
ONCOLOGY LETTERS  18:  2173-2178,  2019

Abstract. Ovarian cancer (OVAC) remains the most lethal 
gynecological malignancy; it is ranked fifth among the most 
common types of cancer that affect women worldwide. Several 
aspects of the disease, including molecular pathogenesis, 
epidemiology, histological subtypes, poor prognosis at early 
stages due to the absence of specific signs and symptoms, and 
curative treatments in the advanced stages are all responsible 
for the poor survival rate, which is evaluated to be at 5 years 
once the cancer is diagnosed and treatment begins. A better 
understanding of the pathogenesis of ovarian cancer is there-
fore crucial, even though unexplored pathways, in order to 
improve the prognosis of patients with OVAC and to develop 
novel therapeutic approaches. Accordingly, the tumor microen-
vironment, defined as the combination of proteins produced by 
all tumor cells and by non‑cancerous cells or the stroma, and 
composed of several cells, including those from the immune, 
inflammatory and adipose systems, as well as the mesenchymal 
stem, endothelial and fibroblasts cells, has recently attracted 
attention. Of particular interest are fibroblasts, which can be 
activated into cancer‑associated fibroblast (CAFs) to become 
a potent supporter of carcinogenesis, promoting the initiation 
of epithelial tumor formation, tumor growth, angiogenesis and 
metastasis, as well as therapeutic resistance and immunosup-
pression. Thus, the targeting of CAFs for early diagnosis and 
effective therapy warrants our attention. In this review, we 
discuss the mechanisms through which CAFs may affect the 
structure, composition and microenvironment of the ovarian 
tumor. We also aim to highlight important aspects of OVAC 
pathobiology involving CAFs, in an attempt to provide insight 
into novel diagnostic windows and provide new therapeutic 
perspectives.
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1. Introduction

Among the various types of gynecological cancers, ovarian 
cancer (OVAC) remains the most lethal type which affects 
women worldwide. Indeed, several aspects of OVAC render 
it a very challenging malignancy for diagnosis and treatment. 
The survival rates are estimated to be approximately 5 years, 
following diagnosis at an early stage of the disease, which very 
rarely occurs, as the symptoms are non‑specific and can be 
summarized into ordinary abdominal pain or bloating (1). The 
survival of women with OVAC is often closely related to the 
outcome of surgical reduction (2) that arises when the cancer 
has already progressed to the stage of aggressive metastases to 
the adjacent abdominal organs (1,3).

Therefore, the acute forms of OVAC usually correspond to 
the advanced stages, when the cancer has eventually reached 
the level of intestinal obstruction and pleural effusion. In 
general, abdominal bloating or swelling, adnexal mass, changes 
in menstruation, rectal bleeding or atypical glandular cells 
on a cervical cytology examination, discomfort in the pelvic 
area, frequent urinary needs and changes in bowel habits refer 
to subacute manifestation (1,4). When a patient reaches such 
an advanced stage of the disease, the clinical management 
consists of performing a reduction surgery followed by adju-
vant chemotherapy or vice versa (5). Subsequently, depending 
on the cases encountered, following the initial response, 
tumor recurrence is mostly observed due to residual disease 
in women who will eventually succumb to the disease due to 
progressive chemoresistance (5).

Moreover, the stimulation of immune system through the 
use of immunotherapy, which has recently been used to effec-
tively eliminate tumors in various type of cancer, has been 
limited in some patients, which have become unresponsive or 
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have developed resistance (6,7). In general, despite progress 
being made in the treatment of OVAC, a large number of 
women (70‑80%) who have first responded to treatment even-
tually suffer a relapse and succumb to the disease (8). Thus, 
it is mandatory to improve the early diagnosis of OVAC and 
to develop effective treatments in order to cope with current 
surgical limitations and reduce resistance to treatment that 
often occurs in response to chemotherapy (5) or recently in 
response to immunotherapy (6,7). Therefore, taking all early 
observations into consideration, and as suggested by the 
data, therapies targeting only cancer cells alone seem to be 
insufficient for the treatment of such a malignant cancer and 
arguments are in favor of co‑targeting cancer cells and their 
microenvironment (9).

