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Breast cancer is the most common cancer among women worldwide with about half a million cases reported each year. Mammary
thermography can offer early diagnosis at low cost if adequate thermographic images of the breasts are taken.-e identification of
breast cancer in an automated way can accelerate many tasks and applications of pathology. -is can help complement diagnosis.
-e aim of this work is to develop a system that automatically captures thermographic images of breast and classifies them as
normal and abnormal (without cancer and with cancer). -is paper focuses on a segmentation method based on a combination of
the curvature function k and the gradient vector flow, and for classification, we proposed a convolutional neural network (CNN)
using the segmented breast. -e aim of this paper is to compare CNN results with other classification techniques. -us, every
breast is characterized by its shape, colour, and texture, as well as left or right breast.-ese data were used for training as well as to
compare the performance of CNN with three classification techniques: tree random forest (TRF), multilayer perceptron (MLP),
and Bayes network (BN). CNN presents better results than TRF, MLP, and BN.

1. Introduction

Breast cancer is the most common cancer worldwide among
women; approximately 2 in 5 women worldwide will develop
breast cancer during their lives [1]. Since 2013, breast cancer
has been the leading cause of death in women [2].-eWorld
Health Organization (WHO) estimates that by the year 2030,
an estimated 27 million new cases can be expected [3]. Early
detection of this disease plays an important role in reducing
the mortality rate [4]; if the tumor is detected before
reaching a size of 10mm, the patient has an 85% chance of
complete remission [5]. -ere are currently many different
techniques to diagnose this pathology (mammography, ul-
trasound, magnetic resonance, biopsies, and more recently
thermography) [6]. Mammography is currently the most
common technique, but it uses ionizing radiation and is

painful due to breast compression [5]. It detects cancer 8 to
10 years later than thermography [4].

In recent years, there has been a growing interest in the
analysis of thermography images [7–10] to detect breast
cancer. -ese techniques can increase productivity in the
analysis of breast cancer and reduce detection errors [11].
Next, we summarize the principal computer vision works on
the subject in recent years, segmentation and classification.

-e first task in a computer vision system is segmen-
tation. -ere are various examples of segmentation work
[2, 7, 12–19]. In one study, the software package -er-
moMED was used to investigate the ability of thermography
to detect multicentric or multifocal breast carcinomas in a
preoperative setting [12]. Breast thermogram images have
been segmented using a projection profile approach and by
asymmetry analysis of the left and right breasts to detect
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cancer [13]. Segmentation has also been done using by a
Gaussian mixture model. -e Gaussian mixture model
parameters are estimated using the expectation-maximiza-
tion algorithm [14]. Whole-body PET-CTand thermograms
were compared in diagnosing breast cancer with breast
biopsy as a standard [15].

A novel extended hidden Markov model (EHMM) was
presented for optimized segmentation of breast thermo-
grams and was compared with other segmentation tech-
niques [7]. A blood vessel segmentation method was
proposed using three enhanced images to detect possible
vessel regions based on their intensity and shape [16]. A
segmentation technique was proposed for thermographic
images, which considers the spatial information of the pixel
contained in the image [2].

Important advances in the field have been achieved in
[17–19]. In one study, the tumor region was found by ap-
plying fuzzy c-means for segmentation of the hottest regions
in abnormal breasts [17]. -ree image segmentation
methods, k-means, fuzzy c-means, and level set, were
compared in [18], the level set being a more accurate ap-
proach. In [19], a novel lazy snapping method was presented
for detecting hot or cold regions in medical thermographic
images to segment different diseases in the breast, foot,
knees, lower back, and abdomen.

Next, we review related papers on thermographic breast
image classification [1, 3, 4, 6, 20–30], which is the topic of
our work. Two different kinds of neural network classifiers
have been compared: a feedforward neural network and a
radial basis function classifier [20]. Breast cancer analysis
was performed using a series of statistical features extracted
from the thermograms coupled with a fuzzy rule-based
classification system for diagnosis [21]. Fractal analysis of
breast thermal images was done to develop an algorithm
[22]. -e effectiveness of bispectral invariant features in the
diagnostic classification of breast thermal images was
evaluated, and a phase-only variant of these features was
proposed. Classification was done using AdaBoost [4].

