific research is result reproducibil-
ity through replication and/or independent techniques,

which instill greater confidence in result validity. For this
reason, peaks identified in multiple sample replicates
are deemed more confident and have favorable IDR
[27]. By extension, we propose that ChIP-seq peaks
detectable by multiple peak callers, each utilizing
independent detection algorithms, should therefore
garner greater confidence and more favorable IDR scores,
in addition to also being identified across (biological
or technical) sample replicates. To assess whether the
consensus peak set (the peaks concomitantly detected
by all peak callers) identifies the most confident
peaks, we analyzed 20 transcription factor (TF) datasets
from differing TF families, across four cell lines from
ENCODE [37] (Supplementary Table 1, available online
at http://bib.oxfordjournals.org/). In ChIP-AP’s output
table, alongside a detected peaks coordinates, we report
a listing of the detecting callers, as well as the peaks
IDR. When extracting the consensus peaks for each TF,
we can validate that these peak sets indeed show the
most significant IDR scores ensuring we are identifying
the most confidently called peaks for each respective
TF (Figure 2A and Supplementary Figure 2A, available
online at http://bib.oxfordjournals.org/).

We next hypothesized that the consensus sets should
also significantly improve peak-motif percentages (the
percentage of peaks containing a valid binding motif)
and, for certain datasets, the motif position bias (the
distance of the motif to the weighted peak center),
two measures of peak validity [38, 39]. To investigate
the performance of the consensus peak set on peak-
motif percentages, we compared the consensus peak
set for each TF against the independent peak callers.
For each of the selected TF’s, canonical-binding motifs
were sourced from MethMotif [34] and the number
of peaks with valid motifs was determined through
a directed motif search using HOMER [15]. Across all
TF’s, the consensus peak set showed a significant
improvement in the average peak-motif percentage as
compared to the independent peak callers (Figure 2B and
Supplementary Table 1, available online at http://bib.
oxfordjournals.org/).

Next, to assess whether the identified motifs were
focused near the weighted peak center (not simply
the peak center), the motif position bias for the con-
sensus peak set was again, compared to the other
independent peak caller sets. For some TF datasets, the
consensus peak set provided the best motif position
bias results such as in PU.1/SPI1, CEBPB, JUN and
CTCF (Bernstein) (Figure 2C), while in other datasets we
observed mixed results (Supplementary Figure 2B and
Supplementary Table 2, available online at http://bib.
oxfordjournals.org/). As this metric does not detract or
alter peak-motif percentage rates, the performance of
the consensus peak set in this regard while notewor-
thy, it is not essential or critical that the consensus
peak set show the best performance in this metric.
Surprisingly though, GEM was able to out-perform all
other peak sets in certain datasets, likely due to its
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Figure 2. Consensus peak set improves detected motif accuracy. (A) IDRs for all peaks in each corresponding peak set. Shown in this panel is the
mean IDR ± the SD. For statistical comparison, unpaired two-sided t-tests were performed on the distribution of −log10(IDR) values with ∗∗∗∗P < 0.0001.
(B) Peak-motif percentage (the percentage of peaks with the canonical-binding motif) for all 20 TF’s profiled as identified for the consensus peak
set and all individual peak callers. On average, the consensus peak set shows significant improvements in peak-motif percentages as compared to
the individual callers [two tailed t-test’s; Consensus versus Genrich P = 0.009(∗∗), Consensus versus GEM P < 0.0001(∗∗∗∗), Consensus versus MACS2
P < 0.0001(∗∗∗∗), Consensus versus HOMER P < 0.0001(∗∗∗∗)]. (C) The motif position-biases for SPI1/PU.1, CEBPB, JUN and CTCF (Bernstein) for the
consensus peak set and all individual callers. The position-bias is a measure of how far the identified motif sits away from the weighted peak center.
Z-test statistics were performed on distributions of position distances with ∗∗∗P < 0.001, ∗∗∗∗P < 0.0001; see Supplementary Table 2 available online at
http://bib.oxfordjournals.org/. (D) The CEBPB de novo motif discovery results as reported by HOMER for the consensus peak set. The line above the peaks
delineates position of the monomer binding motif. The second motif result clearly shows the canonical CEBPB monomer motif without homo- and
hetero-dimer motif sequences. (E) The CEBPB de novo motif discovery results as reported by HOMER for the MACS2 peak set. The line above the peaks
delineates position of the monomer binding motif. In contrast to the lower figure of panel (D), the monomer-binding sequence cannot be observed.
(F) The MAFF de novo motif discovery results as reported by HOMER for the consensus peak set. The line above the peaks delineates position of the
monomer binding motif. Both panels show the canonical MAFF monomer binding motif. (G) The MAFF de novo motif discovery results as reported by
HOMER for the MACS2 peak set. The line above the peaks delineates the position of the monomer binding motif. In contrast to (F), the MACS2 results
are not as consistent in showing the MAFF monomer binding motif.
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internal motif-centric approach to peak calling. Taken
together though, our results show the consensus peak
set can consistently and significantly improve peak-
motif hit rates and, in some datasets, even improve
on the motif position bias results. With such findings,
we next hypothesized whether the consensus peak
set can also increase the likelihood of identifying
monomer and homodimer binding motifs in preference
to heterodimer sequences which contain co-factor motif
sequences.

