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Abstract: A magnetically recyclable Ni/NiO/g-C3N4 photocatalyst with significantly enhanced
H2 evolution efficiency was successfully synthesized by a simple ethanol-solvothermal treatment.
The presence of electronegative g-C3N4 is found to be the key factor for Ni0 formation in ternary
Ni/NiO/g-C3N4, which provides anchoring sites for Ni2+ absorption and assembling sites for Ni0

nanoparticle formation. The metallic Ni0, on one side, could act as an electron acceptor enhancing
carrier separation and transfer efficiency, and on the other side, it could act as active sites for H2

evolution. The NiO forms a p–n heterojunction with g-C3N4, which also promotes carrier separation
and transfer efficiency. The strong magnetic property of Ni/NiO/g-C3N4 allows a good recyclability
of catalyst from aqueous solution. The optimal Ni/NiO/g-C3N4 showed a full-spectrum efficiency of
2310 µmol·h−1·g−1 for hydrogen evolution, which is 210 times higher than that of pure g-C3N4. This
ethanol solvothermal strategy provides a facile and low-cost synthesis of metal/metal oxide/g-C3N4

for large-scale application.

Keywords: Ni/NiO/g-C3N4; magnetically recoverable; ethanol-solvothermal; environmental-friendly
synthesis

1. Introduction

Photocatalysis has attracted great attention in environmental protection and the do-
main of new energy application as it is an effective technique to degrade water pollutants
and convert sustainable solar energy into applicable chemical energy, such as hydrogen.
Carbon nitride, as a metal-free polymer material, has been widely used in photocatalytic
water splitting since 2009, due to its advantages of non-toxicity, low cost, high stability,
excellent optical properties, and electronic structure [1–3]. Nevertheless, the low sep-
aration and high recombination efficiency of photogenerated charge carriers limits its
application in H2 evolution. Loading noble metals such as Au, Ag, and Pt onto carbon
nitride as co-catalysts is an effective way to solve these problems. However, the high
price of noble metals limits their application in practical conditions. As a transition metal,
nickel and nickel-containing compounds are considered to be an effective co-catalyst for
photocatalysis [4].

Many methods have been reported to load nickel species onto g-C3N4. For exam-
ple, Ni/NiO core-shell particles can be loaded on a g-C3N4 nanosheet by using a high
temperature hydrogen reduction method (H2, 200–400 ◦C), which greatly improved the
hydrogen evolution efficiency under visible light irradiation [5]. Amorphous NiO prepared
by high temperature calcination (air, 300 ◦C) can form heterojunction with g-C3N4, hence
improving the efficiency of photocatalytic hydrogen production [6]. The Ni nanoparti-
cles that loaded onto sulfur-doped g-C3N4 nanosheets by photodeposition can be used
as the active center to participate in hydrogen production [7]. These works reveal the
advantages of nickel-based materials for photocatalytic hydrogen production, such as good
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stability, high activity, and earth abundance. Nevertheless, most of these photocatalysts
still suffer disadvantages, e.g., the harsh and dangerous synthetic conditions or the single
phase obtained in one method. Additional papers related to Ni/g-C3N4 or NiO/g-C3N4
composite synthesized by different methods are summarized in Table S1. Compared with
these articles, our preparation method not only avoided harsh preparation conditions
such as high reduction temperature under H2 atmosphere, but also constructed magnetic
recoverable Ni/NiO/g-C3N4 ternary composite in one step, which has not previously
been reported.

The magnetic recoverability of photocatalysts is of key importance in practical ap-
plications. Therefore, many studies have focused on designing magnetic composites
for practical photocatalysts. Core-shell catalysts like Fe3O4@ZnS and NiCo2O4@ZnS [8]
have been synthesized using surfactant to build the magnetic properties of photocat-
alysts. However, the high cost of surfactant limits its further application in practice.
g-C3N4/graphene/NiFe2O4 [9] and ZnFe2O4-Graphene [10] were synthesized using a
hydrothermal strategy to establish their magnetic properties. However, only metal oxides
(NiCo2O4, Fe3O4) instead of metallic metal (e.g., Ni, Co, Fe) that can be introduced by
hydrothermal strategy for photocatalysts were used.

In this work, a Ni/NiO/g-C3N4 composite was first constructed by a one-step
solvothermal strategy. The Ni and NiO can be composited with g-C3N4 simultaneously
by a mild solvothermal treatment (160 ◦C) using ethanol as solvent. The NiO forms a p–n
heterojunction with g-C3N4 [11]; the metallic Ni0, on one side, act as an electron acceptor,
lowering the recombination photogenerated charge carriers, and on the other side, act as
active sites for H2 evolution. More importantly, the Ni/NiO/g-C3N4 composite shows
strong magnetic properties, which contributes to an easy recoverability of the catalysts. The
optimum catalyst showed a full-spectrum efficiency of 2310 µmol·h−1·g−1 in photocatalytic
H2 production, which is 210 times higher than that of bulk carbon nitride.

