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Abstract: Glioblastoma (GBM) is one of the most aggressive cancers of the central nervous system.
Despite current advances in non-invasive imaging and the advent of novel therapeutic modalities,
patient survival remains very low. There is a critical need for the development of effective biomarkers
for GBM diagnosis and therapeutic monitoring. Extracellular vesicles (EVs) produced by GBM
tumors have been shown to play an important role in cellular communication and modulation of
the tumor microenvironment. As GBM-derived EVs contain specific “molecular signatures” of their
parental cells and are able to transmigrate across the blood–brain barrier into biofluids such as the
blood and cerebrospinal fluid (CSF), they are considered as a valuable source of potential diagnostic
biomarkers. Given the relatively harsh extracellular environment of blood and CSF, EVs have to
endure and adapt to different conditions. The ability of EVs to adjust and function depends on their
lipid bilayer, metabolic content and enzymes and transport proteins. The knowledge of EVs metabolic
characteristics and adaptability is essential for their utilization as diagnostic and therapeutic tools.
The main aim of this study was to determine the metabolome of small EVs or exosomes derived
from different GBM cells and compare to the metabolic profile of their parental cells using NMR
spectroscopy. In addition, a possible flux of metabolic processes in GBM-derived EVs was simulated
using constraint-based modeling from published proteomics information. Our results showed a
clear difference between the metabolic profiles of GBM cells, EVs and media. Machine learning
analysis of EV metabolomics, as well as flux simulation, supports the notion of active metabolism
within EVs, including enzymatic reactions and the transfer of metabolites through the EV membrane.
These results are discussed in the context of novel GBM diagnostics and therapeutic monitoring.

Keywords: extracellular vesicles; metabolomics; metabolism modeling; machine learning;
glioblastoma

1. Introduction

Glioblastoma (GBM) is the most aggressive and malignant grade IV astrocytoma of the central
nervous system. Currently, GBM diagnosis generally translates into a very poor prognosis with limited
treatment options and an average patient survival of only 14–16 months [1]. Diagnosis of GBM requires
magnetic resonance imaging (MRI) and validation by an invasive intracranial biopsy with treatment
modalities including surgical resection, radiation and chemotherapy, followed by serial MRI scans
of the brain in order to detect tumour cell infiltration into normal tissue. Apart from logistics and
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cost issues with serial MRI analysis, it is also very difficult and challenging to distinguish between
tumour- and treatment-related effects. Image analysis is becoming increasingly more automated
and accurate with the introduction of machine learning and particularly deep learning, reviewed
recently by Zaharchuk et al. [2]. However, even if these methodologies are adopted for image analysis,
there remain issues with MRI accessibility, cost and logistics. In spite of great advances in image
analysis of GBMs, there is no FDA-approved biomarker for GBM diagnosis. Therefore, there remains an
urgent need to develop non-invasive, reliable and easily measurable biomarkers for GBM diagnostics
and theranostics.

The use of extracellular vesicles (EVs) is gaining momentum and producing promising results in
the field of GBM diagnosis [3,4]. EVs are micro-sized (microvesicles, 100–1000 nm) and nano-sized
(exosomes, 30–150 nm) vesicles that are actively released by almost all cell types and comprise a highly
sophisticated intercellular communication system for exchanging biological information with adjacent
or distal cells [5,6]. While microvesicles are released from direct budding of the plasma membrane,
exosomes are produced via the multivesicular endosomal pathway and secreted into the extracellular
mileu when they fuse with the plasma membrane [7,8]. As part of exosome biogenesis, distinct messages
in the form of lipids, proteins, nucleic acids and metabolites are packaged into exosomes and delivered
into recipient cells, leading to the modulation of a range of cellular function [5–7].

Accumulating evidence has shown that cancers, including GBMs, release large amounts of EVs,
including exosomes, into the bloodstream, offering a new opportunity for non-invasive biomarker
discovery. Circulating EVs from glioblastomas have been shown to contain microRNA [9,10] and
DNA [11]. Several laboratories have published the proteomic profiles of GBM-derived EVs and
identified specific proteins highly enriched in EVs [12–15]. Mallawaarachy et al., have studied six GBM
cell lines and identified 844 proteins in EVs with 145 proteins common to all EVs [13]. Limited analyses
of the lipid composition of EVs showed a very different content to parental cells with major enrichment
in glycosphingolipids, sphingomyelin, cholesterol and phosphatidylserine [16]. To date, very little
attention has been paid to the study of metabolites in EVs with only a limited number of published
studies. Metabolites represent the intermediate or end products of cellular processes occurring
downstream of genomic or proteomic regulation and can provide specific and sensitive information,
making them a preferred diagnostic biomarker. For example, EVs derived from the urine of prostate
cancer patients have been shown to be enriched with several cytosolic metabolites [17]. Amongst these
enriched metabolites are the members of the nucleotide and spermidine pathways that can be linked to
several enzymes or transporters within EVs [17]. The levels of glucoronate, D-ribose 5-phosphate and
isobutyryl-L-carnitine were 2–26-fold lower in all pre-prostatectomy samples compared to the healthy
control and post-prostatectomy samples. Although these analyses provide interesting diagnostic leads,
the cohort sizes of these studies were very small, and therefore results need to be validated in a larger
cohort in order to advance to future clinical applications.