Previously, Lin et al. [40] outlined how global motif
analyses can contain heterodimer motif sequences,
which include co-factor motif sequences, in addition
to the target proteins monomer binding motif. In
their research, they highlighted heterodimer motifs
for CEBPB and MAFF when performing de novo motif
analysis utilizing MACS2 called peaks. We therefore
derived the ChIP-AP consensus peak sets for CEBPB
and MAFF, and performed de novo motif searches using
both HOMER [15] and the MEME-Suite [28, 41, 42] and
compared findings of the consensus peak sets to the
lone MACS2 peak set to unbiasedly determine the
differences in motif detection capabilities. For CEBPB,
the first motif candidate reported by HOMER for both
peak sets were near identical, which, according to Lin et
al. [40], contains a mixture of homo- and hetero-dimer
sequences (Figure 2D and E, upper panels available
online at http://bib.oxfordjournals.org/). However, the
second motif for the consensus peak set (Figure 2D, lower
panel available online at http://bib.oxfordjournals.org/)
shows the CEBPB monomer ATTG binding motif, devoid
of dimer sequences [40]. The second motif hit from
the MACS2 peak set (Figure 2E, lower panel available
online at http://bib.oxfordjournals.org/), fails to match
this finding. When analyzing the consensus peak set
using the MEME-Suite, the results showed two motifs
with heterodimer sequences (Supplementary Figure 2C,
available online at http://bib.oxfordjournals.org/, ranked
1st and 3rd), two motifs with the homodimer sequences
(Supplementary Figure 2C, available online at http://bib.
oxfordjournals.org/, ranked 2nd and 4th), and the fifth
motif showed the monomer ATTG motif. Conversely,
for the MACS2 dataset, when analyzed using the
MEME-Suite, three motif results contained heterodimer
sequences (Supplementary Figure 2D, available online
at http://bib.oxfordjournals.org/, ranked 1st, 3rd and
4th), one result showed the homodimer sequence
(Supplementary Figure 2D, available online at http://bib.
oxfordjournals.org/, ranked 2nd) and the fifth result
showed the monomer binding sequence. Therefore, for
CEBPB, both algorithms reported similar findings, yet
the consensus peak set showed a more direct signal
for the CEBPB monomer binding motif, a finding not
immediately evident from the MACS2 peak set without
careful inspection.

Similar results to CEBPB were also found for the TF,
MAFF. For the MAFF consensus peak set, the top two
HOMER de novo motif results were consistent and showed

the TCAGCA binding sequence (Figure 2F). The MACS2
peak set however, showed differing sequences for the top
two hits (Figure 2G). When analyzed using the MEME-
Suite (Supplementary Figure 2E and F, available online
at http://bib.oxfordjournals.org/), MEME consistently
calls the TGCTGA motifs for both peak sets, but the
sixth reported motif candidate for the consensus peak
set shows a homodimer binding profile, a result not
recapitulated in the MACS2 peak set entirely. The
consensus peak set is therefore capable of guiding de
novo motif discovery analyses to identify monomer and
homodimer binding profiles without needing to compare
and overlap transcription factor and co-factor datasets
in a manner as described by Lin et al. [40].