Compared with hydrogen reduction under high temperature [5], our ethanol-solvother-
mal-strategy (160 ◦C) avoids the use of dangerous H2 and high temperature during prepa-
ration, and can introduce Ni/NiO onto g-C3N4 in one step. This solvothermal preparation
method can be used as a universally applicable strategy for Metal/Metal-oxide/g-C3N4
composites. Through a series of controlled trials, we have confirmed that the electronega-
tivity of g-C3N4 is a key factor for the formation of Ni0.

2. Experimental Section
2.1. Materials

Nickel acetate tetrahydrate (Ni(CH3COO)2·4H2O, ≥98.0%, Sigma Aldrich), urea
((NH2)2CO, ≥99.5%, Sigma Aldrich), triethanolamine ((C2H5O)3N, ≥99.0%, Sigma Aldrich),
and ethanol (C2H5OH, ≥99.7%, China National Medicines Corporation Ltd., Beijing, China)
were used in experiments without further purification.

2.2. Preparation of Bulk g-C3N4

Bulk g-C3N4 was synthesized by thermal polymerization method. In a typical syn-
thesis process, 10 g of urea was put in a crucible with cover holds and heated in a muffle
furnace at 550 ◦C for 4 h with a heating rate of 10 ◦C min−1. The obtained products, after
calcination and grounding, were collected for further use.

2.3. Preparation of Ni/NiO/g-C3N4 Samples

The Ni/NiO/g-C3N4 samples were synthesized by a simple solvothermal method as
shown in Figure 1. In detail, the bulk carbon nitride (30 mg) was dispersed in 15 mL anhy-
drous ethanol and subjected to ultrasound for 60 min. Afterwards, 30 mg of Ni(CH3COO)2
was added to the solution and subjected to ultrasonic treatment for another 30 min. The
solution was then transferred into a 20 mL Teflon-lined autoclave and heated at 160 ◦C
for 10 h to form the final samples. After being naturally cooled to room temperature, the
prepared sample was washed with ethanol three times and collected by centrifugation.
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The resulting product was vacuum dried overnight at 60 ◦C and named 1.0 Ni/CN. The
weight ratio of nickel acetate to carbon nitride in precursor was 0.4, 0.6, 0.8, 1 and 1.2, re-
spectively; therefore, the synthesized samples were named x-Ni/CN (x = 0.4, 0.6, 0.8, 1 and
1.2). Ni(CH3COO)2 without the addition of g-C3N4 was also prepared with solvothermal
treatment to prepare the controlled sample trials, and the resulting product was named
Ni/0CN.
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Figure 1. The synthetic route of Ni/NiO/g-C3N4 composite.

The synthesis process of Ni/GO is similar to that of x-Ni/CN, except that the solvother-
mal reaction is carried out by replacing g-C3N4 with the same amount of GO (i.e., graphene
oxide). The Mg/Ni/CN were prepared according to the same preparation procedure
of x-Ni/CN, with different amounts of Mg(CH3COO)2 added to the precursor solution
together with the addition of Ni(ac)2. The molar ratio of Mg/Ni is 2 and 1.

The protonated H+/CN was prepared by soaking and heating g-C3N4 in 1 mol/L
HCl at 80 ◦C for 10 h.

2.4. Characterization

The X-ray diffraction (XRD) patterns were tested with D8 diffractometer (Cu-Kα

radiation, λ = 0.15406 nm) agent produced by Germany Bruker AXS Co. Ltd., (karlsruh,
Germany). The X-ray photoelectron spectroscopy (XPS) was determined on an ESCA-3
Mark II spectrometer (VG Scientific Ltd., Devon, England) using Al Ka (1486.6 eV) radiation.
The Hitachi HT-7700 instrument was used for the measurement of transmission electron
microscopy (TEM) with an acceleration voltage of 200 kV. The general morphology of the
photocatalyst was obtained by scanning electron microscopy (SEM, 7500F, JEOL) equipped
for energy-dispersive X-ray (EDX) spectroscopy. Ultraviolet–visible (UV–vis) diffuse re-
flectance spectrum (DRS) spectra were recorded on a UV–vis spectrophotometer (Beijing
Purkay General Instrument Co. Ltd., TU-1901, Beijing, China). The Brunauer–Emmett–
Teller (BET) surface areas of the synthesized samples were measured with a Quantachrome
N22–27E analyzer at 77 K. Photoluminescence (PL) spectra of photocatalysts were recorded
on a Hitachi F-4600 fluorescence spectrophotometer. The synthesized samples were mea-
sured by a Fourier transform infrared (FTIR) spectrometer (Thermo Fisher Scientific, Nicolet
IS5, Waltham, MA, USA) at room temperature. The N2 adsorption–desorption isotherm
were analyzed on a Micromeritics ASAP 2020 instrument (Micromeritics Instrument Co.,
Norcross, GR, USA). The BET surface areas were calculated using the Barrett–Joyner–
Halenda (BJH) method. ATR-FTIR spectra were recorded on an infrared spectrometer
(Thermo Fisher Scientific, Nicolet IS5, Waltham, MA, USA).