Indeed, the heterogeneity of OVAC is likely related to 
epigenetic and genetic factors (10), which has led to the failure 
of effective eradication due to the complexity of signaling 
networks that are themselves interconnected in a complex 
manner. The microenvironment of the tumor, distinct from the 
peritoneal tumor (11), also plays a role in effective treatment, 
and is composed by all the proteins that will be produced by 
various tumor cells, including several types of immune cells, 
such as macrophages, natural killer cells and T cells, as well 
as a large number of chemokines and cytokines at the level 
of extracellular matrix  (ECM) (12). All these components 
will actively interact together for the promotion of OVAC 
cell growth and metastasis  (13). The tumor microenviron-
ment (TME) also contains non‑cancerous cells, termed the 
stroma, which is composed of several types of cells, including 
endothelial cells, mesenchymal stem cells, fibroblasts, endo-
thelial cells, adipocytes, pericytes, and inflammatory and 
immune systems cells (14). It has been shown that fibroblasts, 
the major component of the stroma, can be stimulated by a 
variety of proliferative signals to become activated fibroblast, 
termed cancer‑associated fibroblasts (CAFs). Over time, CAFs 
have been identified as an essential component of tumor 
progression (15) that maintain the microenvironment optimal 
for cancer cell survival and proliferation  (15,16) through 
reciprocal crosstalk between cancer cells and fibroblasts. Data 
suggest that CAFs are involved in epithelial progression, cancer 
invasion, metastasis and therapeutic resistance, since following 
their activation, they provide, in turn, a favorable and adequate 
microenvironment owing to the various soluble factors 
produced (17). In general, the Data suggest that, together with 
cancer cells, CAFs may be one of the essential components of 
the TME that could represent molecular therapeutic targets for 
the treatment of cancer (18). Hence, the pathological under-
standing of OVAC through the close involvement of CAFs in 
malignant tumors is crucial for developing novel strategies for 
early diagnosis and/or therapies (19).

2. Role of ovarian fibroblasts

Anatomically, ovaries are retro‑peritoneal organs, ovoid in 
shape, presenting two main regions including the cortex and 
the medulla. The cortical region, also termed the stroma, is full 
of connective tissues, low in collagen fibers, but rich in fibro-
blasts and myofibroblasts and contains the ovarian organelles 
(follicles). Fibroblasts play important roles in this environment, 
including guiding inflammation, ECM deposition, epithelial 

differentiation regulation  (20) and wound healing  (20,21). 
Indeed, many components of the fibrillar ECM, including 
collagens type I, III and V and fibronectin are synthesized 
by fibroblasts (21,22) that also play a role in the creation of 
basement membranes via the excretion of type IV collagen 
and laminin (23). In addition, fibroblasts also secrete matrix 
metalloproteinases (MMPs), ECM‑degrading proteases, that 
emphasize the crucial role of fibroblasts in maintaining ECM 
homeostasis through the regulation of its turnover (23,24). 
Therefore, fibroblasts are considered as the main origin of 
ECM components and the principal mediators of scarring 
and tissue fibrosis. Accordingly, in the stroma compartment, 
fibroblasts are the element that tightly control the maintenance 
of ovaries or tissue homeostasis through different interactions 
between cells and the production of ECM components, the 
result of which is to provide the elements necessary for the 
proper architecture and function of tissues. That said, changes 
in the characteristics of the stroma are indeed an initial 
attempt to 'repair the damage' by inducing a transformation 
of the epithelium and, interestingly, fibroblasts can 'detect' 
signals between cells and the ECM through their adhesion's 
integrin‑dependent cell‑matrix, and subsequent changes occur 
in the dynamics and composition of the stroma. The reciprocal 
complex interactions between the stroma and epithelium result 
in changes in the ECM and tumor stroma (25). This control is 
crucial to preserve normal organ or tissue morphology and for 
fibroblasts to have a proper function, as the function of normal 
fibroblasts is typically to suppress tumor formation (26).

However, it well known that compared to fibroblasts 
isolated from healthy organs or tissues, those involved in the 
cicatrization or are derived from fibrotic tissue secrete signifi-
cantly higher levels of normal constituents of the ECM (27,28). 
Such activated fibroblasts decrease their production once the 
wound is repaired and the resting phenotype is then supposedly 
restored (21). However, it is unknown whether these activated 
fibroblasts recover or rest in a resting phenotype followed by 
restocking of this particular tissue region, leaving fibroblasts 
at rest from the adjacent tissue (29). This is relevant since 
as regards organic fibrosis, fibroblasts located on the tumor 
site remain activated and experimental data have suggested 
a leading role for fibroblasts in defining the degree and 
magnitude of the tumor evolution (30). Thus, the mechanisms 
underlying the unmitigated activation of fibroblasts remain 
largely unknown.