In another study [6], the diagnostic power of ther-
mography in breast cancer was evaluated using 16 qualitative
and explanatory variables and hill climbing classifiers.
Araújo et al. proposed a three-stage feature extraction ap-
proach using Fisher’s criterion and minimum distance
classifiers (Euclidean distance) [3]. Rotational thermography
techniques were evaluated, and texture features were
extracted in the spatial domain and fed to a support vector
machine (SVM) for automatic classification [23]. A system
was presented based on 20 gray level co-occurrence matrices
with feature extraction and classification by the k-nearest
neighbors method [24]. An expert system was developed
based on the measured temperature gradients (ΔT) in
thermograms and classified them as normal, abnormal
(ΔT> 2.5, <3), and potentially having breast cancer (ΔT≥ 3)
[25].

A computer-aided detection (CAD) system was pro-
posed with a segmentation approach based on both neu-
trosophic sets and the optimized fast fuzzy c-mean method
[26]. Statistical, texture, and energy features were extracted
and then classified by the SVM. Another method extracted

statistical features and fed them to a nearest-neighbors
classifier [27]. Hot spots and warm spots have also been
detected in each view and region of interest, and features
were extracted from them to feed SVMs and random forests
[28]. A breast cancer detection algorithm was proposed
based on texture feature extraction, a Markov random field,
and a modified local binary pattern. Classification was done
by a decision-level fusion algorithm by means of a hidden
Markov model [29]. An asymmetry approach was proposed
using the detection of any type of abnormalities (MC,
masses, etc.) and bilateral subtraction [30]. Another method
extracts 20 characteristics of the relationship of temperatures
and classifies them by sequential minimal optimization [1].
Basically, our research is one of the next logical steps in
progressing thermography in the breast cancer classification
field by using convolutional neural networks and also
presents a novel method that has not been used for the
segmentation of breasts. CNNs have recently been used in
several applications, including hand-written digit recogni-
tion, face detection, face recognition, and different medical
applications [31–35]. Here, we focus on breast thermogra-
phy images to identify cancer by CNN.We classify these data
into normal (Figures 1(a) and 1(b)) and abnormal
(Figures 1(c) and 1(d)); these images were evaluated and
classified by two medical experts.

In this paper, we present an effective and efficient
method to segment thermographic breast images and
identify breast cancer for classification as normal or ab-
normal (without cancer or with cancer (Figure 2). -e main
contributions are the novel use of the combination curvature
function k (cvt k) and gradient vector flow method (GVF)
for breast segmentation, and for the analysis and classifi-
cation of the segmented thermographic images, we proposed
the use of a convolutional neural network (CNN); we also
present the comparison of CNN classification results with
tree random forest (TRF), multilayer perceptron (MLP), and
Bayes network (BN).

-e paper is organized as follows. Section 2 describes the
proposed segmentation and classification algorithms for
breast thermographic images (Figure 2). Section 3 presents
the identification results obtained by applying different
classification strategies in the most difficult validation
scheme (2-fold cross validation). Section 4 discusses the
results and concludes the paper.

2. Materials and Methods

Figure 2 illustrates the stages of the proposed segmentation
algorithm and classification techniques implemented. -ese
are detailed in the following sections.-e proposed system is
accomplished in four stages: image preprocessing RGB and
gray input, image denoising, and curvature function k (cvt k)
for initial elliptical points for the GVF and classification; we
then nest the breast image segmentation by gradient vector
flow snake (GVF): following first by feature extraction
(shape, colour, texture, and left and right breast relation) for
feeding the three classification techniques TRF, MLP, and
BN in comparison with the CNN; finally, we classify the
segmented images as normal or abnormal with CNN using
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only the segmented regions of interest obtained by cvt k and
GVF. -e proposed technique is applicable to all breasts
modifying the parameters of the cvt k and GVF.

2.1. Preprocessing for Initial Elliptical Points. -e input RGB
breast images are for feature extraction, and the input gray
breast images are for preprocessing and segmentation
(Figure 2, image provided by Silva et al. [11]). -e input gray
breast image is first denoised with a Gaussian filter (3× 3).
-e perceptual linearity makes it more suitable for gradient
vector flow snake implementation for the breast region
segmentation, which is the following step.