As the consensus peak set had thus far consistently
shown improved performance when assessing motif
presence, we questioned whether the consensus set
can also aid in improving GO investigations by ensuring
only the strongest binding candidates are included in
analysis that should therefore result in higher ranking
of more biologically related terms. To test the efficacy
of the consensus peak set as compared to the other
called peak sets, we compared GO analyses for all
assessed TFs. We observed that for the RUNX1, ATF4,
JUN, ZBTB33 and GATA1 datasets, the GO results for
the consensus peak sets returned more functionally
relevant and related terms than the MACS2 called
peak sets (Supplementary Tables 3 and 4, available
online at http://bib.oxfordjournals.org/). In particular
for RUNX1, the top 20 MACS2 GO results contained
generic terms while the consensus peak results clearly
outlined RUNX1 functions in hematopoietic differenti-
ation, regulation of metabolic and signaling pathways,
and autophagy regulation, all of which are known
functions of RUNX1 [43–48] (Supplementary Table 5,
available online at http://bib.oxfordjournals.org/). Work-
ing from this observation, we looked at the top 50 GO
terms called by the consensus peak set and plotted
to see how comparably ranked each GO term was
across all other individual peak sets. This revealed
that most GO terms were ranked quite differently in
the consensus peak set as compared to other peak
sets (Supplementary Figure 2G, Supplementary Table 6,
available online at http://bib.oxfordjournals.org/). Care-
ful manual inspection of the disparate rankings showed
that in datasets such as for RUNX1, ATF4 and JUN, a
noticeably higher ranking of more targeted terms is
evident as compared to the individual callers. Unfor-
tunately, this observation was not universal and the
rankings observed in other datasets (such as for CTCF
and REST (Myers)) was comparable to those of any
individual caller. Therefore, in best case scenarios, the
consensus peak GO terms can provide higher ranking
of targeted and more direct terms owing to its focus
on the only the most confident gene targets, while in
less well-performing datasets, the reported findings
are comparable to those of any individual peak caller
giving rise to a ‘no-lose’ scenario for users that can be of
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significant benefit if investigating less well-characterized
proteins.

To conclude then, we have shown that utilizing the
consensus peak set is able to provide significant bene-
fits and improvements in peak-motif percentages, motif
position bias, improving de novo motif discovery, and
more directly identify biologically significant ontology
terms. Overall, the consensus peak set can provide signif-
icant improvement over using a single peak caller when
the biological question posed is to investigate the most
confident targets of DNA-binding protein.

ChIP-AP peak set robustness
In order to increase confidence in identified peaks,
typically sample replicates are performed and only
consistently called peaks are selected. ChIP-AP’s consen-
sus peak set takes this approach further and collates
peaks called by independent peak callers to add an
additional metric assessing peak confidence, beyond
replicates. To validate the robustness of this approach,
in addition to the previously discussed and commonly
accepted peak quality metrics, we analyzed five well-
studied TF’s (CTCF, JUND, MYC, REST and YY1), and
compared the consensus peak sets across two datasets
performed by independent labs in the same cell line
(see Methods) to see how consistent the consensus
peak set can be; all the while knowing that the wet-
lab variability across two independent labs will be a
significant source of variability and difference between
the datasets. Reassuringly, in spite of the significant
inter-lab variability observed (the significantly different
number of called peaks between the labs), the overlap
of the consensus peak sets was quite robust with
consistent observations of the consensus peak set
from one lab being near entirely identifiable in the
second lab’s dataset, particularly for MYC, REST and
YY1 (Figure 3A). It is evident from this comparison
however the inter-lab variability can significantly affect
peak set consistency such as the case with CTCF and
JUND. To somewhat mitigate this variability, one can
instead opt to focus on the union peak set (all peaks
called by all callers) and utilize that for comparison
that can potentially yield an increased number of
overlapping peaks (Supplementary Figure 3A, available
online at http://bib.oxfordjournals.org/). However, where
the union peak set overlap for inter-lab datasets would be
more suited, would be when comparing histone marks.
Whereas TF often have defined binding sites that contain
a canonical binding motif, histone marks may have
very broad peaks, or even a mixture of peak types [12]
that can change depending on a cells state and culture
conditions. In such datasets, where the histone mark
deposition sites can change depending on numerous
variables, selecting all identifiable enrichment sites
seems conceptually more encompassing. By comparing
histone mark enrichment sites utilizing the union peak
sets, we can still see good overlap across inter-lab
experiments (Figure 3B).