3. Origin of ovarian CAFs

Although the origin of activated fibroblasts remains enigmatic, 
it has long been thought that their main source was resident 
fibroblasts or mesenchymal stem cells  (31), as observed 
with the conversion of mesothelial cells into myofibroblasts 
by mesothelial‑to‑mesenchymal transition  (MMT)  (32), 
becoming the most important source of CAFs in inflamma-
tory and fibrotic peritoneal pathologies (33). However, CAFs 
appear at first as the host the response caused by tumor growth 
in response to epithelial damage (34,35). Initially, the recruit-
ment of CAFs in the nascent neoplastic region may reflect the 
antitumor early response (35,36). The accumulation of CAFs 
in the wound will facilitate a series of cascades of repair 
and tissue remodeling, in addition to controlling repairs and 
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preventing possible tissue damage (35,37). However, organic 
fibrosis, which is a condition associated with the continuous 
activation of fibroblasts, results in chronic inflammation 
and altered lesions, and in the generation of the functional 
renewal of the affected tissue CAFs. This may bring about a 
fundamental program, seemingly enhanced by other cells, to 
border the unnecessary scar response, as the latter may result 
in fibrosis (38‑41). In addition, biological aging or fibroblast 
senescence can also be related to the numerous excretions of 
pro‑tumorigenic factors and may result in fibroblast activation 
during oncogenesis. The related downregulation of NOTCH 
CSL effector proteins, as well as p53 protein effectors can 
overcome the intrinsic safety mechanism of senescence, and 
allow CAF activation and proliferation (42).

However, it is known that injured epithelial and immune 
cells are recruited by cytokines released at the site of injury 
into normal tissues, including molecular patterns associated 
with damage, secreted growth factors, such as transforming 
growth factor (TGF)‑β proteins, platelet‑derived growth factors 
(PDGFs), inflammatory cytokines and chemokines [inter-
feron (INFγ; IFNG), tumor necrosis factor (TNF)α; TNF), 
interleukins  (ILs)]  (29,43), reactive oxygen species  (ROS), 
matrix metalloproteases (MMPs) (44) and the production of 
extracellular collagelike proteins, such as laminins, elastin, 
etc. (45). These mediators induce CAFs from resident fibroblasts 
and suggest that the activation of fibroblasts into CAFs results 
from numerous pathways activated by factors from OVAC 
cells. For example, the upregulation of TNFα vs. TGF‑α, subse-
quently regulated by an inflammatory process, activates nuclear 
factor‑κB (NF‑κB) (19) and may activate CAFs. In turn, TGFα 
resulting from the activation by CAFs may induce epidermal 
growth factor receptor (EGFR) signaling in OVAC, thereby 
stimulating cancer cell growth (46). The activation of fibroblasts 
is in general promoted in vivo via the TGF‑β‑Smad‑dependent 
MMT program (47). Additionally, a minor source of CAFs is 
omental adipocytes, which undergo the loss of lipids or lipid 
derivatives and differentiate into fibroblastoids or pre‑adipo-
cytes at the adipose stage (48‑50), or a variation of adipocytes 
into fibroblasts, as observed in type 2 diabetes or obesity, during 
inflammatory fibrotic edifications due to dysfunctional adipose 
tissue (51). The source of CAFs has been also suggested to 
derive from vasculopathies and atherosclerotic plaques (52), 
in which the transition from an endothelial to a mesenchymal 
phenotype has been observed (53).

4. Mechanisms through which CAFs affect tumor structure, 
composition and the microenvironment in ovarian cancer

Once activated, CAFs induces the signalization of EGFR in 
cancer cells and promote the growth of cancer cells (46) and 
epithelial‑mesenchymal transition (EMT) following activation 
by the increased expression of the progranulin peptide (PGRN), 
known to stimulate EMT, positively regulating α‑smooth 
muscle actin  (α‑SMA) in fibroblasts. More importantly, 
molecular interference between CAFs and the OVAC TME, 
upregulated by the TGF‑β/TGF‑βRs/Smad pathway in CAFs, 
leads to overexpression and subsequent gene secretion targets 
in the form of versican (54) involved in migration and invasion 
by CD44 binding subsequently activated by the NF‑κB and 
JNK signaling pathways. This offers the possibility for OVAC 

cells to further support a pro‑inflammatory TME and tumor 
evolution (54). It should also be noted that increased levels of 
PGRN and α‑SMA, as well as low levels of the cell adhesin 
molecule (CAM, E‑cadherin, during CAF activation promote 
a poor prognosis (14,55).

