
REVIEW

Natural extracellular nanovesicles and photodynamic molecules: is there a future
for drug delivery?

Katsuyuki Kusuzakia, Takao Matsubarab, Hiroaki Muratac, Mariantonia Logozzid, Elisabetta Iessid, Rossella Di Raimod,
Fabrizio Cartae, Claudiu T. Supurane and Stefano Faisd

aDepartment of Musculoskeletal Oncology, Takai Hospital, Tenri Nara, Japan; bDepartment of Orthopaedic Surgery, Mie University Graduate
School of Medicine, Tsu, Mie, Japan; cDepartment of Orthopaedic Surgery, Matsushita Memorial Hospital, Osaka, Japan; dDepartment of
Oncology and Molecular Medicine, National Institute of Health, Rome, Italy; eDipartimento Neurofarba, Sezione di ScienzeFarmaceutiche e
Nutraceutiche, Universit�a degli Studi di Firenze, Sesto Fiorentino, Florence, Italy

ABSTRACT
Photodynamic molecules represent an alternative approach for cancer therapy for their property (i) to be
photo-reactive; (ii) to be not-toxic for target cells in absence of light; (iii) to accumulate specifically into
tumour tissues; (iv) to be activable by a light beam only at the tumour site and (v) to exert cytotoxic activ-
ity against tumour cells. However, to date their clinical use is limited by the side effects elicited by sys-
temic administration. Extracellular vesicles are endogenous nanosized-carriers that have been recently
introduced as a natural delivery system for therapeutic molecules. We have recently shown the ability of
human exosomes to deliver photodynamic molecules. Therefore, this review focussed on extracellular
vesicles as a novel strategy for the delivery of photodynamic molecules at cancer sites. This completely
new approach may enhance the delivery and decrease the toxicity of photodynamic molecules, therefore,
represent the future for photodynamic therapy for cancer treatment.

ARTICLE HISTORY
Received 9 May 2017
Revised 19 May 2017
Accepted 23 May 2017

KEYWORDS
Extracellular nanovesicles;
exosomes; photodynamic
molecules; acridine orange

Exosomes as a drug delivery system

Nanomedicine encompasses old and new technologies to produce
nanoparticles with the highest level of efficiency and the lowest
toxicity. To achieve this endpoint, the strategic platform on nano-
medicine highly recommends the identification of biomimetic
nanomaterials. Unfortunately, the clinical investigation on lipo-
some-based drugs, did not show convincing results in term of effi-
cacy and toxicity, probably due to PEGylation1. Targeted drug
delivery is a promising area that is emerging to improve therapy
efficiency, by selectively delivering the drug to target cells, reduc-
ing the dose with respect to the equivalent plasma concentrations,
and avoiding destruction of non-target tissues. An example is the
use of PCSK9-specific siRNA formulated in a lipid nanoparticle to
treat metabolic disease in humans, and for which a clinically vali-
dated endpoint (i.e. LDL cholesterol) has been obtained2. The effi-
ciency of targeted drug delivery is achieved by the attachment of
specific ligands to drug delivery vehicles. Nanoparticle size, shape
and surface chemistry are also crucial for an efficient delivery to
target cells3. In contrast, the vast majority of administered lipo-
somes (of uncontrolled size) rather reach the spleen or liver than
the target organ or compartment, and the progressive accumula-
tion into the macrophages leads to the high level of toxicity of
the liposome-based drugs clinically tested to date. Therefore, it is
mandatory to develop methods to produce vesicles with tropism
to target organs and controlled size, optimally with diameter
<150 nm. Recently, attention was paid to natural nanosized extra-
cellular vesicles (EVs) and/or artificial EV mimics as a state of the
art strategy for targeted drug delivery4. EVs are nanosized

membrane-contained vesicles released in the extracellular space
and in biofluids by a variety of cell types5,6. Natural EVs have been
shown to transfer genetic material, proteins, bioactive lipids and
other signalling molecules, among cells in a paracrine and system-
atic manner, thereby mediating intercellular communication in
both normal physiological conditions and pathological processes.
In the last few years, EVs have emerged as novel putative thera-
peutic tools for the treatment of various diseases, including
cancer4,6–11.