Since EVs contain protein, nucleic acids and lipid cargoes that relate to the parental cells,
they represent an extremely interesting diagnostic tool. Given the ability of EVs to transfer bioactive
material to specific cells across biological barriers, they are also being exploited as potential drug
delivery vessels. However, despite increasing efforts to determine the cargo and function of EVs,
understanding of multiple roles played by EVs in tumour progression is still lacking. The possibility
of using protein cargoes of EVs for diagnosing tumour subtypes, particularly for GBMs, has been
suggested [15,18], while at the same time metabolomics have been used to determine GBM subtypes
using metabolomics analysis of cells or media [19]. Metabolomics analysis of GBM-derived EVs can
provide easily measurable non-invasive biomarkers for diagnosis as well as GBM subtype determination.
At the same time, understanding the functional role of enzymes in EVs and the possibility of an active
metabolism within EVs is essential for both the utilization of EV metabolome as a diagnostic tool and
increasing understanding of the behavior and function of EVs in different environments.

Although there is a great deal of enthusiasm for the development of exosomes as reservoirs of
biomarkers and novel drug delivery platforms, our understanding of the basic biology of exosomes
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remains very limited, constrained by the lack of appropriate experimental methods for the efficient
separation and visualization of these nanoparticles. Computational simulations, combined with
experimental work on exosomes, can provide a window into the behavior of these important
nanovesicles in different conditions and the development of this novel diagnostic modality for
diagnosing GBM, therapeutic monitoring, and assessing treatment resistance.

2. Results and Discussion

In this study, three types of typical malignant glioblastoma (GBM) cells, namely LN18, A172 and
U118, were grown in complete medium (DMEM+10% FBS). Microscopic examination of these cultures
revealed epithelial-like cells growing as monolayers with a doubling time of ~48 h. Cultures of normal
human astrocytes (NHA) grew as a monolayer of large flat cells with a polygonal morphology with
a doubling time of ~72 h. In an attempt to identify the metabolic cargo of GBM-EVs and NHA-EVs,
GBM and NHA cells were grown for 72 h in complete medium-lacking serum. Both GBM and NHA
cells retained the fibroblast-like morphology with no change in cell viability, assessed by trypan blue
staining. The presence of CD9 is considered as a pan-exosomal marker and is shown to be expressed
by small EVs. Accordingly, Western blot analysis of proteins from cell lysates and EVs probed with
anti-CD9 antibody showed the presence of ~25 kDa band in cell lysates, with EVs showing a slightly
lower band (Figure 1).

Metabolites 2020, 10, x FOR PEER REVIEW  3 of 17 

 

EVs is essential for both the utilization of EV metabolome as a diagnostic tool and increasing 
understanding of the behavior and function of EVs in different environments. 

Although there is a great deal of enthusiasm for the development of exosomes as reservoirs of 
biomarkers and novel drug delivery platforms, our understanding of the basic biology of exosomes 
remains very limited, constrained by the lack of appropriate experimental methods for the efficient 
separation and visualization of these nanoparticles. Computational simulations, combined with 
experimental work on exosomes, can provide a window into the behavior of these important 
nanovesicles in different conditions and the development of this novel diagnostic modality for 
diagnosing GBM, therapeutic monitoring, and assessing treatment resistance. 

2. Results and Discussion 
In this study, three types of typical malignant glioblastoma (GBM) cells, namely LN18, A172 and 

U118, were grown in complete medium (DMEM+10% FBS). Microscopic examination of these cultures 
revealed epithelial-like cells growing as monolayers with a doubling time of ~48 h. Cultures of normal 
human astrocytes (NHA) grew as a monolayer of large flat cells with a polygonal morphology with a 
doubling time of ~72 h. In an attempt to identify the metabolic cargo of GBM-EVs and NHA-EVs, GBM 
and NHA cells were grown for 72 h in complete medium-lacking serum. Both GBM and NHA cells 
retained the fibroblast-like morphology with no change in cell viability, assessed by trypan blue staining. 
The presence of CD9 is considered as a pan-exosomal marker and is shown to be expressed by small EVs. 
Accordingly, Western blot analysis of proteins from cell lysates and EVs probed with anti-CD9 antibody 
showed the presence of ~25 kDa band in cell lysates, with EVs showing a slightly lower band (Figure 1). 

 

Figure 1. Cell and extracellular vesicles (EV) pellets were re-suspended in a Radioimmunoprecipitation 
assay (RIPA) buffer and subjected to SDS-PAGE and Western blot analysis. Samples were transferred to 
nitrocellulose membranes and probed with anti-CD9 antibody (1:2000, Abcam) followed by detection 
using goat anti-rabbit IgG-HRP conjugated secondary antibody. The signals were detected using an 
enhanced chemiluminescent (ECL) kit. 

Metabolites were extracted from GBM cells (LN18, A172 and U118) and normal human astrocytes 
(NHA), GBM and NHA-derived EVs, and their respective media, as described in Materials and methods. 
NMR metabolomics analysis was performed for hydrophilic extracts (see Figure 10 for experimental 
workflow and sample size). Three GBM cell lines have been studied extensively in the past and are 
known to possess number of different characteristics including Phosphatase and tensin homolog (PTEN); 
EGFRvIII mutant; and CDKN2A, outlined in Table 1 (obtained from [20,21] and www.expasy.org). 
  