We start from the observation that the breasts are ana-
tomically elliptical. Boundary analysis used the initial snake for
the GVF. Boundary analysis using the curvature function k
identified the salient points on the curve. -e input gray
thermographic breast image filtered was first converted to
binary using a predefined threshold of 0.25. Later, these were
defined as left and right margins via canny edge detection
(lines in Figure 3(a)).-ese twomargins or lines represent two
closed object boundaries via a sequence of points C� {(xn,
yn)}, where xn� x(tn) and yn� y(tn). -e curvature at a point
on this planar curve (defined by the sequence of boundary
points) is the rate of change of the angle with respect to arc
length k� dθ/ds. Here, s is the arc length parameter. -e
curvature is a local geometric property of the curve.

-e tangent vector T shown in Figure 3(a) is defined by
T � _x _y 

T. -e normal vector N, which is perpendicular
to the tangent vector, is given by N � − _y _x 

T. -e tangent
of the angle θ at (x(tn), y(tn)) is given by
tan θ � dy/dx � _x/ _y. It can then be shown that the curva-
ture k of the parametric curve can be written as
cvt k � €x _y − ( _x €y/( _x2 + _y2)3/2).

Figure 3(b) shows the boundaries on which the positive
and negative curvatures are labelled with different red
markers in the right and left breasts. -e two graphs shown
in Figure 3(d) depict the curvature function cvt k for the
right and left breasts. In the cvt k of the right breast, we
emphasize the positive peaks. -e negative peaks are em-
phasized in the cvt k of the left breast; peaks of interest are in
red in both figures. Note that in the right breast, the cvt k is
positive when the boundary line is concave. It is negative in

(a) (b)

(c) (d)

Figure 1: Input images. (a, b) -ermographic breast image without cancer. (c, d) -ermographic breast image with cancer.

Preprocessing

Input image

Segmented and 
classified breast 

Classification
Breast feature

extraction

Breast 
segmentation 

by GVFS 

Figure 2: Proposed GFV segmentation method for breast cancer
identification.
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the left breast when the boundary curve is convex. -ese
features indicate the initial elliptical points of interest for the
gradient vector flow snake. -us, the curvatures of the
boundary curves carry unique signatures that we utilized for
right and left breast identification via the morphological
contraction of these two elliptical objects defined in red
(Figure 3(c)).

2.2. Breast Segmentation by Gradient Vector Flow Snakes.
Once an image is preprocessed, the list of initial points is
then initialized for left and right breasts (Figure 4); we start
from the observation that regions belonging to a breast
should be elliptical and nearly similar. -us, the list of initial
points forms ellipses. -ese two ellipses can work like initial
points for the GVF snakes may be applied. We followed the
GVF method of our previous work, concerning automated
pollen grain detection and classification from earlier mi-
croscopic prepared images [36].

Traditional snakes are curves (v(s) � [x(s), y(s)], s∈ [0, 1])
defined within the domain of an image; it can move itself
under the influence of internal forces coming from within
the curve itself and external forces computed from the

image data as first introduced by Kass et al. [37]. -e GVF
improves the capture range of the contours obtained by the
binary image. Xu and Prince [38] proposed an improved
snake to obtain better performance for image segmentation
(Figure 4).

-e formulation of a GVF is valid for gray images as well
as binary images; however, we used gray images as seen in
Figures 2 and 3. To compute GVFS, an edge-map function is
first calculated using a Gaussian function. -e initial values
are based on a priori knowledge and several experiments for
both breasts. α specifies the elasticity of the snake, and this
controls the tension in the contour by combining with the
first derivative term (alpha� 0.20). β specifies the rigidity in
the contour by combining with the second derivative term
(beta� 0.20). c specifies the step size (gamma� 1.00). κ acts
as the scaling factor for the energy term (kappa� 0.1). -e
wEline weighting factor is used for the intensity-based po-
tential term (wl� 0.01). -e wEedge weighting factor is for
the edge-based potential term (we� 0.40). -e wEterm
weighing factor is for the termination potential term
(wt� 0.01).-e user then specifies the number of iterations for
which the contour’s position is to be computed with iterations
of 5000. An edge-map function and an approximation of its

t1
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Figure 3: Initial elliptical points for GVF. (a) Left and right margins or lines. (b) Boundaries from curvature function. (c) Initial elliptical
points obtained from cvt k for GVF. (d) Curvature function of right breast and left breast (Video 1 (MPEG, 169KB) of supplementary
materials).
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gradient are then given. -e GVFS is computed to guide the
deformation of the snake at the boundary edges. Figure 4
shows the results of variations in breast segmentation and
classification based on RGB thermographic breast images.