With ChIP-AP incorporating multiple peak-callers, one
can question how altering each caller’s behavior (by mod-
ifying command line parameters) can alter peak set over-
laps, particularly the consensus peak set. To investigate
this, for the Bernstein lab derived CTCF dataset, we gen-
erated the consensus peak set using the ST provided (in
Methods), and then we proceeded to test how modifying
command line parameters altered the default consensus
peak set by calculating the Jaccard Index (JI) between the
modified and the default consensus peak sets. Where
possible, we aimed to modify comparable parameters
between peak callers and tested five reasonable val-
ues for each parameter. For MACS2, we modified the
parameters controlling maximum peak q-value (-q), min-
imum peak length (–min-length) and maximum distance
between two peaks (–max-gap). For HOMER, we modified
the parameters controlling maximum peak False Discov-
ery Rate (-fdr), peak size (-size) and maximum distance
between two peaks (-minDist). For Genrich, we modified
the parameters controlling maximum peak q-value (-
q), minimum peak length (-l) and maximum distance
between two peaks (-g). For GEM, we modified the param-
eter controlling maximum peak q-value (–q), which is the
only one parameter in GEM that is comparable to the
tested parameters in the other three peak callers. Finally,
to assess how changing parameters alters peak calling
for a histone mark set, we tested altering parameters for
SICER2 on the H3K4me1 Bernstein lab derived dataset
(see Methods). For SICER2, we modified the parameters
controlling maximum peak False Discovery Rate (-fdr),
peak scanning window size (-w) and maximum distance
between two peaks (-g).

Looking first at the CTCF dataset, we can see that
modifying MACS2 parameters (Figure 3C—left panel),
resulted in negligible changes in JI values, with each
modified consensus peak set showing near perfect
overlap with the default consensus peak set irrespec-
tive of the parameter values. Likewise, we also see
a similar trend for HOMER’s parameters (Figure 3C—
middle panel) where modifications negligibly altered
the consensus peak set result. On the other hand, we
can see noticeable changes in the consensus peak sets
when altering Genrich’s q-value parameter (Figure 3C—
right panel). Modifying Genrich’s minimum peak length
and maximum distance between two peaks show mildly
greater variability compared to MACS2 and HOMER,
but not to the same extent as modifying the q-value
parameter (Figure 3C—right panel). Finally, similar to
what we see when modifying MACS2 and HOMER
parameters, the resulting consensus peak set is rather
stable irrespective of the set parameter values for GEM
(Figure 3C). However, we noted a quirk of GEM during
testing. When run in multi-threaded mode, no two runs
yielded identical outputs even if run with the same
parameters, there will always be minor differences, a
point that has been raised on the GitHub repository.
To avoid this, GEM has to be run in single-threaded
mode to ensure reproducible results across runs.
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Figure 3. ChIP-AP peak set robustness. (A) Venn diagrams highlighting the number and percentage of consensus peak set overlapping peaks of inter-lab
ChIP-seq datasets. Two datasets were obtained from ChIP-seq experiments on the same DNA-binding proteins of interest in the same cell lines but
performed and uploaded to the ENCODE project database by different labs. Five pairs among the most common ChIP-seq transcription factor datasets
were picked for this analysis. All datasets were processed with ChIP-AP in default settings and their resulting consensus peak sets were merged in a
pair-wise manner. This panel shows venn diagram depicting the consensus peak set overlap between each pair of the five transcription factor dataset
pairs (CTCF, JUND, MYC, REST and YY1). (B) Venn diagrams highlighting the number and percentage of union peak set overlapping peaks of inter-lab
ChIP-seq datasets. Two datasets were obtained from ChIP-seq experiments on the same histone marks of interest in the same cell lines but performed
and uploaded to the ENCODE project database by different labs. Five commonly studied histone mark datasets were picked for this analysis. All datasets
were processed with ChIP-AP in default settings and their resulting consensus peak sets were merged in a pair-wise manner. This panel shows venn
diagrams depicting the union peak set overlap between each pair of the five histone marker dataset pairs (H3K4me1, H3K9me3, H3K27me3, H3K36me3
and H3K79me2). Above of each set is the name of the lab from which the dataset was derived. (C) Heatmaps depicting the consensus peak set Jaccard
Index score when one peak calling parameter was modified, compared to when the peak calling parameters are all at default values. Comparable
parameters across different peak callers were modified and compared. Heatmap color range for the Jaccard Index extends between 80 and 100% overlap
to better show variability in differences. High JI’s represent a high degree of overlap between the modified parameter peak set and the default consensus
peak set.
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Since the peak callers tested for a TF dataset all
showed consistent results, for the H3K4me1 dataset we
only assessed the performance of SICER2 (Figure 3D). In
these results, we can see that in contrast to the other
peak callers, altering the command line parameters
of SICER does yield mildly greater variability in the
resulting consensus peak set, but one must also note
that the JI’s reported are all still approximately 90% or
greater. Overall, we have observed that among all the
parameters we tested across all peak callers incorporated
into ChIP-AP, modification of individual settings does
not drastically alter the resulting consensus peak set,
highlighting the consistency and robustness of ChIP-AP’s
consensus peak despite possible parameter variabilities
in each individual peak caller.