During the progression of OVAC, the stromal cells that 
surround the tumor appear to be a distinct ‘innocent’; microen-
vironment, which in reality, hides various complex interactions 
between tumor and stromal cells and particularly CAFs, leading 
to an increase in the expression of vascular endothelial growth 
factor (VEGF), with CAFs being the main source of VEGF (56). 
VEGF can be activated by PDGF, also produced by CAFs. 
PDGF acts by its receptor to induce angiogenesis by indirectly 
recruiting stromal fibroblasts secreting VEGF (57). PDGF also 
recruits and induces bone marrow‑derived cells (BMCs) to 
form endothelial or smooth muscle cells, and consequently to 
promote endothelial and smooth muscle cells proliferation and 
migration (57). In addition, endothelial cells produce the PDGF 
B subunit that can induce pericyte recruitment to the vascular 
wall and maintain endothelial stability, leading to tumor angio-
genesis (58). Moreover, in OVAC, VEGF‑A, another VEGF 
family member, stimulates cancer stem cells (CSCs) in OVAC 
via its activation of the VEGFR2‑dependent receptor in order 
to upregulate the integration site 1 of B‑cell‑specific Moloney 
murine leukemia virus integration site 1 (Bmi1) (59). CAFs 
are also involved in creating and maintaining CSCs through 
insulin‑like growth factor 1 receptor (IGF‑IR) activation. This 
activation induces Nanog expression, the main transcription 
factor that confers the pluripotency of autonomous renewal 
and ground state to the phenotype of embryonic stem cells and 
reprogramming into cancer cells (60). IGF signaling is associ-
ated with OVAC chemoresistance and tumor development (61); 
IGF‑1R‑AKT signaling activation through the actions of 
chemotherapeutics agents increase rise the production of 
genes involved in self‑renewal (Oct4/Sox2/Nanog), promoting 
heterogeneous functioning in ovarian CSCs during the acqui-
sition of chemoresistance (62). However, metastasis to other 
organs occurs when cancer cells recruit normal fibroblasts 
into the tumor mass to be activated by various self‑regulated 
genetic and epigenetic alterations regulated by cancer cells, 
for which the prolonged activated state may be related to 
epigenetic reprogramming (63‑65). Indeed, the global hypo-
methylation of CAF genomes has been reported (66), as is 
the case of the promoter of the hypermethylation of the RAS 
protein activator like‑1 (RASAL1), leading to the suppression 
of its transcription, the augmented activity of Ras‑GTP and the 
perpetuation of fibroblast activation in renal fibrosis (64). This 
global hypermethylation suggests the possibility of stimulating 
the upregulation of genes associated with CAF secretome. As 
discussed in the previous section, fibroblast activation in CAFs 
is multifactorial (29,43‑45) and activators include epidermal 
PDGF, fibroblast growth factor (FGF)2, EGF and C‑X‑C motif 
chemokine ligand (CXCL)12 (43). In addition, communica-
tion between cells through adhesion molecules include CAFs, 
intercellular adhesion molecule 1 (ICAM1) and vascular cell 
adhesion molecule 1 (67). Subsequently, tumor growth is depen-
dent on the irregular and uncontrollable proliferation of cancer 
cells and CAFs that are undeniably inducers of tumorigenic 
activation signals (68), producing autocrine and/or paracrine 
cytokines promoting the biologically features of the tumors.
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However, tumor‑associated macrophages (TAMs), another 
major component of the stroma are also affected by CAFs (69). 
TAMs were at first classified through two distinct cell types, 
including the ‘classically’ activated (M1 or type I) and the 
‘alternatively’ activated (M2 or type II) macrophages.

M1 macrophages produce a large part of ROS and can 
orchestrate an anti‑tumor TH1 immune response, while M2 
macrophages play an important role in tumor progression, 
promoting the reparation of tissues, as well as angiogen-
esis. M2 macrophages also produce immunosuppressive 
factors, including IL‑10, arginase, indoleamine 2,3‑dioxy-
genase (IDO) and TGF‑β (69). The enrolment of monocytes 
into the TME and their differentiation into M2 macrophages 
are promoted by CAFs (70). Particularly, CAFs induce the 
secretion of CXCL12/stromal cell‑derived factor-1 (SDF‑1), 
the macrophage colony‑stimulating factor (M‑CSF or CSF‑1), 
IL‑6 and CCL2/MCP‑1 dynamically encouraging the enrol-
ment of monocytes to the TME and their differentiation into 
a M2 immunosuppressive phenotype (70‑72). Thus, CAFs and 
OVAC are associated at all levels of cancer development and 
progression. In addition, CAFs may be a determinant of malig-
nant cancer progression and at the same time are an important 
target for cancer treatments, since they produce factors that 
facilitate the angiogenic recruitment of endothelial cells and 
pericytes, such as growth factors, chemokines and the ECM.