-e segmented CNN input image is shown in
Figure 4(d). -is phase is designed to maximize recall and
avoid false negatives of TRF, MLP, and BN. -is is a critical
factor in medical imaging. -e objective of the following
CNN phases (Section 2.4) is to maximize the precision and
remove, or at least to identify, false candidates. -e specific
values of the a priori restrictions are quite flexible because
they should avoid missing true positives. We first obtained
the initial results, which are presented in the following
section (Section 2.3), and compared the results of TRF, MLP,
and BN with those of CNN.

2.3. Feature Extraction and Classification. -is part aims to
characterize the segmented breast with a feature vector
that helps identify cancer in the thermographic breast
images. -ese breast regions are then mapped on the
R ∗G ∗B ∗ colour model image for feature extraction. -e
selected features can be grouped into four categories
(Table 1).

2.3.1. Shape Descriptors. -e shape differences between left
and right breast give clues for classification. First, the area
(A) of the grain is determined by counting the number of
pixels within the border, and the perimeter (P) is the length

of the border.-e regions A and P can be used as descriptors
because of the differences in size between breasts; this is a
medical parameter of interest. -e roundness (R) is defined
as the multiplication of 4π and A over P2. If R� 1, then the
object is circular. -e compactness (C) is defined as the
result of A over P. Each breast (left and right) gave eight
terms: Al, Ar, Pl, Pr, Rl, Rr, Cl, and Cr.

(a) (b)

(c) (d)

Figure 4: GVF segmentation of the breast region of interest. (a) Initial, (b) 200 iterations, (c) 5000 iterations, and (d) segmented CNN input
image (Video 2 (MPEG, 489KB) of supplementary materials).

Table 1: Summary of descriptors.

Shape
Area A � nPixels
Perimeter P �

���������������������

(xi − xi− 1)
2 + (yi − yi− 1)

2


Roundness R � 4π(A/P2)

Compactness C � A/P2

First-order texture
Average μ � 1/iji,jp(i, j)

Median m � L + I((N/2) − F/f)

Variance σ2 � 1/iji,j((p(i, j) − μ))

Standard deviation σ �
����������������
1/iji,j(p(i, j) − μ)



Entropy S � − i,jp(i, j)logp(i, j)

Second-order texture
Contrast descriptor CM � i,j|i − j|2c(i, j)

Correlation r � i,j(i − μci)(j − μcj)c(i, j)/σciσcj

Energy e � i,jc(i, j)2

Local homogeneity HL � i,jc(i, j)/(1 + |i − j|)

Relation context
Euclidian distance ED �

���������

(Vr − Vl)
2



Bhattacharyya distance BD �
��������
(Vr × Vl)



Difference D � abs(Vr − Vl)
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2.3.2. First-Order Texture Descriptors. One way to dis-
criminate between different textures is to compare R∗, G∗,
and B∗ levels using first-order statistics. Red indicates high
temperatures related to breast cancer. First-order statistics
are calculated based on the probability of observing a
particular pixel value at a randomly chosen location in the
image. -ey depend only on individual pixel values and not
on the interaction of neighboring pixel values. -e average
(µ) is the mean of the sum of all intensity values in the image.
-e median (m) represents the value of the central variable
position in the dataset of sorted pixels. -e variance (σ 2) is a
dispersion measure defined as the squared deviation of the
variable with respect to its mean. Standard deviation (σ) is a
measure of centralization or dispersion variable. Entropy (S)
of the object in the image is a measure of content in-
formation. For both left and right breasts (µl, µr, ml, mr, σ2l ,
σ2r , σl, σr, Sl, and Sr), R∗, G∗, and B∗ levels gave 30 features.