Figure 1. Cell and extracellular vesicles (EV) pellets were re-suspended in a Radioimmunoprecipitation
assay (RIPA) buffer and subjected to SDS-PAGE and Western blot analysis. Samples were transferred to
nitrocellulose membranes and probed with anti-CD9 antibody (1:2000, Abcam) followed by detection
using goat anti-rabbit IgG-HRP conjugated secondary antibody. The signals were detected using an
enhanced chemiluminescent (ECL) kit.

Metabolites were extracted from GBM cells (LN18, A172 and U118) and normal human astrocytes
(NHA), GBM and NHA-derived EVs, and their respective media, as described in Materials and
methods. NMR metabolomics analysis was performed for hydrophilic extracts (see Figure 10 for
experimental workflow and sample size). Three GBM cell lines have been studied extensively in the
past and are known to possess number of different characteristics including Phosphatase and tensin
homolog (PTEN); EGFRvIII mutant; and CDKN2A, outlined in Table 1 (obtained from [20,21] and
www.expasy.org).

Table 1. Molecular classification of glioblastoma (GBM) cell lines according to several significant GBM
markers. Obtained from [20,21] and www.expasy.org.

Cell Line PTEN PTEN WB CDKN2A EGFR EGFRvIII ExPASy Disease Assignment

U118 N Yes Del HOMO G * No * Astrocytoma
LN18 N No Del HOMO N * No * Glioblastoma
A172 del HOMO * No Del HOMO G * No * Glioblastoma

* Del HOMO: homozygous deletion; N: No copy number change; No: EGFRvIII mutation not detected; G: Gain.

www.expasy.org
www.expasy.org
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One-dimensional (1D) 1D 1H Nuclear Overhauser Effect Spectroscopy (NOESY) NMR experiments
were carried out on all extracts and complete spectra are available upon request. 1D proton spectra
for all samples were processed and aligned using the Icoshift method [22], as described in Materials
and Methods (spectra are shown in Supplementary Figure S1). Principal component analysis (PCA)
of complete 1D spectra illustrated variances in the metabolic profiles across all samples based on
complete metabolic profiles in an untargeted, i.e., qualitative, sense (Figure 2A). In the PCA analysis of
all samples, Principal component 1 (PC1) showed separation between cells, media and EV metabolic
profiles, as well as metabolic profiles of GBM and NHA cells from all sample sources. Principal
component 2 (PC2) revealed major differences between the metabolic profiles of cells and media on
one side and EVs of GBM cell lines on the other side, with the additional separation of EVs obtained
from U118 cells as one group and LN18 and A172 cells as another. Interestingly, PC2 of the cell and
EV spectra shows separation between GBM subtypes with clear cell type separation provided by EV
metabolic profiles.
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Figure 2. Analysis of sample differences from 1D Nuclear Overhauser Effect Spectroscopy (NOESY
1D) 1H NMR spectra of cells, media and EVs for glioblastoma (GBM) cell lines (LN18, A172 and
U118) and normal human astrocytes (NHA). (A) Principal component analysis (PCA); (B) t-distributed
stochastic neighbor embedding (t-SNE). Grouping of sample source (cells, EV, media) as well as cell
type is indicated.

An alternative analysis approach on complete spectra—T-distributed stochastic
neighbor-embedding (t-SNE) [23] (Figure 2B) showed similar sample separation. T-SNE has
been shown to be particularly suitable for large datasets, where it retains the local structure of the data
while also revealing some important global structures.

T-SNE (Figure 2B) clearly shows separation by cell type and sample source with the separation of
U118 EV spectra from LN18 and A172 EV results. Similarly to PCA, t-SNE based on EV metabolome
shows the separation of U118 from LN18 and A172 cells more clearly then in either cell or media
analysis. The difference between cell types based on profiles measured in cell, media and EV is
presented by PCA in Supplementary Figure S2. These results further present a major difference
between metabolic profiles of media, cells and EVs in GBM lines and a smaller, relative separation
between three sample groups in normal, NHA cell line. Metabolic profiles of EVs allow separation
in PC1 of U118 from NHA and the other two GBM lines (A172 and LN18). The observed difference
between GBM cell lines is in agreement with a previously published analysis of apoptosis in GBM cell
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lines clearly showing a difference between A172 and U118 cell lines (LN18 was not included in the
previous study) [24].

In order to determine specific metabolic differences between cell line and sample type groups,
we have performed assignment and quantification of relative metabolite concentrations using the
methodology described previously [19,25] and briefly outlined in Materials and Methods. The resulting
relative concentrations for the 50 identified metabolites following scaling to a mean of zero and
standard deviation of 1 across metabolites and samples are graphically represented in a heat plot
(Figure 3) following the hierarchical clustering of metabolites and samples for easier visualization.
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Figure 3. Relative concentrations of metabolites determined and quantified from NMR spectra.
Metabolites are ordered using hierarchical cluster analysis across all samples. Values are scaled to mean
of 0 and standard deviation of 1 across all samples and metabolites. AC—Adenosylhomocysteine; 2HG
—2-hydroxyglutarate; GSSG—Glutathione (oxidized); GSH—Glutathione (reduced); G6P—Glucose
6-phosphate; PC—Phosphorylcholine.