Capturing lost peaks with the union peak set
Every peak caller has differing operating characteristics
and abilities to handle poorly enriched or high signal-
to-noise datasets [8, 12]. Single peak caller analyses are
solely dependent on the ability of that chosen caller
to handle that dataset’s enrichment profile, which if
handled unsuccessfully, will result in few peaks being
called giving an inconclusive result. However, other peak
callers can be more capable at handling poorly enriched
datasets. Therefore, the dataset needs to be analyzed
with the right peak caller for its specific characteristics,
the choice of which may not be evident in advance.

The oncogene sal-like protein 4 (SALL4) maintains
pluripotency and the self-renewal characteristics of
embryonic stem cells [49], is typically down-regulated
following birth, and is aberrantly expressed in many
tumors [49, 50]. SALL4 has multiple protein interacting
partners along with DNA-binding and regulation func-
tions [31, 49]. SALL4 has also been difficult to profile
using ChIP-seq. A SALL4 ChIP-seq was performed on
SNU-398 cells with results showing poor enrichment
evidenced by little separation between the SALL4 repli-
cates and control enrichment curves (Figure 4A). When
processed with ChIP-AP, GEM and MACS2 struggled to
call peaks, returning 1362 and 1937 peaks, respectively
(Figure 4B). HOMER called approximately double the
number of peaks (3760), but Genrich was able to call
12 452 peaks. Notable also was the sporadic overlap
between called peak sets (Figure 4B).

To extract as much data as possible from the per-
formed ChIP-seq, we investigated whether the union
peak set (all called peaks) (Supplementary Table 7,
available online at http://bib.oxfordjournals.org/) con-
tained valid SALL4 targets by comparing to a SNU-
398 SALL4 Cut&Run dataset [31]. Cut&Run utilizes
antibody-targeting and micrococcal nuclease digestion
to map DNA-binding sites [51]. It is an analogous yet
independent technique to ChIP-seq, thereby providing
a comparison dataset. For the Cut&Run peak set, we
selected peaks found in at least two replicates (three
biological replicates total) and that showed at least
a 4-fold enrichment over IgG. When comparing the

ChIP-seq union peak set to the Cut&Run peaks, we
observed a 36% peak overlap in the union peak set, a
comparable percentage to having used an individual
peak caller (Supplementary Figure 4A, available online
at http://bib.oxfordjournals.org/) but with more peaks
(Figure 4C), thus facilitating a more comprehensive
survey of the binding landscape by circumventing
individual poor performance.