2.5. Photoelectrochemical Measurements

The photoelectrochemical measurements were performed using a CHI 760E electro-
chemical workstation. The standard three-electrode appliance was used to determine the
electrochemical impedance spectra (EIS) measurement, in which the calomel electrode
was used as the reference electrode and the counter electrode was the Pt electrode. 0.5 M
Na2SO4 aqueous solution was utilized as the electrolyte. A 300 W Xenon lamp (PLS-SXE
300, Beijing Bofeilai Co., Beijing, China) was used as the light source. When the baseline
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of the electrochemical workstation was stabilized, EIS measurements were conducted in
the frequency range of 105–10−1 Hz at open circuit potential with an alternating current
voltage amplitude of 20 mV. Transient photocurrent was accomplished in a visible light
irradiation system that continuously cycled on/off.

The working electrodes were prepared as follows: In 0.5 mL of isopropyl alcohol,
0.05 g of each of the photocatalysts was ultrasonically dispersed to form a homogeneous
mixture. Then, the mixture was poured onto a 5 cm × 1 cm fluorine-doped tin oxide (FTO)
glass electrode.

2.6. Photocatalytic Activity Evaluation
2.6.1. Photocatalytic Hydrogen Production Test

The photocatalytic hydrogen production experiment was performed in a vacuum
quartz reactor with a cooling water system (LX-300, Beijing Zhongjiaojinyuan Co., Beijing,
China). Typically, 15 mg of the catalyst powders was dispersed in a 50 mL aqueous solution
containing 10 mL of triethanolamine (TEOA, 10 vol. %, as a sacrificial reagent). Before light
irradiation, air in a quartz reactor and dissolved oxygen in liquid solution were extracted by
vacuum pump. A 300 W Xenon lamp without any filters (PLS-SXE 300, Beijing Bofeilai Co.,
Beijing, China) was used as the light source. The hydrogen production was evaluated every
one hour using an online gas chromatography (GC7900, Techcomp, Shanghai, 5A molecular
sieve column) with a TCD detector. The test was carried out at a column temperature of
40 ◦C, using nitrogen as the carrier gas.

2.6.2. Photocatalytic Degradation Experiment

As a widely used organic dye, rhodamine B (RhB) was chosen as a pollutant for the
photocatalytic degradation experiment. A 300 W Xenon lamp without any filters (PLS-
SXE 300, Beijing Bofeilai Co., Beijing, China) was used as the light source. Prior to light
irradiation, a 30 mg sample was dispersed into the RhB solution (100 mL, 5 mg/L) and
stirred under dark conditions for 30 min to allow an adsorption–desorption equilibrium to
be achieved between the photocatalysts and RhB. Upon starting light irradiation, 5 mL of
solution was sampled and centrifuged every 15 min to collect the upper liquid and test
the dye concentration. Finally, the concentration of RhB was measured using a TU-1901
spectrophotometer

3. Results and Discussion
3.1. Ni/NiO/g-C3N4 Formation Mechanism

The synthesized x-Ni/CN samples were characterized by XRD to distinguish the
phases that formed on each catalyst (Figure 2a). Peaks at 27.5◦ were assigned to the (002)
peak of g-C3N4 caused by the inter-layer accumulation of the g-C3N4 aromatic layer [12].
Peaks at 44.5◦ and 51.8◦ are due to the Ni crystal phase (JCPDS No. 65-2865); and peaks at
37.1◦, 43.1◦, 62.6◦, and 75.0 are related to the formation of NiO (JCPDS No.65-1049). As the
Ni/CN ratio increased from 0.4 to 1.0, the Ni peaks became more intense indicating the
increasing reduction of Ni(ac)2 to Ni by ethanol solvent; the g-C3N4 peak became weaker
likely because the new-formed Ni/NiO species covers g-C3N4 in samples. Once the Ni/CN
ratio further increased from 1.0 to 1.2, the Ni peaks became weaker, whereas, on the other
hand, the NiO peaks became more intense. This suggests that overloading of Ni in the
precursor solution results in the formation of NiO due to the limited reduction capability
of ethanol solvent. Note that, if g-C3N4 was not added to the precursor solution, only
NiO could be obtained on the final catalysts (Figure 2a). This suggests that the presence of
g-C3N4 is the crucial factor for Ni0 formation in this preparation.
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for g-C3N4 and Ni2+/CN.