Figure 3 illustrates the variability in metabolic profiles across cell lines and sample sources as well
as biological replicates. Similarities in relative concentration change between cells, media and EVs in
three GBM cell lines is apparent with the clustering of all GBM cells, media and EVs and a separate
cluster of NHA samples, similar to the results of the PCA and t-SNE of spectra (Figure 2). For the
majority of metabolites, there is a larger similarity between EV and media then EVs and cells.

The determination of the metabolites with the most significant concentration difference between
cells and EVs has been performed with ANOVA feature selection, provided in Orange [26]. ANOVA
ranks features based on the difference between average values in different classes. The resulting
metabolites with an ANOVA rank of over 5 are shown in Figure 4.



Metabolites 2020, 10, 88 6 of 17

Metabolites 2020, 10, x FOR PEER REVIEW  6 of 17 

 

The determination of the metabolites with the most significant concentration difference between 
cells and EVs has been performed with ANOVA feature selection, provided in Orange [26]. ANOVA 
ranks features based on the difference between average values in different classes. The resulting 
metabolites with an ANOVA rank of over 5 are shown in Figure 4. 

 

Figure 4. ANOVA selection of the most different metabolites between cell and EV extracts for GBM cell 
lines. Shown are metabolites with ANOVA > 5. 

In all three GBM cell lines, the level of methionine is lower in EVs than in cells. With the known 
dependence of GBM cells on methionine [27], it can be expected that methionine will be retained in cells. 
In fact, in all cell lines explored in this work, methionine levels are significantly higher in cells than in 
EVs or media. As one of the essential amino acids, methionine has to be obtained from the media and 
has a major role as a precursor of other sulfur-containing amino acids (e.g., cysteine) and their derivatives 
(e.g., glutathione), which are all essential for cellular function.  

Unlike U118 cells, A172 and LN18 lines show a major concentration increase in glycerol, tryptophan, 
carnitine and oxidized glutathione (GSSG) in EVs relative to cells. Glycerol is a by-product and 
component of several metabolic pathways such as glycolysis, galactose metabolism, and a precursor for 
glycerolipid metabolism as well as a necessary metabolite for the formation of triglycerides and 
subsequent fatty acid biosynthesis, a process known to be highly activated, particularly in more 
aggressive GBMs [28]. Carnitine, once again, is over-concentrated in the EVs of LN18 and A172 and is 
also involved in fatty acid metabolism [29]. Furthermore, carnitine is a substrate for a major factor OCTN2 
(SLC22A5) in energy metabolism, recently shown to be overexpressed in GBMs, particularly in more 
aggressive subtypes of GBM [30]. Tryptophan, together with arginine, prostaglandin and adenosine, has 
recently emerged as an immuno-metabolic node in some subtypes of GBM [31]. Therefore, the observed 
high concentration of tryptophan in EVs of A172 and LN18 cells could play a role in immune response. 
Finally, glutathione level in GBM cells has been strongly linked with drug resistance and its concentration 
is different between different GBM cell lines [32]. The LN18 line has been previously shown to over-
express GSH-related metabolic enzymes [33] with a high antioxidant capacity. In our analysis, the level 
of reduced GSH is higher in A172 and LN18 cells than in corresponding EVs, while GSSH is over-

Figure 4. ANOVA selection of the most different metabolites between cell and EV extracts for GBM cell
lines. Shown are metabolites with ANOVA > 5.

In all three GBM cell lines, the level of methionine is lower in EVs than in cells. With the known
dependence of GBM cells on methionine [27], it can be expected that methionine will be retained in
cells. In fact, in all cell lines explored in this work, methionine levels are significantly higher in cells
than in EVs or media. As one of the essential amino acids, methionine has to be obtained from the
media and has a major role as a precursor of other sulfur-containing amino acids (e.g., cysteine) and
their derivatives (e.g., glutathione), which are all essential for cellular function.

Unlike U118 cells, A172 and LN18 lines show a major concentration increase in glycerol, tryptophan,
carnitine and oxidized glutathione (GSSG) in EVs relative to cells. Glycerol is a by-product and
component of several metabolic pathways such as glycolysis, galactose metabolism, and a precursor
for glycerolipid metabolism as well as a necessary metabolite for the formation of triglycerides and
subsequent fatty acid biosynthesis, a process known to be highly activated, particularly in more
aggressive GBMs [28]. Carnitine, once again, is over-concentrated in the EVs of LN18 and A172 and is
also involved in fatty acid metabolism [29]. Furthermore, carnitine is a substrate for a major factor
OCTN2 (SLC22A5) in energy metabolism, recently shown to be overexpressed in GBMs, particularly
in more aggressive subtypes of GBM [30]. Tryptophan, together with arginine, prostaglandin and
adenosine, has recently emerged as an immuno-metabolic node in some subtypes of GBM [31].
Therefore, the observed high concentration of tryptophan in EVs of A172 and LN18 cells could play
a role in immune response. Finally, glutathione level in GBM cells has been strongly linked with
drug resistance and its concentration is different between different GBM cell lines [32]. The LN18
line has been previously shown to over-express GSH-related metabolic enzymes [33] with a high
antioxidant capacity. In our analysis, the level of reduced GSH is higher in A172 and LN18 cells than
in corresponding EVs, while GSSH is over-concentrated in EVs, possibly as a way to remove the
oxidized form of glutathione from the cells, thereby affecting the GSH/GSSH ratio. The reduction of
glutathione is a major antioxidant system in cells, that has been shown to play an important role in
tumor progression and treatment resistance [34]. The presence of gamma–glutamyltransferase activity
in serum exosomes is an important biomarker for prostate cancer [35]. Importantly, EVs originating
from LN18 cells have a higher concentration of several amino acids (glycine, threonine), as well as
homoserine which is an intermediate in the biosynthesis of methionine, and threonine.