In addition to the Cut&Run comparison, we interro-
gated the union peaks for the presence of the SALL4
DNA-binding motif [31]. A directed motif search was
performed on the union peak set that revealed 55%
of peaks contained the SALL4 motif (Figure 4D). To
unbiasedly investigate motif presence, de novo motif
searches were undertaken using both the MEME-Suite
[28, 41, 42] (which incorporates STREME, CentriMo
and MEME-ChIP) and HOMER, which called the SALL4
binding motif as the second and third candidate
hits respectively (Figure 4E and F) with MEME-ChIP
calling the motif as the second and third candidates
as well (Supplementary Figure 4B, available online at
http://bib.oxfordjournals.org/). Additionally, CentriMo
reported the STREME identified motif was centrally
enriched (Figure 4G), an expected observation for true
binding motifs [38]. Therefore, despite utilization of all
called peaks, the union peak set still showed enrichment
of the SALL4 binding motif.

To validate the inclusion of valid SALL4 target loci
in the union peak set, the peak corresponding gene list
was compared to a SALL4 knock-down differentially
expressed genes list (SALL4 KD DEG) [31]. It was reported
that SALL4 KD resulted in differential expression of
2695 genes, 430 of which had a corresponding Cut&Run
peak (Figure 4H). Comparing the SALL4 KD to the
union peak set showed an overlap of 451 genes, 198
of which were shared with the Cut&Run overlapping
genes (Figure 4H and Supplementary Table 8, available
online at http://bib.oxfordjournals.org/). Additionally,
SALL4 KD was found to increase the number of up-
regulated genes in the ‘transcriptional regulator activity’
(GO:0140110) pathway, establishing pathway members as
bona fide SALL4 targets [31]. Consistently, the union peak
set GO analysis identified the same pathway as a top
20 enriched pathway (Supplementary Table 9, available
online at http://bib.oxfordjournals.org/), with more
significantly enriched GO terms pointing to SALL4 being
a DNA-binding protein, a well-documented function
[49, 50] (Supplementary Table 9, available online at
http://bib.oxfordjournals.org/).

Overall, despite the poor enrichment observed in the
SALL4 ChIP-seq, the union peak set contained valid
data that could be extracted, used and validated by
independent approaches [31]. The union peak set trades
a marginal sacrifice in specificity for a significant gain
in sensitivity, enabling the confirmation and presence of
peaks identified or validated using different methodolo-
gies in sub-optimally enriched datasets. Whereas single
peak caller analyses would produce inconclusive results,
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Figure 4. Union peak set comprehensiveness and accuracy. (A) Fingerprint plot for aligned sequence files. Negligible separation between the SALL4
and control curves indicates poor enrichment in the SALL4 samples, an experiment typically considered as having failed. (B) Upset plot describing
the distribution of peaks observed by each peak caller. The left histogram represents the total number of called peaks per caller. The top histograms
represent the size of the sub-sets in question. The connected circles represent highlighted overlap. (C) Venn diagram showing the overlapping number
of peaks between the SALL4 union ChIP-seq dataset and the Cut&Run dataset, both of which were done on SNU-398 cells. (D) The motif sequence used
for the directed motif search in the SALL4 ChIP-seq union set, which was found in 55.2% of the union set. (E) The STREME de novo motif search for
the SALL4 union peak set identified the AT-rich binding motif as the second result. (F) The HOMER de novo motif search for the SALL4 union peak set
identified the AT-rich binding motif as the third result. (G) The STREME identified motif (shown in D) was found centrally enriched in the union peak set
as compared to background sequences; an accepted indicator of a valid motif result. (H) Venn diagram depicting the degree of overlap in the number of
genes between the SALL4 ChIP-seq union peak set, the SALL4 Cut&Run peak set and the SALL4 KD DEG list.
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reliance on multiple peak callers can provide a signif-
icant improvement in reported findings and salvage sub-
optimal datasets.