2.3.3. Second-Order Texture Descriptors. Haralick’s gray-
level co-occurrence matrices [39] have been used very
successfully for biomedical image classification [40, 41]. Out
of 14 features outlined, we first considered four texture
features suitable for our experiment. We propose to use the
co-occurrence matrix for the entire R∗G∗B∗ colour model.
Contrast descriptor (CM) is a measure of local variation in
the image. It is a high value when the region within the range
of the window has high contrast. Correlation (r) of the
texture measures the relationship between the different
intensities of colours. Mathematically, the correlation in-
creases when the variance is low, suggesting that the matrix
elements are not far from the main diagonal. Energy (e) is
the sum of the squared elements in the matrix of co-oc-
currence of gray level, also known as the uniformity or the
second element of the angular momentum. Local homo-
geneity (HL) provides information on local regularity of the
texture. -e value of the local homogeneity is higher when
the elements of the co-occurrence matrix are closer to the
main diagonal. Both the left and right breasts (CMl, CMr, rl,
rr, el, er, HLl, and HLr) were classified via the R∗, G∗, and B∗
levels to give 24 features.

2.3.4. Relation Context Features. Relation breast context
features are selected to capture the value of the relation
between left and right breasts in the R∗, G∗, and B∗ levels
considering the asymmetries between the breasts as an
abnormality indicator. -is yields values for relationships
with respect to the left and right features: Euclidean dis-
tances, Bhattacharyya distance (BD), and absolute differ-
ences (D). -e shape gave 12 features, the first-order texture
gave 45 features, and the second-order texture gave 36
features. -us, there were 93 relation context features.

2.3.5. Classification. -e main aim of this work is to
compare the proposed segmented image and the CNN
classification with the characterization and classification of
breasts using three classification techniques. In order to
classify the segmented breast into normal or abnormal,

identify cancer, and obtain final classification results, we
explored the use of three different classification approaches
implemented in Weka (Waikato Environment for Knowl-
edge Analysis) [42, 43]: tree random forest (TRF) [44],
multilayer perceptron (MLP), and Bayes network (BN). -e
experimental results obtained for these three classification
techniques are compared with CNN classification (see re-
sults in Figure 5, Table 2, and Section 3).

2.4. CNN Classification. We here present an effective and
efficient CNN classification system (Figure 6). Originally
proposed by LeCun et al. [45], a CNN is a neural network
model with three key architectural ideas: local receptive
fields, weight sharing, and subsampling in the spatial do-
main. A CNN consists of three main types of layers designed
to obtain the feature maps: spatial convolution layers (Cl),
subsampling pooling layers (Sl), and fully connected layers
(Fl)—l is a layer index.

We use a CNN based on previous studies designed to
process two-dimensional (2D) images [46]. Cl and Sl layers
are 2D layers, whereas the Fl layer and output are 1D layers.
-emotivation is that a CNN is advantageous for only breast
thermography image in that it is hierarchical (with multiple
layers for more compactness and efficiency) and invariance-
redundant (for position, size, luminance, rotation, pose-
angle, noise, and distortion).

We propose an efficient method to classify the seg-
mented breast thermography image with a gradient vector
flow to feed the CNN. We demonstrate that a classification
method using the segmented breast to feed CNN is more
robust and efficient than conventional state-of-the-art (SoA)
methods using only classical features and classification
techniques (Section 2.3.5). Our main contributions are as
follows: the generation of segmented input images, cap-
turing relevant breast information, and training and feeding
the CNN for the comparison and evaluation of several
classification strategies to confront the classification prob-
lem—TRF, MLP, and BN. For every thermography breast
image, we generate a segmented image input to capture the
semantics of the breast. -ese image are modified to
277× 277× 3 RGB images to feed the CNN (Figure 6).

3. Experimental Results

3.1. Dataset Description. -e dataset includes 63 thermo-
graphic images (35 normal and 28 abnormal) in RGB colour
format and in JPEG image format with a size of 680× 480× 3
as kindly provided by Silva et al. [11] and can be downloaded
from [47]. -ere are 155× 35 normal features and 155× 28
abnormal features to test and train TRF, MLP, and BN
obtained from 63 segmented CNN input images (35 normal
and 28 abnormal). However, the proposed method can be
easily adapted to different thermographic breast images.
Figure 1 shows example images of the dataset, and Figures 7
and 8 show the ground truth from two medical experts,
segmentation and classification results of these images. -e
ground-truth data for the segmentation and classification of
breast tissue and their degree of alteration with respect to
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Figure 5: Confusion matrices of (a) CNN, (b) TRF, (c) MLP, and (d) BN.

Table 2: Quantitative classification results (%).