Since Ni0 are critical species for photocatalytic H2 evolution due to its electron transfer
accelerator and active sites effects, and Ni0 can only be formed under the presence of
g-C3N4 during ethanol solvothermal treatment, it is quite interesting to explore what is the
crucial factor for Ni0 formation during our preparation.

We considered that the bonding sites of Ni2+ provided by electronegative g-C3N4 are
the crucial factor for Ni0 formation. To verify our speculation, Mg(CH3COO)2 (with molar
ratio of Mg/Ni = 2:1), which could compete with Ni2+ to occupy the electronegative binding
sites on g-C3N4, were added to the precursor solution. As expected, once Mg(CH3COO)2
with Mg/Ni = 2 was added to the precursor solution, only Ni(OH)2 was formed on g-C3N4
(Figure 2b). The Ni0 were not formed as a result of the occupation of electronegative binding
sites by Mg2+. When lower amounts of Mg(CH3COO)2 (Mg/Ni = 1) were added, both
Ni(OH)2 and Ni0 could be formed after ethanol solvothermal treatment (Figure 2b). The Ni0

formation are due to the available electronegative sites left after Mg2+ occupation. These
results confirmed that the electronegative sites on g-C3N4 are crucial for Ni(CH3COO)2
reduction to Ni0.

The crucial effect of the electronegative binding site for Ni0 formation was also verified
by replacing g-C3N4 with protonated g-C3N4 (H+/CN) and electronegative GO (Figure 2b).
Before protonation treatment, the g-C3N4 surface was electronegative (zeta potential of
−26.8 mV, Figure 2c), and the Ni0 was the main phase formed after ethanol treatment,
together with a small amount of NiO phase (Figure 2b). Whereas, after protonation
treatment, the surface of H+/CN showed electropositive properties (zeta potential of
+12.0 mV, Figure 2c), the Ni(OH)2 instead of Ni0 was formed on g-C3N4 (Figure 2b). On
the other hand, if we use electronegative GO as the support in the precursor solution, Ni0

were again formed as the main phase after ethanol treatment (Figure 2b).
The zeta potentials of samples after Ni(CH3COO)2 adsorption and ethanol solvother-

mal treatment were also measured to confirm the key role of surface electronegativity. The
zeta potentials of g-C3N4, Ni2+/g-C3N4, and 1.0 Ni/CN were measured and the results
were determined to be −25.6, −15.3, and −8.7 mV, respectively (Figure 2c), confirming our
speculation that electronegative g-C3N4 provide absorption sites and binding sites for Ni2+,
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and assist Ni2+ reduction to Ni0 during ethanol solvothermal treatment. Furthermore, the
potential of GO, Ni2+/GO, and 1.0 Ni/GO (Figure 2b) to follow the same trend of g-C3N4
confirmed the key function of the electronegative surface for Ni0 formation, together with
the successful formation of Ni0 on the GO support (Figure 2b).

The ATR-IR spectra were also carried out to investigate the functional groups on the
surface of g-C3N4 and Ni2+/CN (Figure S1), hence to further explore the Ni2+ bonding
mechanism on the g-C3N4 surface. The stretching vibration peak at 3500–3000 cm−1 are
attributed to N-H stretching mode; the sharp peaks at 1621 cm−1 are attributed to the -OH
stretching mode of the surface hydroxyls dangling on the g-C3N4 surface. Ni2+ introduction
decreases the intensity of N-H and N-H2 groups on the surface of g-C3N4, likely due to
the Ni loading on the cavity of the heptazine ring of g-C3N4 (Figure S2) [13,14], which
shades the N-H stretching detected by IR. Furthermore, Ni2+ introduction also decrease
the intensity of the -OH pattern (Figure 2d), which indicates that the Ni2+ species (as Lewis
acid) also binds to the surface O- (as Lewis base) deriving from the dissociation of surface
hydroxyl groups [15].

Based on the above analysis, we can conclude that the presence of electronegative
g-C3N4 is the key factor for Ni0 formation in ternary Ni/NiO/g-C3N4. The electronegative
g-C3N4 enables Ni2+ reduction by providing adsorption sites for Ni2+ and binding sites
for the Ni0 particle. Furthermore, g-C3N4 may also act as a catalyst facilitating the Ni2+

reduction during ethanol-thermal treatment. Acetate may also facilitate Ni2+ reduction via
its reducibility [16]. Due to the limited reduction capability of ethanol, excessive nickel
acetate will decompose into NiO, forming p–n heterojunction with g-C3N4.