Additional differences between cell lines in both cells’ and EVs’ metabolic profiles are shown in
Figure 5. It is interesting to observe that GBMs and normal astrocytes (NHA), as well as different
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GBM cell lines, show higher significant metabolite differences in the EVs than in the cells, pointing to
the great potential for EVs as diagnostic vesicles, keeping in mind the need to determine appropriate
biomarkers for EV-based diagnostics as there is a significant difference between the metabolite profiles
of EVs and their parental cells.
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Major metabolic differences in EVs, cells and Media of U118 and LN18 cells were determined
using ANOVA running in Orange and shown in Figure 6A. Metabolomic measurements of EVs and
media also allowed the analysis of correlation differences between different cell sources for metabolites.
Figure 6B shows, as a heat plots, differences between correlation coefficients between metabolite
concentrations in EVs and in media for U118 and LN18 cells, where red indicates a higher correlation
in U118 and green, a higher correlation in LN18 cells.

Protein measurements for EV-derived from U118 and LN18 cell lines have been previously
published and made available by Lane et al. [15] with an extensive analysis of differences between LN18
and U118 cell lines and their EVs. Metabolic pathways that include a significant number of metabolites
found to have significantly different concentrations in LN18 and U118 EVs (Figure 6), and proteins
found to be present in LN18 but not U118 [15], are presented in Figure 7. The determination of
statistically significant pathway enrichment was done using Metaboanalyst [36]. A significant overlap
in pathways enriched with metabolic products and enzymes suggests a possibility for the enzymatic
and metabolic functionality of EVs in the media.
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Figure 6. (A) ANOVA analysis of major metabolic differences between EVs, media and cells for LN18
and U118 lines. EVs show the biggest difference between two cell lines with the number of metabolites
having an ANOVA value over 5. For cells and media, differences are much more subtle, with only a
small number of metabolite showing an ANOVA value over 3. (B) The difference between correlation
coefficients of metabolites in EV and media of U118 and LN18 cells, where a positive value (red)
indicates a higher correlation in U118 cell lines and a negative value (green) shows a higher correlation
in LN18 cells.

Further analysis of possible fluxes through metabolic reactions in enzymes was explored using
Genome-scale metabolic modeling (GEM). GEM is one of the major system level modeling approaches
describing a whole set of stoichiometry-based, mass-balanced metabolic reactions in an organism.
GEM allows the prediction of metabolic flux values for an entire set of metabolic reactions using
optimization techniques. Additionally, omics data can be used to calculate optimal flux rate through
reactions in the system [37]. For human cells, the Recon 2 model is the most comprehensive metabolic
network model, and currently includes 3288 genes, and 13,543 metabolic reactions involving 4140
unique metabolites [38]. Reactions possible in the two sets of EVs based on the previously published
proteomics data [15] have been mapped onto Recon 3D metabolic network [38] in order to outline a
subset of metabolic reactions possible in exosomes. Thus, based on proteomics data, possible metabolic
reactions in EVs from U118 and LN18 cell lines are presented visually on the Recon metabolic network
(Supplementary Figure S3). These include the transport of metabolites across the EV membrane, as well
as the number of metabolic reactions involving fatty acids, amino acids, sugars, etc. The mapping of
possible pathways on the human cell metabolism network Recon (shown in Supplementary Figure S3)
includes compartmentalized metabolic processes. As there are no known compartments within EVs,
the reaction flow would not be hampered by intracellular membrane metabolite localization.
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LN18 but not EVs from U118 cells and metabolites showing different concentration between these two
groups of EVs (Figure 6).

The differences in the possible reactions based on protein content in LN18 and U118 cells are
apparent, with major differences in fatty acid metabolism. Carnitine and glycerol are by-products of
a number of fatty acid oxidation reactions and are both significantly over-concentrated in EVs from
LN18 cells. Additionally, different protein content is apparent in the proteins involved in the urea
cycle. Further differences are observed in the glycine metabolism, with the reaction involved in the
production of glycerol from galactosyl–glycerol only possible in LN18 EVs.

The possible enzymatic reactions in EVs originating from U118 and LN18 cells can be
further explored by optimizing reaction fluxes using algorithms available within COBRA for the
reconstruction of context-specific networks from omics data, such as GIMME [39]. Flux optimization
provides hypothetical fluxes through all Recon 3D reactions based on the information about the
measured proteins.

The GIMME method minimizes the utilization of low expression reactions while keeping the
model’s objective (here set to biomass maintenance) above some threshold value. In this application,
the expression levels for proteins that were not observed in the proteomics measurement of EVs were
set to 0 and observed protein levels were set to 100, having a boolean system of protein expression and
optimization method searches for the flux model with the minimal use of low expression reactions.

The pathway, represented by the largest number of significantly differently concentrated metabolite
and proteins found in EVs from LN18 but not in U118 EVs, is the citrate (TCA) cycle (Figure 7).
The GIMME optimization of flux in LN18 and U118 EVs based on the protein presence for reactions
grouped within TCA is shown in Figure 8. Based on the flux prediction, U118 cells have larger flux
towards the production of succinate (succ) and no reactions for its further processing. In LN18 EVs,
there is a significant flux towards malate (mal) from succinate. Once again, malate is seen as highly
over-concentrated in A172 and, to a lesser extent, LN18 EVs relative to U118 EVs.