Technique
External quality indicators

TPR PPV FDR F1 or HM SPC NPV FPR ACC AUC
CNN 100 100 0 100 100 100 0 100 100
TRF 85.71 85.71 14.28 86.95 85.71 85.71 17.85 85.71 85.71
MLP 80 80 20 88.88 100 100 25 88.88 100
NV 82.85 82.85 17.14 82.85 78.57 78.57 21.42 80.95 78.57
ACC: accuracy; AUC: area under the receiver operating characteristic curve; F1: F1 score; FDR: false discovery rate; FPR: fall-out or false-positive rate; HM:
harmonic mean; NPV: negative predictive value; PPV: precision or positive predictive value; SPC: specificity or true-negative rate; TPR: sensitivity, recall, or
true-positive rate.
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different temperature levels were obtained from two on-
cologists via breast localization.We then present very similar
segmentation results to those of medical experts according
to the Zijdenbos Similarity Index with excellent result
classification.

3.2. Quality Indicators ofBermographic Breast Cancer Image
Classification. Several quality indicators have been obtained
to quantitatively assess the breast classification results and
the performance of the CNN, TRF, MLP, and BN tech-
niques. We have divided them into final and external quality
indicators, which evaluate the final segmentation results and
are useful for external comparison with other works, and
internal quality indicators, which are useful for evaluating
the internal behavior of the proposed classification options.

For external indicators, let P be the number of normal
breasts in the dataset, and let TP, FP, and FN be the number
of true positives, false positives, and false negatives, re-
spectively (Figure 5). We then define the following (see
Table 2): sensitivity, recall, or true-positive rate: TPR�TP/P;
precision or positive predictive value: PPV�TP/TP+ FP;
false discovery rate: FDR� FP/FP +TP; and the F1 score,
overlap, or harmonic mean of TPR and PPV: F1� 2∗TP/
2∗TP+FP+ FN, HM� 2∗TPR∗PPV/TPR+PPV.

As the proposed algorithm will classify breast temper-
ature regions of interest, which are then characterized and
separated into normal and abnormal, we can further eval-
uate the classification performance of the four selected
classification schemes via internal indicators. Let N be the
number of abnormal breasts with cancer resulting from the
application of the proposed method to the complete dataset,
and let TN be the number of true negatives after classifi-
cation (Figure 5). We can then define the following (see
Table 2): specificity or true negative rate: SPC�TN/N;
negative predictive value: NPV�TN/TN+FN; accuracy:
ACC�TP+TN/TP+ FP+TN+FN; fall-out or false-posi-
tive rate: FPR� FP/N; and the area under the receiver op-
erating characteristic curve: AUC.

3.3. Quantitative and Qualitative Evaluation of Bermo-
graphic Breast Cancer Image Classification. -ere were 63
thermographic images (35 normal and 28 abnormal) for a
total of 155× 35 normal features and 155× 28 abnormal
features. -e segmented breasts and the feature extraction
phases for the described dataset include a collection of 155
total extracted features from 63 different breast images (35
normal breast and 28 expected abnormal breast). A 155-
dimension feature vector extracted from shape, first-order
texture, second-order texture, and relation context features
characterized each segmented breast. As mentioned, three
representative classification techniques were explored (BN,
MLP, and TRF) using the toughest but most realistic clas-
sification experiment involving 2-fold cross validation
schemes (s� 2) for training and testing. Figure 5 and Table 2
summarize the quantitative results of CNN, BN, MLP, and
TRF. CNN achieved the best results in 2-fold cross validation
where the dataset is divided into two equal parts: the first
part is used for training and the second is used for testing.

-is was later switched: the second part was used for training
and the first part for testing. -is proves that these classifiers
are reasonable for the classification of breast thermographic
images and confirms the advantages of CNN over other
state-of-the-art classifiers.

Qualitative results of breast classification are shown in
Figures 7 and 8 with white (for ground truth and seg-
mentation) and red and blue regions superimposed over
correctly detected normal breast (TP, in blue in
Figures 7(m)–7(p)) and correctly classified abnormal breast
(TN, in red in Figures 8(m)–8(p)). -ese illustrate the good
performance of the feature extraction and classification
phases. -e results show that the proposed classification
method can successfully classify breast even in challenging
environments.