3.2. XPS and EDS Analyses

To explore the chemical environment of each element in the prepared samples, XPS
was carried out (Figure 3a–c). In the C 1 s spectrum (Figure 3a), peak at binding energies
of 284.6 eV is due to the sp2-hybridized C–C bonds of standard carbon tapes [17]; peak at
288.1 eV is assigned to the sp2-bonded carbon atom at the heterocyclic ring (N-C=N) in
aromatic carbon nitride, which is the major type of carbon in a triazine-based skeleton [18].
It can be seen from Figure 4a that the peak value at 288.1 eV gradually decreases from
288.1 eV to 287.0 eV as nickel content increases, indicating the increase in electron cloud
density of carbon atoms in g-C3N4, which further proves the strong interaction between Ni
and g-C3N4, i.e., the successful synthesis of the Ni/g-C3N4 composite. The N 1 s spectrum
(Figure 3b) shows two main peaks at 398.4 eV and 399.9 eV, which are assigned to the
sp2-hybridized nitrogen (C=N-C) and the N-C3 groups [19], respectively. Weak peaks at
400.9 eV are also observed due to amino functions (C-N-H) resulting from incomplete
condensation of the melon structure [20]. The last faintly visible peak at 404.4 eV is due to
the existence of the π-excitation effect [21]. In the N 2p spectrum (Figure 3c), the strongest
peak at 852.7 eV is directed to Ni0 2p3/2 [7]; the peak at 854.5 eV is assigned to Ni2+ 2p3/2
of NiO; and the peak at 859.5 eV is ascribed to the satellite signal of Ni2+ 2p3/2 [4,22]. As
the Ni content increases from 0.4 to 1.2, the peak areas of Ni0 and Ni2+ also increased,
indicating the increasing loading of Ni in the composites.

The XPS results confirm a ternary Ni/NiO/g-C3N4 constitute of composite obtained
via our synthesis, which is consistent with XRD results (Figure 2a). Furthermore, energy
dispersive (EDS) patterns of samples (Figure S3) show four signal peaks of C, N, O, and
Ni, again verifying the coexistence of these elements in the catalyst powders. As the Ni
precursor content increases from 0.4, 0.6, and 0.8, to 1.0 and 1.2, the actual loading of
Ni increased from 9.57 wt%, 14.55 wt%, and 18.65 wt%, to 23.72 wt% and 29.93 wt%,
respectively.
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3.3. Morphology and Texture Property Analyses

To investigate the structure and morphology of samples, SEM characterizations were
carried out (Figure 4 and Figure S4). The pure g-C3N4 (Figure 4a and Figure S4a) exhibits a
regular bulk morphology and a smooth surface with no large pores. As the Ni precursor
content was added and increased, the bulk g-C3N4 disrupted into small particles (Figure 4)
with layered and porous structures (zoom-in views in Figure S4). Furthermore, many
ball-flower structures were found on the composite surface as the Ni precursor content
increased to 1.0 and 1.2 (Figure S4). This is likely because during solvothermal treatment
Ni2+ ions could penetrate into the layers of g-C3N4, thus destroying the van der Waals
force between the layers of carbon nitride as the Ni0 particles grew. Therefore, the g-C3N4
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underwent a strong structural disruption and rearrangement, then became small particles
with layered and porous structures which could greatly enhance the specific surface area of
the composite, as well as the amount of exposed active sites for H2 evolution. Furthermore,
many ball-flower structures were found on composite surface as the Ni precursor content
increased to 1.0 and 1.2 (Figure S4). These ball-flower structures are very likely the Ni ball-
flower particles, since it was only found when Ni content reached 1.0 and 1.2 (Figure S4e,f).

The elemental mapping images of the chosen area are shown in Figure S5a–e, which
demonstrates even distribution of C, N, O and Ni atoms on the 1.0 Ni/CN surface. This
indicates that Ni/NiO were evenly distributed on the surface of g-C3N4. TEM images
were further conducted to analyze the surface structure of the Ni/NiO/g-C3N4 composite
(Figure S5f,g). The TEM of 1.0 Ni/CN revealed similar morphology as SEM images show
(Figure 4e) that bulk g-C3N4 locates inside and amorphous Ni/NiO locates outside. Two
lattice fringes of 0.203 nm and 0.242 nm were observed in Figure S5g, which are attributed
to the Ni (111) crystal plane and NiO (111) crystal plane [23], respectively. Combining the
previous XRD patterns (Figure 2a) and XPS spectra (Figure 3) analysis, we can conclude
that Ni and NiO species were tightly bounded to each other, and successfully coupled
with g-C3N4.