Similarly, fluxes in EVs related to the glutathione metabolism pathway have a different, optimal
route in EVs derived from U118 than LN18 cells in the production of oxidized glutathione (GSH) with a
much larger flux in LN18-derived EVs for GSSG production (Figure 9). At the same time, fluxes in the
synthesis of 5-oxoproline are higher in U118 cells. This simulation-based observation is in agreement
with the measured metabolic profiles showing significantly higher concentrations of GSSG in LN18
EVs and 5-oxoproline in U118 EVs as well as in media (Figure 10).
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Figure 8. Part of the TCA-cycle-related metabolic processes. GIMME calculated fluxes in LN18 and
U118 EVs made possible based on previously determined proteins in these vesicles. GIMME analysis
provides a flux model with a minimized use of low-expression reactions while maximizing the objective
reaction, in this case biomass preservation. Reactions are shown using the modeldraw.rxns routine in
COBRA running under Matlab. Excluded from the representation are the cofactors including CO2, H2O,
ATP, ADP, NAD, NADH, NADPH, NADP, H, Pi. In the figure, rectangles represent reactions with rates
of fluxes in parentheses; ellipses represent metabolites; the red ellipses represent dead-end metabolites;
gray arrows represent zero-rate fluxes; green arrows represent positive-rate (forward) fluxes; and blue
arrows represent negative-rate (backward) fluxes. Reactions and metabolites notation is based on the
Recon 3 metabolic network and is: akg—oxoglutarate (a-ketoglutarate), icit—isocitrate, cit—citrate,
succ—succinate, mal—malate, fum—fumarate, coa—coenzyme A; gtp—guanosine triphosphate;
fadh2—Flavin adenine dinucleotide.
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Figure 9. Part of the Glutathione metabolism flux GIMME optimization of flux through remaining
Recon 3 reactions based on the present proteins in EVs. Reactions are shown using modeldraw.rxns
routine in COBRA running under Matlab. Excluded from the representation are the cofactors including
CO2, H2O, ATP, ADP, NAD, NADH, NADPH, NADP, H, Pi. Rectangles represent reactions with
rates of fluxes in parentheses; the red rectangles represent reactions with only one metabolite; ellipses
represent metabolites; the red ellipses represent dead-end metabolites; gray arrows represent zero-rate
fluxes; green arrows represent positive-rate (forward) fluxes; and blue arrows represent negative-rate
(backward) fluxes. Reactions and metabolites notation is based on the Recon 3 metabolic network and is:
gthrd—reduced glutathione; gthox—oxidized glutathione; glu—glutamine; gly—glycine; ala—alanine;
cys—cysteine; 5oxpro—5-oxoprolinate; cgly—carbamoyl glycine.
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Figure 10. Experimental workflow of sample preparation for cells, media and EV analysis by NMR
spectroscopy. Metabolomics, as well as computational flux simulation, allowed the investigation of
possibly active pathways in EVs. Shown in red are the number of biological replicates measured for
each cell and sample type.

3. Materials and Methods

3.1. Cell Lines and Cell Culture

In this study, we used three different human human glioma cell lines: U118 (classified as grade
IV as of 2007, glioblastoma; astrocytoma), LN-18 (classified as grade IV, glioblastoma; glioma) and
A172 (classified as glioblastoma) from ATCC (diseases classification provided by ATCC), isolated
small extracellular vesicles (EVs), and analyzed their metabolite content using NMR spectroscopy.
GBM cells were grown in DMEM containing high glucose (Gibco laboratories, Gaithersburg, MD,
USA) and supplemented with 10% Fetal Bovine Serum (FBS, Hyclone). Normal human astrocytes
(NHA, Lonza, Walkersville, MD, USA) were used as normal counterparts and were grown in
astrocyte medium-containing supplements (Allcells) and 5% FBS. All cells were grown in a humidified
atmosphere of 5% CO2/95% O2 at 37 ◦C. The production of extracellular vesicles was done in serum-free
conditions since FBS contains cow exosomes. Typically, cells were grown in T-175 flasks, washed 3x
with PBS and cultured in 25 mL of serum-free medium for 72 h for accumulation of a sufficient number
of EVs.

3.2. Collection of Cells, Medium and Small Extracellular Vesicles

Small EVs or exosomes were isolated using a modified differential ultracentrifugation protocol
that eliminates cell debris and microvesicles before pelleting small EVs or exosome-like vesicles [40,41].
Briefly, the media from 2–3 flasks from each GBM cell type and NHA cells were pooled and centrifuged
at 700× g for 10 min at 4 ◦C to remove any floating cells, followed by centrifugation at 2400× g for 10 min
at 4 ◦C. Cells were harvested by scraping in 10 mL PBS and pelleted by centrifugation at 300× g for
5 min at 4 ◦C. The supernatants were filtered through 0.22 µm filters using the 50 mL vacuum filtration
system (Steriflip, Millipore). At this point, an aliquot of 0.5 mL medium from each cell line was frozen
at −80 ◦C for metabolite extraction. The clarified conditioned media were transferred to ultracentrifuge
tubes and centrifuged at 100,000× g for 70 min at 4 ◦C in Optima XPN-100 ultracentrifuge with 60 Ti
rotor (Beckman Coulter, Mississauga, ON, Canada). The supernatants were decanted and the pellets
containing small EVs were resuspended in 1 mL PBS, transferred to new ultracentrifuge tubes and
centrifuged again at 100,000× g for 70 min at 4 ◦C in Optima Max-XP Ultracentrifuge (Beckman Coulter,
Mississauga, ON, Canada). The final pellet was collected for metabolite and protein extractions.
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3.3. Western Blots