3.4. Quantitative and Qualitative Evaluation of Nuclei
Segmentation. Two medical experts defined a region around
both breasts to define ground truth (histologically confirmed
diagnosis) comparison (see Figures 7(a)–7(h)) and
8(a)–8(h)). -us, good segmentation and precise breast
cancer classification are both desired. To assess segmentation
quality, we compared the region associated with a correctly
identified breast and the corresponding region in the ground
truth. -e comparisons were quantified using the Zijdenbos
Similarity Index, ZSI� 2∗ |A1∩A2|/(|A1| + |A2|), where A1
and A2 refer to the compared regions and are both binary
masks. A ZSI value greater than 0.75 indicates excellent
agreement [48].

-e ground truth includes segmentation data from two
different experts referred to as GT1 and GT2.-e two expert
results comprise regions associated with correctly identified
breast segmentation by GVF. Table 3 summarizes the sta-
tistics for the ZSI obtained for every possible pair of experts
(A1 and A2 comparison). -e ZSI for the GVF compared
with the GT1 had a mean of 0.8177 and a standard deviation
of 0.0173; with GT2, the mean was 0.8229 and the standard
deviation was 0.0094. -is proves that the proposed seg-
mentation approach gives similar results as those obtained
manually by an expert.

3.5. Comparative Discussion. Publicly accessible datasets or
evaluation scenarios that allow for a fair comparison among
methods are lacking, and the code for reported methods is
unavailable. -us, we have chosen to present just our results
on thermographic breast image classification.

One study [20] showed the feasibility of applying an
ANN for the early detection and differentiation of abnormal
patient states in health screening; their classifying systems
are effective to the tune of more than 92% accuracy. Another
study [21] concluded that the presented approach is indeed
useful as an aid for the diagnosis of breast cancer and should
prove even more powerful when coupled with another
modality such as mammography; their approach provides a
classification accuracy of about 80%. Yet another study [22]
suggested that fractal analysis may potentially improve the
reliability of thermography in breast tumor detection, with
an accuracy of 90%. It has been shown that higher-order
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spectral features are capable of differentiating between
different classes such as malignant, benign, and normal
tissue in breast thermograms [4]; malignant cases are de-
tected with 95% accuracy.

-e framework of Bayesian networks provides a good
model for analyzing thermographic breast images [6],
obtaining an accuracy of 71.88%. A new feature extraction
approach was presented for breast thermography classifi-
cation [3]. -is approach combines morphological, math-
ematical, and symbolic data analysis operators to
discriminate different classes such as malignant, benign, and
cyst tissue in breast thermograms; they reported a 85.7% of
sensitivity and 86.5% of specificity to the malignant class. A
pilot study [23] evaluated the potential of rotational ther-
mography for automatic detection of breast abnormalities
from the perspective of cold challenge; the accuracy of the
classification system is found to be better than 83%.-e goal
of another work [24] was to compare the classification re-
sults of three different classifiers (SVM, k-NN, and Naive

Bayes) and use GLCM features extracted from each ther-
mography image; they obtained the accuracy ratio of 92.5%,
which corresponded to true positive fraction of 78.6% at a
false positive fraction of 0%. In another pilot study [25],
digital infrared thermal imaging showed promising results
and is thus well suited as a screening tool, obtaining a
sensitivity of 97.6%, specificity of 99.17%, positive predictive
value of 83.67%, and negative predictive value of 99.89%. Its
use in combination with other laboratory and outcome
assessment tools could lead to a significant improvement in
the management of breast cancer.

Other results [12] indicate that thermography has the
necessary sensitivity to effectively and inexpensively provide
such an assessment; a sensitivity of 100% was claimed in
their work (full train and full test). Another study [26] used
several features (statistical, texture, and energy) with the
SVM to detect normal and abnormal breast tissue; their
system was achieving an excellent result of 100% using leave-
one-out cross validation. Other results [27] showed that

(a) (b) (c) (d)