The nitrogen (N2) physisorption isotherms were measured and analyzed to character-
ize the textural properties of the samples (Figure 5a and Table 1). All the N2 adsorption–
desorption isotherms exhibit type IV behavior with H3 hysteresis loop [24], indicating the
existence of slit-shaped mesopores, which is in accordance with the electron microscopy
characterization results (Figure 4 and Figure S4). The Barret–Joyner–Halenda (BJH) pore-
size distribution curves are presented in Figure 5b. According to the data in Table 1, the
specific surface area of the composite gradually increased from 28.4 to 102 m2/g as the
Ni content increased from 0 to 0.8, then sharply increased to 148.2 and 152.4 m2/g when
the Ni content increased to 1.0 and 1.2. The formation of smaller composites with layered
and porous structure (Figure 4 and Figure S4) are consider to be the reason for the increase
of BET surface areas. The sharp surface area increase of 1.0 Ni/CN and 1.2 Ni/CN are
likely due to the Ni ball-flower structure formation, which could disrupt bulk g-C3N4 more
seriously and promote specific surface areas itself.
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Table 1. Texture properties of prepared samples.

Samples SBET (m2 g−1) Pore Volume (cm3 g−1)

g-C3N4 28.4 0.05
0.4 Ni/CN 76.2 0.31
0.6 Ni/CN 82.1 0.36
0.8 Ni/CN 102.6 0.39
1.0 Ni/CN 148.4 0.46
1.2 Ni/CN 152.6 0.41
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The pore diameter distribution of catalysts is shown in Figure 5b and the pore volume
information is listed in Table 1. The low pore volume of 0.05 m3/g of pure g-C3N4 signifi-
cantly increased to 0.31–0.46 m3/g after Ni introduction. The pore diameter (Figure 5b)
also became larger after Ni introduction. Both results are reasonable as the Ni0 formation
disrupted g-C3N4 into layered and porous structures.

3.4. Optical Properties and Photoelectrochemical Analysis

The optical properties and the band-edge positions of samples were characterized by
UV–vis diffuse reflectance spectra (DRS) as shown in Figure 6a. As Ni content increases,
the light absorption intensity and absorption range of samples are greatly enhanced and
the light absorption band-edge shifts from 464 nm of g-C3N4 to 515 nm of 1.0 Ni/CN. The
photoluminescence spectrum was used to explore the recombination rate of electrons and
holes on catalysts. Photoluminescence test is mainly used to determine the recombination
efficiency of photogenerated carriers (Figure 6b). From PL results we can see that, as the
Ni loading increases, the recombination of carriers was suppressed. Two possible reasons
may account for such a phenomenon: (1) bulk g-C3N4 was stripped into smaller particles
with layered and porous structures (Figure 4 and Figure S4) by the Ni0 growth inside
g-C3N4 layers, which could reduce the carrier transfer pathway from the core section of
g-C3N4 to the surface. Therefore, the carrier transfer efficiency from cores to surfaces can
be accelerated, and the recombination of electrons and holes can be suppressed. (2) The
Ni loading can also accelerate the electron transfer from g-C3N4 to Ni particles, hence
suppressing electron and hole recombination in the composite.

Materials 2021, 14, x FOR PEER REVIEW 10 of 15 
 

 

with layered and porous structures (Figures 4 and S4) by the Ni0 growth inside g-C3N4 

layers, which could reduce the carrier transfer pathway from the core section of g-C3N4 to 
the surface. Therefore, the carrier transfer efficiency from cores to surfaces can be acceler-
ated, and the recombination of electrons and holes can be suppressed. (2) The Ni loading 
can also accelerate the electron transfer from g-C3N4 to Ni particles, hence suppressing 
electron and hole recombination in the composite. 

 
Figure 6. (a) UV–vis diffuse reflection spectra and (b) photoluminescence spectra (PL) of prepared 
catalysts; (c) electrochemical impedance spectra (EIS) of prepared catalysts and (d) transient pho-
tocurrent response under visible light irradiation. 

The electrochemical impedance spectra (EIS) can also be used to forecast carrier 
transfer efficiency by providing charge transfer resistance information of catalysts, which 
is positive related to the Nyquist curve radius [25]. The Nyquist curve radius decreases 
with increasing Ni content (Figure 6c), indicating that Ni loading could reduce electrode 
resistance (i.e., charge transfer resistance) of the composite. A photocurrent measurement 
is useful to examine carrier separation and transfer efficiency of photocatalysts [26,27]. 
The photocurrent response intensity increases as the Ni content increases, revealing that 
Ni loading enhances electron transfer efficiency. We consider that the p–n heterojunction 
between NiO and g-C3N4 and the Ni formation as electron receiver are responsible for the 
increase in carrier separation and migration efficiency. The 1.2 Ni/CN shows lower pho-
tocurrent response intensity than 1.0 Ni/CN, likely because overloading of Ni lowers light 
absorption via a shading effect, hence introducing photo-excited electrons to a lower den-
sity in the composite. The PL, EIS, and photocurrent characterizations show an almost 
similar conclusion that Ni loading could enhance carrier separation and transfer efficiency 
of the composites. 