Whereas cancer-derived EVs apparently promote cancer pro-
gression and may cause unwanted effects12–16, EVs derived from
normal cells have been shown to possess intrinsic therapeutic
activity17–20. To enhance their therapeutic efficacy, EVs have been
loaded with therapeutic agents such as doxorubicin and
siRNAs21–24. Mesenchymal stem cells (MSC)-derived EVs are proved
to be well-tolerated in humans, and in the autologous setting,
they are non-immunogenic. Some studies also demonstrate good
tolerance in allogeneic and even xenogenic settings25,26.
Therefore, EVs could be superior to viral gene or drug delivery
tools, such as VLPs. The demonstration that natural nanovesicles
represent the ideal vector for drugs of different natures may thus
represent a highly valuable model for nanotechnology. In addition,
artificial tuning of EVs or EV mimics have a tremendous potential
for their use as drug delivery systems, being immuno-silent or
immunoregulatory, and with a specific and directed targeting.
From the clinical and translational standpoint, EVs have been seen
as potential non-invasive biomarkers for many diseases. Many of
these studies contain very useful information about the
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composition and disease-related changes that may reveal import-
ant targets for therapeutic intervention.

Cancer has sadly to be considered an unmet clinical need
being unbearable the amount of deaths yearly worldwide
(9–10 million). In fact, despite the recent developments of targeted
therapies against cancer over-expressing targets, overall survival
remains low, and the development of less toxic and efficient drug
delivery tools represent an urgent unmet medical need. Likely, if
this is accomplished, cancer-specific drugs could reach the tumour
in higher doses and improve clinical effectiveness.

Natural nanovesicles (exosomes) were proven to be able to
deliver anti-cancer drugs27 and in this issue the ability of human
exosomes to deliver photodynamic molecules has been clearly
shown28. This is an important achievement inasmuch as the use of
photodynamic molecules may well represent the future of cancer
therapy for their property to concentrate into tumour tissues and
only there activable through either fluorescent light or X-rays29.

Photodynamic molecules and cancer

Principle of photodynamic therapy

Photodynamic therapy (PDT) has been used to efficiently kill can-
cer cells and represent a well-established and alternative treat-
ment modality for the treatment of different types of cancers. In
PDT, a photosensitizer (usually a photo-reactive agent) and a

source of light (photon) beam are needed. Photosensitizer accu-
mulates into cancer cells and light beam is irradiated to kill them.
When the photosensitizer is excited by a light beam, an energy of
photon (h�) transfers to photosensitizer, moving it from a basic
singlet state to an excited triplet state (Figure 1). Since excited
photosensitizer having high energy electron is very unstable, it
also rapidly transfers electrons to oxygen localised in cytoplasm to
produce activated oxygen (Figure 1).

Activated oxygen which behaves as a free radical, oxidises pro-
teins and fatty acids of cellular or lysosomal membrane to cause
apoptosis through membrane rupture (Figure 2).

Most photosensitizers emit fluorescence at the moment when
they return from excited to basic state. The wavelength of this
fluorescence is always longer than the excited light. There are vari-
ous kinds of photosensitizers. Most of them are coloured dyes,
such as derivatives of acridines29,30–37, flavins phenothiazines38–49,
quinolones50–60, cyanines49,61–69, and biological compounds of
hematoporphyrin (Hp) and its precursors, like porphyrin (Pf)70,
5-amino levulinic acid (ALA)71–73, etc. The ideal photosensitizer
should: (i) accumulate specifically in cancer cells, sparing normal
cells; (ii) kill only cancer cells after light beam irradiation and (iii)
be not toxic for the human body, even after irradiation. To
improve specific accumulation of photosensitizer, some new tech-
nologies of delivery system for PDT were lately reported. One
approach is using nanoparticle loaded with indocyanine green74,
another is using cancer-specific antibody conjugated with IR700, a
specific photosensitizer75. These two approaches are now ongoing
on under clinical application. Exosomes described here represent a
novel option of delivery systems of photodynamic molecules, with
the final goal to efficiently increase the cancer-specific accumula-
tion rate.

Although there are many light sources for PDT, both xenon
lamp and laser system are available for clinical application. Laser
has stronger power to excite photosensitizer, but is much more
expensive compared with xenon lamp.

PDT originated from discovery of the phototoxic effect of
Acridine Orange (AO) on protozoa by a doctoral student, Oscar
Raab, in 190076. At present, PDT using a Hp or its precursor, like Pf
and ALA, with a laser beam is one of established modalities for
cancer therapy, especially for early-stage superficial cancers of the
skin, lung, oral cavity, oropharyngeal tract, oesophagus, gastro-
intestinal tract, urinary bladder, etc.77.

Figure 1. Energy transfer in photodynamic therapy. Following a light beam, the
photosensitizer reaches an excited singlet state and moves to a triplet excited
state. The excited triplet photosensitizer reacts directly with oxygen through
energy transfer generating activated oxygen.