(e) (f ) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 7: -ermographic breast image without cancer (Video 2 (MPEG, 489KB) of supplementary materials). Ground truth from the first
medical expert (a–d), ground truth from the second medical expert (e–h), segmentation (i–l), and classification results (m–p).
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using simple texture descriptors in combination with a
nearest-neighbors classifier can detect the early onset of
breast tumors in women of any age, where abnormal breasts
were identified with an accuracy of 94.44%. A potential
breakthrough was indicated in thermographic screening for
breast cancer [28]; they were able to achieve around 99%
specificity while having 100% sensitivity. Other results [29]
indicated that useful features of texture can be extracted with
MRF models, LBPc, and LBPe and decision-level fusion-
based classification using HMM on thermography images to
achieve 87% accuracy. A CADx methodology dedicated to

the creation of patient features combined the information of
contralateral asymmetry and different views into single
feature [30]; an area under the roc curve of 73.8% and 76.7%
was achieved. -e WEKA software SMO classifier obtained
more expressive results regarding the diagnosis of breast
abnormalities [1], achieving 93.42% accuracy, 94.73% sen-
sitivity, and 92.10% specificity for the cancer class in a binary
(cancer versus noncancer) analysis.

In light of these studies, we can confirm to some extent
that our approach is valid based on our CNN classification
results (TPR� 100% and PPV� 100% for a dataset con-
taining 73 breast images, using 2-fold cross validation) in
comparison with other similar “state-of-the-art” studies.

4. Conclusion

-e main objective of this work is to make scientific con-
tributions to a biomedical system for the acquisition of
thermographic images of breasts via image processing. -is

(a) (b) (c) (d)

(e) (f ) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 8: -ermographic breast image with cancer (Video 2, MPEG, 489KB). Ground truth from the first medical expert (a–d), ground
truth from the second medical expert (e–h), segmentation (i–l), and classification results (m–p).

Table 3: ZSI statistics for segmentation results and ground truth.

A2

A1 GT1 GT2
GVF 0.8177± 0.0173 0.8229± 0.0094

GT: ground truth; GVF: gradient vector flow segmentation result; ZSI:
Zijdenbos Similarity Index.
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provides a prediagnosis of breast cancer via GVF in com-
bination with CNN. -is paper proposes a novel method of
initial selection of areas of interest in the chest through the
analysis of the cvt k in both the right and left chest.-e initial
regions of interest of both breasts then feed the GVF
technique to extract the characteristics for an accurate
classification of the segmented regions. Finally, this de-
termines the difference between the normal cases (without
cancer) and abnormal cases (with cancer).

-is work shows that a classification method that uses
the combination of breast segmentation by GVF and ap-
plying CNN classification can be robust and efficient. Our
main contributions include the novel segmentation via GVF
of the region of interest of the thermographic image of the
sinuses; segmentation of these input images to capture
relevant information from the breasts to train and feed
CNN, BN, MLP, and TRF with the segmented image or with
feature extraction; the generation of a set of representative
data with ground-truth data by specialist physicians to
compare with our segmentation technique; and the evalu-
ation of four classification strategies (CNN, BN, MLP, and
TRF). We compared our data to the state of the art and
observed that this approach gave results between 80% and
100% for TPR, SPC, and ACC.-us, this approach improves
outcomes and accuracy.

We demonstrated that a combination of GVF and CNN
can detect breast cancer via the classification of thermo-
graphic images. -e best results were obtained using CNN
classifiers (100% TPR, SPC, and ACC). -ese results validate
the novelty and quality of the proposedmethod. Future work
will include a secondary framework to objectively compare
our results.
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Supplementary Materials

Figures 1–7: original images of Figures 1 to 7 in png format.
MATLAB breast data: first run “AlexCNNbreast.m” code.
Segmentation results of the breast images extracted from the
gradient flow method (63 images in bmp format on folder
“myImagesSEGMENTEDbreast” divided into normal and
abnormal) to feed the convolutional neural network in
Matlab2018a (“AlexCNNbreast.m” code to obtain the clas-
sification results and CNN models); the two CNN models
from the 2-fold cross validation (“myNet_s1.mat” and
“myNet_s2.mat”) that obtained 100% of TPR, SPC, and ACC;

plotConfMat.m code to obtain the confusion matrices of
CNN, TRF, MLP, and BN. Video results of Figures 3 and 4:
VIDEO 1 of Figure 4 in mp4 format—this video describes the
initial elliptical points for gradient vector flow using the
curvature function k of right and left breasts; VIDEO 2 of
Figure 4 in mp4 format—this video describes the gradient
vector flow segmentation of the breast region of interest.
WEKA breast data features: 155× 63 classical features in
Weka for TRF, MLP, and BN results. Run “BreastData-
setFeatures.arff” for obtaining the classification results.
(Supplementary Materials)
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