3.5. H2 Evolution and Photodegradation Test 
Figure 7a shows the photocatalytic H2-production activities of different samples. The 

photocatalytic H2-production rate is almost negligible for pure g-C3N4 due to the fast car-
rier recombination between conduction band (CB) electrons and valence band (VB) holes, 
as well as the lack of metal sites for H2 evolution. As the Ni/CN ratio increases from 0 to 
1.0, the H2-production rate increased from 20 μmol·h−1·g−1 of g-C3N4 to 2310 μmol·h−1·g−1 of 

Figure 6. (a) UV–vis diffuse reflection spectra and (b) photoluminescence spectra (PL) of prepared
catalysts; (c) electrochemical impedance spectra (EIS) of prepared catalysts and (d) transient pho-
tocurrent response under visible light irradiation.

The electrochemical impedance spectra (EIS) can also be used to forecast carrier
transfer efficiency by providing charge transfer resistance information of catalysts, which
is positive related to the Nyquist curve radius [25]. The Nyquist curve radius decreases
with increasing Ni content (Figure 6c), indicating that Ni loading could reduce electrode
resistance (i.e., charge transfer resistance) of the composite. A photocurrent measurement
is useful to examine carrier separation and transfer efficiency of photocatalysts [26,27].
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The photocurrent response intensity increases as the Ni content increases, revealing that
Ni loading enhances electron transfer efficiency. We consider that the p–n heterojunction
between NiO and g-C3N4 and the Ni formation as electron receiver are responsible for
the increase in carrier separation and migration efficiency. The 1.2 Ni/CN shows lower
photocurrent response intensity than 1.0 Ni/CN, likely because overloading of Ni lowers
light absorption via a shading effect, hence introducing photo-excited electrons to a lower
density in the composite. The PL, EIS, and photocurrent characterizations show an almost
similar conclusion that Ni loading could enhance carrier separation and transfer efficiency
of the composites.

3.5. H2 Evolution and Photodegradation Test

Figure 7a shows the photocatalytic H2-production activities of different samples.
The photocatalytic H2-production rate is almost negligible for pure g-C3N4 due to the
fast carrier recombination between conduction band (CB) electrons and valence band
(VB) holes, as well as the lack of metal sites for H2 evolution. As the Ni/CN ratio in-
creases from 0 to 1.0, the H2-production rate increased from 20 µmol·h−1·g−1 of g-C3N4
to 2310 µmol·h−1·g−1 of 1.0 Ni/CN. Since NiO/Ni can promote charge separation and
transfer efficiency (Figure 6b–d), Ni could act as active sites, and since more surface area
can provide more exposed active sites for H2 evolution, it is reasonable that the H2 evolu-
tion capability increases with increasing Ni/NiO content. When the Ni/CN ratio increases
from 1.0 to 1.2, the H2-production rate decreased to 1820 µmol·h−1·g−1. We consider that
the decreasing Ni0 formation (Figure 2a), i.e., the decreasing active sites for H2 production,
should account for the decrease in H2 production. Meanwhile, excessive Ni species could
exert a shading effect on g-C3N4, reducing the light absorption of g-C3N4.
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The cycle experiment and the stability of composites are shown in Figure 7b. After
three cycles of the hydrogen production test, the catalyst performance was still stable,
proving the excellent stability of the catalysts. Figure 7c and d shows the magnetic recov-
ery test of our catalysts. As shown in Figure 7c, our catalyst can be dispersed in water
homogenously; once a magnet is added (Figure 7d), almost all catalysts are immediately
attracted to the magnet. This suggests that a catalyst prepared by our method can be easily
recovered and reused in practical applications.