Discussion
Over 50 peak callers have been published for analyzing
ChIP-seq datasets each having distinct selectivity and
specificity characteristics that are often not additive and
seldom completely overlap in many scenarios even after
modifying peak caller parameters. A peak caller can
show superior performance in certain datasets, but not
in others. Therefore, owing to the heterogeneity observed
from profiling different DNA-binding proteins with differ-
ing immunoprecipitation and library preparation proto-
cols, reliance on a single peak caller is unlikely to yield
the most reliable, consistent, or comprehensive report of
a proteins binding profile. To circumvent this, we devel-
oped ChIP-AP to integrate the results of multiple peak
callers, thereby improving peak calling confidence and
comprehensiveness to survey the binding landscape of
DNA-binding proteins without requiring additional wet-
lab observations. In our approach, the different peak
callers utilized allow us to gauge peak reproducibility in
a manner akin to utilizing replicates for in vitro findings
or matched sets.

Many publications utilize receiver operating char-
acteristic (ROC) curves when comparing peak caller
results. Essential for this approach is having a defined
‘ground-truth’ or ‘gold-standard’ to compare back to.
However, in light of numerous benchmarking studies
that show significant differences between peak callers,
no two peak callers interrogate the same peak calling
space owing to different algorithmic selectivity and
specificity characteristics. Furthermore, there is no gold-
standard dataset that has had every peak validated
using biochemically or in vitro means. We therefore
argue that comparative approaches such as ROC may
not give accurate results since there is no defined
ground-truth to compare back to, and, that each peak
caller reports a different set of peaks. As such, there
is no equivalent findings to compare between called
peak sets using this approach and it is for this reason
that the results presented herein do not contain such
comparisons. As presented though, we have opted to
instead utilize IDR’s. By utilizing the IDR framework,
we assess the reproducibility of each peak in the full
peak list (union peak set) based on its detectability
by each individual peak caller, and then sum the –
logIDR values to generate a peak reproducibility rate. In
this manner, concomitantly called peaks show greatest
reproducibility, which is an expected result, since a peak
has a greater likelihood of being a true-positive if it
can be called by multiple, independent peak callers.
In our testing of numerous datasets, we saw that peak
reproducibility by independent peak callers to be a more
telling of a peak validity than an attached statistic or
numerical value. Despite the differences between peak

callers however, they all report valid results that can
describe real biology and no peak caller is universally
superior over others. This is why ChIP-AP is implemented
in a way so as to allow easy sub-setting of the called
bound landscape, without needing reanalysis of data, to
best address the biological question posed by the investi-
gator. By utilizing the consensus peak set, binding motif
accuracy can be significantly increased by restricting
the motif search space to only the most confident peaks
that are called concomitantly by multiple peak callers
and have the most favorable IDRs. This can result in
significantly improved peak-motif percentages in many
circumstances as we observed. This can also improve
outcomes of downstream GO analysis wherein more
biologically significant terms can be reported. Fur-
thermore, by utilizing the consensus peak set, motif
enrichment results more readily report monomer
and homodimer binding sequences as compared to
heterodimer motif sequences. While all binding profiles
are valid biologically, when performing a ChIP-seq on
a specific transcription factor, like CEBPB, one would
argue that the optimal motif result is the monomer
and homodimer sequences of CEBPB alone, rather than
observing heterodimer binding sequences that also
contain co-factor sequences. This result should also be
readily identifiable without necessitating overlapping
multiple cell-line and co-factor datasets in order to
subtract out co-factor motif sequences. The consensus
peak set facilitates this from a single experimental
analysis.

We next looked at the robustness of the consensus
peak set by comparing results of two labs looking at the
same TFs in the same cell lines. Our findings showed
that while inter-lab variability had drastic effects on the
peaks called, there were peaks that could be recapitu-
lated between the two compared consensus peak sets,
with the smaller dataset residing near entirely in the
larger dataset. While in our investigations we looked
at two datasets from different labs, such comparisons
might be more suited, for example, when comparing
different antibody batches within a single lab to compare
the experimental findings of the same investigator, or
when comparing two modifications of the same experi-
mental protocol. In such scenarios, comparisons of either
the consensus or the union peak sets could be quite
insightful on the differences between sequencing runs
and would be more insightful and biologically relevant
than the results presented herein.