5. Targeting CAFs for diagnosis and cancer therapy

In preclinical and clinical in vivo studies, CAFs are identi-
fied by 4 types of markers, including: i) ECM components, 
including type I and II collagen, fibronectin, tenascin C (TN‑C) 
and periostin, as well as remodeling enzymes, such as lysyl 
oxidase (LOX), LOXL1, MMP and tissue inhibitor of metal-
loproteinases (TIMP); ii) cytokines and growth factors, such 
as TGF‑β, VEGF, PDGF, EGF, FGF, prostaglandin E2 (PGE2), 
connective tissue growth factor (CTGF), SDF‑1 (CXCL12) and 
WNT; iii) ligands and receptors, such as PDGFRα/β, vascular cell 
adhesion molecule 1 (VCAM1), discoidin domain‑containing 
receptor 2 (DDR2), TGF‑βRI/II, EGFR, FGFR, bone morpho-
genetic protein receptor (BMPR)I  (BMPR1A/B)/BMPRII, 
podoplanin and fibroblast activation protein alpha (FAP), as 
well as a decrease in caveolin 1 (CAV1) expression; iv) compo-
nents of the cytoskeleton and cytoplasmic proteins, including 
desmin, vimentin, αSMA and FSP1/S100A4 (73).

Therefore, targeting CAF formation refers to defining 
the controlling pathways that lead to the activation or deple-
tion of CAFs once they are formed. This may correspond to 
negatively interacting with complex pathways that can alter 
change the equilibrium of the OVAC microenvironment, and 
the risk of toxicity may exist. In this respect, currently, clinical 
treatments target the activation or modulation of CAF func-
tions, but do not completely terminate their formation. This 
is the case for the gene encoding the serine‑threonine protein 
kinase B‑RAF (BRAF) that has been targeted in melanoma 
to activate CAFs. This remodels the tumor ECM and provides 
pro‑tumorigenic signals supporting residual disease (74,75). In 
addition, Nagasaki et al (76) also reported that the neutraliza-
tion of IL‑6 receptors with antibody inhibited IL‑6 signaling 
and tumor angiogenesis. This is carried out through the 
inhibition of interactions between the cancer and stroma, as 

cancer cells stimulate IL‑6 secretion from fibroblasts and 
subsequently induce tumor angiogenesis, suggesting IL‑6 
as a novel anti‑angiogenesis therapeutic target  (77). In the 
same manner, poly(ADP‑ribose) polymerase (PARP) inhibi-
tors and VEGF/VEGFR inhibitors have been approved by 
the FDA as targeted therapies (14). In addition, inhibitors of 
angiogenesis FGFRs, PDGFRα/β, multi‑target receptor tyro-
sine kinase (RTKi), cyclooxygenase (Cox)‑2 and cytokines 
and their receptors are involved in clinical trials (78). The 
cell‑surface serine protease, also termed FAP, for specifically 
targeting CAFs, is another class emerging as promising candi-
dates. It has been shown that the depletion of FAP+ CAFs in 
mice suffering from melanoma reduces the activity of immu-
nosuppressive cells and improves the antitumoral activity of 
CD8+ tumor‑infiltrating T cells (79,80).

6. Conclusions and perspectives

Initially, the OVAC therapeutic options are chiefly reduc-
tion surgery surveyed by adjuvant chemotherapy or vice 
versa. With the understanding of the productive nature 
of the peritoneal cavity for carcinomatosis, of the mecha-
nisms underlying the unmitigated activation of fibroblasts 
that remain largely unknown, as well as the complexity of 
receptor/ligand‑mediated interactions between stromal cells 
and tumor cells, CAFs have been found to be a key part of 
the TME contributing primarily to the maintenance, progres-
sion and metastasis of OVAC and therapeutic resistance. 
Therefore, the development of novel early diagnostic tools 
and therapies targeting CAFs should be promising. Although 
several strategies against CAFs have been undertaken and 
have shown promising results, the effectiveness of most 
drugs targeting the stroma as single agents seems limited. 
Much remains to be done to identify, with minimal toxicity, 
the most effective combinations with anti‑CAFs alone or in 
combination with other treatments.
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