We also tested our catalyst in the application of RhB photodegradation (Figure S6).
Higher RhB degradation was observed on 1.0 Ni/CN than that on g-C3N4 and the RhB
degradation activity of 1.0 Ni/CN was 1.7 times higher than that of g-C3N4, according to
the degradation rate constants of each reaction.
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3.6. Mechanism for Enhanced Photoactivity

In order to explore the mechanism of enhanced carrier separation and transfer effi-
ciency, the energy band structure including band gaps, conduction band (CB), and valence
band (VB) positions of pure NiO and bulk g-C3N4 were determined. The Mott–Schottky
curves of NiO and g-C3N4 are shown in Figure 8. The negative slope of NiO indicates
it is a p-type semiconductor (Figure 8a), while the positive slope of g-C3N4 suggests it
is a n-type semiconductor (Figure 8b). As is generally known, the Fermi level (Efb) is
approximately equal to the plane potential of the semiconductor. The Fermi level (Efb) of
NiO and g-C3N4 were calculated to be 0.86 V and −0.58 V versus the Hg/Hg2Cl2 electrode
(Figure 8a,b), which was equal to 1.1 V and −0.34 V versus a normal hydrogen electrode
(NHE), respectively. The VB-XPS shows the band gap differences between VB and the
Fermi level, i.e., the Efb-EVB, of NiO and g-C3N4, which are 0.25 V and 2.10 V, respectively
(Figure 8d,e). Based on the Efb and Efb-EVB information, we therefore can determine the
VB values of NiO and g-C3N4 are 1.35 eV and 1.76 eV, respectively. Finally, the CB of NiO
and g-C3N4 can be calculated according to their respective band gap values (Figure 8f,g),
which are −1.83 eV and −0.91 eV, respectively.
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Figure 8. (a–c) Mott-Schottky plots for pure NiO, g-C3N4, and 1.0 Ni/CN; (d,e) VB-XPS spectra of
pure NiO and g-C3N4; and (f,g) determination of optical band gap of samples.

Once NiO (p-type) and g-C3N4 (n-type) are contacted, the electrons of n-type g-C3N4
will flow to p-type NiO to balance the Fermi energy level until a new equilibrium is
reached [28]. In this case, the NiO energy level moves up, and the g-C3N4 energy level
moves down, eventually forming an internal electric field between the semiconductor
interfaces. When metallic Ni0 is loaded on the surface of g-C3N4, the energy band of g-
C3N4 is bent [29], resulting in a further Fermi level shift of the ternary complex. Influenced
by the above two reasons, the Fermi level of 1.0 Ni/CN finally achieved 0.22 V (Figure 8c,
Table 2) and the overall band energy information of 1.0Ni/CN is summarized in Table 1
and Scheme 1.
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Table 2. Band position and band gap information.

Catalyst Efb
(V vs. SCE)

Efb
(V vs. NHE)

Band gap
Eg (eV)

Efd-EVB
(eV)

EVB
(V vs. NHE)

ECB
(V vs. NHE)

g-C3N4 −0.58 −0.34 2.67 2.1 1.76 −0.91
NiO 0.86 1.1 3.18 0.25 1.35 −1.83

Ni/NiO/g-C3N4 −0.02 0.22

Efd(NHE) = Efb(SCE) + 0.241; EVB = Efb + (Efb − EVB); ECB = EVB – Eg.
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Scheme 1. Schematic mechanism of Ni/NiO/g-C3N4 heterojunction for photocatalytic H2 evolution.

In this case, due to the existence of the internal electric field, photogenerated electrons
will transfer from the NiO to g-C3N4, subsequently to Ni0; while the photogenerated holes
on g-C3N4 will transfer to NiO. The p–n heterojunction between NiO and g-C3N4 could
enhance carrier separation and transfer efficiency. The Ni0, on one hand, could take effect
as electron receivers are consider to enhance carrier separation and transfer efficiency; on
the other hand, could act as active sites for H2 evolution.

4. Conclusions

In summary, Ni/NiO/CN ternary composites were synthesized by a one-step solvother-
mal method. Ni and NiO can be simultaneously loaded on g-C3N4. During the preparation
process, the bulk g-C3N4 disrupted into smaller particles with a layered and porous structure,
due to the Ni0 growth between g-C3N4 layers. Consequently, the specific surface area of
the composites gradually increased from 28.4 to 148.4 m2/g as the Ni precursor content
increased from 0 to 1.2, which provided more exposed active sites for H2 evolution. The PL,
EIS, and photocurrent characterizations reveal similar trends in that increasing Ni loading
could increase carrier separation and transfer efficiency, as well as suppress carrier recom-
bination. We consider that the p–n heterojunction between NiO and g-C3N4 and the Ni
formation as electron receiver are responsible for the increase in carrier separation and
migration efficiency. The hydrogen evolution rate of 1.0 Ni/CN catalyst shows the highest
H2 evolution capability of 2310 mol·h−1·g−1, which is 210 times higher than that of pure
g-C3N4 catalyst.
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in 1.0 Ni/CN; (f), (g) TEM and HRTEM of 1.0 Ni/CN, Figure S6: (a) Photocatalytic degradation of
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