Figure 2. Mechanism of cytocidal effect of photodynamic therapy. Irradiation with light beam induces the formation of activated oxygen through energy transfer.
Activated oxygen is highly reactive and cytotoxic. It reacts with biomolecules (i.e. lipids, proteins, and nucleic acids of cellular or lysosomal origin) inducing cell death
through activation of the apoptotic pathway.
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PDT with AO (AO-PDT)

AO was first extracted from coal tar in Germany in the late
19th century, as a weak basic dye for staining of clothes or
microorganisms78, and has many unique biological activities,
such as antitumor activity79–85, photosensitising activity76,86–88,
pH detecting activity89, and fluorescence detection or toxic
activity in sperm90, bacteria91,92, viruses93, parasites, especially
the malaria parasites94,95, and fungi96. AO emits green (533 nm)
or orange (656 nm) fluorescence following blue light (492 nm)
excitation. Since AO has a very low molecular weight (MW
265), it has the capability to rapidly flow into the cytoplasm
through the plasma membrane binding to the DNA, RNA97,98)
and acidic lysosomes99,100. AO selectively accumulates in cancer

cells, especially in acidic lysosomes, emits fluorescence after
blue excitation, and kills cancer cells via apoptosis by activated
oxygen.

AO

Although it is well known that AO is mutagen for bacteria91,92,
there is no evidence to prove that AO is carcinogen for mammali-
ans including human101,102. Our study using mice revealed that
LD50 of AO intravenously administrated was 28–30mg/kg (clinical
use: 1mg/kg, local administration)103.

Table 1. A list of photodynamic molecules used in PDT.

Compound Structure References

Acai oil 107

Acridine orange (AO) 29

5-Aminolevulinic acid (ALA) 109–111

Chlorins 112–115

C-Phycocyanin 116

Cyclodextrin

117,118

Coumarin derivative 119,120

Curcumin 121,122

(continued)
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Table 1. Continued

Compound Structure References

DPAO2 123

DPP-ZnP/DPP-ZnP-DPP 124

Erythrosine 125

Folate–albumin–photosensitizer conjugate
Hypericin 126–130

Methylene blue (MB) 43,131,132

PdTPPo/TPPo 133

(continued)
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Clinical application of AO-PDT

AO-PDT has been exploited by the Kusuzaki’s group in cancer
therapy. Local administration of AO and irradiation of blue light
from a xenon lamp after minimal invasive surgery has been used
in treatment of patients with musculoskeletal sarcomas to avoid
wide resection which causes serious limb dysfunction. More than
200 patients have been treated with AO-PDT over 10 years and its
clinical outcome showed (i) low risk of local recurrence which is
almost the same that with conventional wide resection and (ii)
superior limb function compared with that by wide
resection29,31–37.

A recent study published in this journal28 has clearly shown
that AO delivered by natural nanovesicles (exosomes) released by
human normal cells such as monocytes/macrophages highly
increase its uptake by tumour target cells and its efficacy as cyto-
toxic molecule. This result is of course highly promising for the
use of AO in cancer treatment with either local or systemic
approaches. Furthermore, a sulphonamide derivative of AO
which has been recently reported104, was shown to act as a low
nanomolar carbonic anhydrase CA105,106 inhibitor against the
tumour-associated isoforms CA IX and XII; making it an interesting
candidate both for PDT as well as EV formulations. Work is in pro-
gress in our laboratories for evaluating this interesting drug candi-
date for possible applications in targeting hypoxic tumours.

Conclusions

PDT is a promising alternative approach for the treatment of can-
cer due to its selective ability to kill tumour cells sparing normal
cells. It involves a photosensitizer that is activated by light of a
specific wavelength, which induces cell death in target cells in
turn leading to the destruction of tumour cells. Unfortunately, the

clinical application of PDT is limited by the side effects elicits by
systemic administration of the photosensitizers.

Drug delivery is probably as important as drug design,
although only in the last period this started to be seriously taken
into consideration by the drug industries and academic commu-
nity. Exosomes and EVs may have a crucial role in such processes
due to reasons highlighted in this paper. Loading EVs with various
drugs, including AO and similar agents used in PDT
(Table 1)30–37,44,63,66–69,108–143, may lead to an enhanced delivery,
decreased toxicity and diminished side effects. The recent example
of EVs loaded with AO from Fais’s group28 clearly indicates that
this is the future in PD therapy.

Moreover, Acridine Orange is a clear example of a molecule
that works as both tracer (being fluorescent) and as anti-tumour
drug, thus representing a clear example of a molecule with a
theranostics potential. Exosomes may be extremely helpful in
future strategies aimed at delivering much better to the disease’s
sites either old or new therapeutic molecules or even molecules
with both diagnostic and therapeutic actions, with therefore thera-
nostics properties. Between these molecules will be of course
included all the known compounds with photodynamic properties
as well.
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