Cells and exosomes were lysed in Radioimmunoprecipitation assay (RIPA) buffer (Sigma-Aldrich,
Oakville, ON. Canada) and quantified using the Bradford assay. Proteins were extracted by
boiling for 5–10 min in Laemmli buffer (Biorad, Hercules, CA, USA) containing freshly added
beta-mercaptoethanol (Sigma-Aldrich, Oakville, ON, Canada). Protein extracts were subjected to
SDS-PAGE using Mini-PROTEAN precast gel 4%-15% (Biorad labs, Mississauga, ON, Canada),
stained with Ponceau S and transferred to nitrocellulose membranes (0.45 µm, Amersham Protran).
Membranes were blocked in 5% skim milk in TBST buffer (10 mM Tris, pH 7.4, 150 mM NaCl, 0.02%
Tween-20) for 1 h followed by incubation with rabbit monoclonal anti-CD9 antibody diluted 1:2000 in
the same buffer (Abcam, Toronto, ON, Canada) and incubated overnight at 4 ◦C. Membranes were
washed 3x in TBST and then incubated with goat anti-rabbit-HRP antibody diluted at 1:5000 in TBST
(Sigma-Aldrich, Oakville, ON, Canada) for 1 h at room temperature. Membranes were washed 3x with
TBST, and then HRP signal was detected using Enhanced Chemiluminescent (ECL) reagent kit (Boster,
Pleasanton, CA, USA).

3.4. Metabolite Extraction

Metabolites were extracted from GBM and NHA parental cells, media and EVs. Briefly, cell
pellets were washed again with 10 mL PBS to remove any residual media and centrifuged at 300×
g for 5 min at 4 ◦C. Cell pellets were held on ice for 5 min to slow down metabolism before being
resuspended in 1 mL cold, chilled at −20 ◦C acetonitrile/water (1:1 v/v) mixture, which further quenches
metabolism and lyses cells. Cell suspensions were then centrifuged at 12,000× g for 10 min at 4 ◦C.
The supernatants were dried using a SpeedVac (Freeze dryer FTS Systems, FD-3-85A-MP) overnight at
−80 ◦C. A similar protocol was followed for the extraction of intra-exosomal metabolites, except pellets
were resuspended in a 0.2 mL cold acetonitrile/water mixture.

3.5. NMR Sample Preparation

For NMR sample preparation, D2O and Standard solution (NMR grade) was added for a total
volume of 160 µL. Standard solution was added at 10% total sample and consisted of 50 mM sodium
phosphate (pH 7.0), 0.5 mM sodium azide and 0.1% DSS. For dry samples, 160 µL D2O was mixed with
16 µL standard, and for liquid samples 100 µL medium was mixed with 60 µL D2O and 16 µL standard.
Using gel loading tips, ~10 µL of sample was loaded into 3 mm Wilmad NMR tubes (Sigma-Aldrich,
Oakville, ON, Canada) and subjected to NMR analysis.

3.6. NMR Experimentation, Data Processing and Quantification

All 1H NMR spectroscopy measurements were performed on a Bruker 600 MHz spectrometer at
298 K. One dimensional (1D) 1H (proton) NMR spectra were measured for all samples using 1D 1H
with water suppression sequence (NOESY 1D). All spectra were processed using MestReNova 9.1.0
software (Mestrelab Research Solutions). Preprocessing for spectra included: exponential apodization
(exp 1); global phase correction, as well as manual phase correction and baseline polynomial correction
when needed; and normalization using the reference peak. Spectral regions from −0.5–10 ppm were
included in the normalization and analysis.

The assignment of peaks was performed using Madison Metabolomics Consortium Database
and tools [42], HMDB [43] as well as NMR spectral peaks search tool MetaboHunter [25] and the
literature assignments for metabolites previously observed in related samples. A total of 50 metabolites
were included in the analyses. Spectra for metabolites that were used in the quantification of 1D 1H
spectra were obtained from the Human Metabolomics Database (www.hmdb.ca) or Biological Magnetic
Resonance Databank (www.bmrb.wisc.edu) and processed using MestReNova 9.1.0 software. Spectral
preprocessing for standards spectra included: exponential apodization (exp 1); global phase correction;
and normalization using the total spectral area. Spectral regions from −0.5–10 ppm were included in

www.hmdb.ca
www.bmrb.wisc.edu
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the normalization and analysis. Prior to quantification analysis, the standard spectra were aligned to
the reference peak (DSS) using peak alignment by fast Fourier transform cross-correlation [44].