In stark contrast to the consensus peak set of a good
quality dataset, if the profiled dataset has unfavorable
sequencing characteristics such as poor enrichment, the
union peak set can potentially yield improved results
and allow users to marginally sacrifice specificity for a
potentially significant gain in sensitivity. Utilizing the
union peak set can potentially salvage an experiment
and still identify biologically valid findings, despite the
sub-optimal experimental efficiency. In between the two
extremes of the consensus and union peak sets, is a
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gradient of thresholds selectable depending on the bio-
logical question or the presence of additional supportive
data. The breadth of this gradient though is very much
sample dependent. As we showed in selected datasets,
changing peak caller parameters yielded negligible
to minor differences in the final resultant consensus
peak set. However, there will be cases where such
parameter modifications yield drastic changes to the
final result. Throughout our testing though, we noticed
that the default parameter values of the selected peak
callers are quite robust and are able to handle differing
sample characteristics with little to no modifications.
This allows users of ChIP-AP to focus on the biology
by interpreting the presented, comprehensive binding
landscape without needing to iteratively modify program
parameters through repeat cycles of data reanalysis.
While the results presented herein are for more well
characterized datasets with clearer findings, one can
foresee significant gains to be had in datasets for less well
characterized proteins and factors where less literature
evidence exists. In those circumstances, drawing on an
analytical approach that yields more refined results
would be of great benefit to investigators. ChIP-AP can
therefore provide both substantial improvements to peak
capturing and reliability from a single integrated and
comprehensive analysis.

In conclusion, ChIP-AP is a seamlessly integrated end-
to-end ChIP-seq analysis pipeline that is simple to use
yet tremendously customizable through the ST. ChIP-AP
is the first integrated end-to-end solution that utilizes
multiple peak callers for ChIP-seq analyses that is
accessible to both biologists, through the graphical inter-
faces, and bioinformaticians, through command-line
usage. Our findings support the notion that ChIP-AP can
help investigators better interrogate their experimental
findings delivering different types of analyses of great
value to those interested in transcriptional regulation in
a manner that current single-caller approaches cannot
provide in an accessible and easy to use manner.

Key Points

• ChIP-AP is the first integrated ChIP-seq pipeline
that performs all analysis steps (raw FASTQ to
final result) and seamlessly integrates four peak
callers.

• By utilizing multiple peak callers, ChIP-AP allows
users to analyse their data once, then apply filter-
ing thresholds to answer different experimental
questions, such as what are the best consensus
binding sites? Or what are all the possible gene
targets?

• ChIP-AP is targeted and tailored for biologists
as it incorporates easy to use graphical inter-
faces while still retaining command-line usage
for power users such as bioinformaticians.

• If selected, the union peak set (all called peaks by
all callers) can salvage lost/missed peaks in low
enrichment and high signal:noise datasets.

• If selected, the consensus peak set (concomi-
tantly called peaks) significantly improves called
peak confidence and improves peak-motif per-
centages.

Supplementary data
Supplementary data are available online at https://acade
mic.oup.com/bib.

Contributions
J.S. and M.A.B. designed the package. J.S. was the lead pro-
grammer. J.S. and M.A.B. tested, optimized and debugged
ChIP-AP. D.E.T. and K.J.Y. performed the SALL4 ChIP-seq.
J.S., D.G.T. and M.A.B. interpreted results and wrote the
manuscript. D.G.T. supervised the project. M.A.B. con-
ceived and directed the project.

Data availability
The sequencing and processed files for the SALL4 ChIP-
seq have been uploaded to GEO with accession number
GSE172355 (reviewer access token ilynoasgzperlgf). The
ChIP-seq data are available to view using UCSC by adding
the hub—http://137.132.97.62/public_hubs/mbassal/sa
ll4_chipseq_ucsc_hub/hub.txt. Peaks referenced in this
manuscript were called ‘sall4_merged_replicates’ over
‘control_merged_replicates.’ All other data utilized are
publicly available with associated accession numbers
provided.

Code availability
ChIP-AP source code is available through the GitHub
repository (https://github.com/JSuryatenggara/ChIP-AP).
All additional commands utilized are outlined in the
methods.
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