An automated method for quantification, using multivariable linear regression that finds the
best fit of spectra for individual metabolites from database to the measured 1D sample spectra, was
developed previously [45] and utilized in this study to determine relative metabolite concentrations.
The partial least square regression analysis result was used as the starting point and the model was
constrained to concentrations greater than or equal to zero. The deconvolution of spectra of mixtures,
such as in metabolomics, with many strongly overlapping lines, possibly with an unknown number
of lines and atomic groups, each with a different line width, is extremely difficult, and thus it is
important to determine an optimal solver for this problem. The best result, i.e., the model with
a minimal error was obtained with Levenberg–Marquardt curve fitting and this method was used for
the quantification of metabolic data used in further analysis. Multivariate linear regression analysis
was performed using lsqcurvefit running under Matlab. Metabolite concentrations across samples
were determined using the same standard spectra that were normalized to a total intensity equal to
one and sample spectra normalized to the same reference concentration. The resulting concentrations,
therefore, provide relative metabolite measures in different samples using the same standard scale,
allowing for comparison between samples without requiring absolute metabolite concentrations.

3.7. Data Analysis and Metabolism Modeling

Pre-processing, including data organization, the removal of undesired areas, normalization, as
well as data presentation, was performed with Matlab R2019a (Mathworks). Minor adjustments
in peak positions (alignment) between different samples were performed using Icoshift [22].
Principal component analysis (PCA), performed in Matlab using routine pca and ppca for probabilistic
principal component analysis [46], was performed on sample spectra as well as relative metabolite
concentration data. T-distributed stochastic neighbor embedding (t-SNE) [23] was performed in Matlab
using function tsne. The selection of metabolic panels with statistically significant difference between
groups was done using Orange, a component-based data-mining software running under Anaconda
Python Data Science Platform (https://anaconda.org/; https://orange.biolab.si/) were used for feature
selection. Specifically, feature selection was done using Logistic Ridge Regression performing L2
regularization as well as ANOVA ranking, as presented in Orange.

The modeling of metabolic flux was performed using COBRA running under Matlab (https:
//opencobra.github.io/cobratoolbox/stable/) with the reconstruction of context-specific networks from
omics data performed using GIMME [32]. The GIMME method minimizes the utilization of low
expression reactions while keeping the model’s objective (here set to biomass maintenance) above some
threshold value. Recon3D [38], currently the most comprehensive, manually curated, genome-scale
reconstruction of human metabolism, was downloaded from http://bigg.ucsd.edu/models/Recon3D
and used for COBRA modeling. Recon3D includes 2248 open reading frames, 5835 metabolites, as well
as 10,600 biochemical and transport reactions. The model is prepared for analysis using a procedure
previously established by R. Fleming and provided at GITHUB [47]. Proteins present in EVs originating
from U118 and LN18 were obtained from [15] and included for LN18 EVs 152 and U118 EVs 109 genes
present in Recon3D model. Specific reactions for these genes were determined using mapGeneToRxn
routine running under COBRA in Matlab, where the value for the measured genes was set to 100 and
for genes that were not observed in [15] was set to zero. These reaction lists were used for GIMME
optimization using a gurobi solver providing a model with minimal utilization of reactions with low
expression value (here 0) and maximization of the use of high expression reactions (here 100) while
maximizing flux in the biomass reaction. The aim of this model is to explore differences between
possible metabolic processes in EVs originating from LN18 and U118 based on published proteomics
information. Further experimental flux analysis and proteomics is required for the development of an
actual model of EV metabolism.

https://anaconda.org/
https://orange.biolab.si/
https://opencobra.github.io/cobratoolbox/stable/
https://opencobra.github.io/cobratoolbox/stable/
http://bigg.ucsd.edu/models/Recon3D
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4. Conclusions

The study of metabolomics as well as the molecular profiles of EVs are rapidly growing fields.
Our metabolomics analysis of GBM cells, EVs and media confirms previously observed metabolic
differences between GBM cells when compared to normal cells, with further differences in metabolic
profiles in cells and EVs of GBM subtypes. The metabolic profiles of U118 cells were different from A172
and LN18 cell lines. Interestingly, metabolic contents of U118 EVs is much more significantly distinct
from EVs of A172 and LN18. Major differences between U118 EVs and EVs from A172 and LN18
cells were observed both in qualitative PCA and t-SNE analysis as well as in the statistical analysis of
quantified metabolic data. Additionally, in A172 and LN18, the metabolic profiles of EVs and cells
showed a significant difference in the number of metabolites. In order to explore the possibility that
the observed metabolic profile differences result from an active metabolism in EVs, we have used
previously published proteomics data for EVs of LN18 and U118 cell lines [13] as representatives
of these two groups, then simulated possible flux through the metabolic network in the interior of
EVs. The results obtained from the flux simulations agree overall with the experimentally observed
metabolic differences between EVs from different sources, leading us to hypothesize that EVs can have
a functional metabolism, thereby changing their metabolic content. The possibility of their actively
changing metabolome has major relevance for their application as diagnostic carriers. The biomarker
panels or diagnostic models for EVs would have to be determined in the context of media (e.g., blood or
CSF) and sample collection procedures in order to have appropriate biomarker panels in a metabolically
active system. Furthermore, the utilization of EV-based metabolites as biomarkers for GBM requires
further analysis in patient samples. Further experimental and computational analysis is underway
in order to develop a detailed model of EV metabolism and to determine whether changes in their
metabolic cargoes can have any significant role in GBM progression.

Supplementary Materials: The following are available online at http://www.mdpi.com/2218-1989/10/3/88/s1.
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