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INTRODUCTION

Sterols are essential components of eukaryotic membranes and play a structural role, increasing
the resistance of the phospholipid bilayer to various stresses (Evans and Rawicz, 1990; Zhelev and
Needham, 1993; Michalak et al., 2013; Hannesschlaeger et al., 2019). Concentrations of sterols are
especially high in the plasma membrane, typically comprising 30–40% of the total lipid content
(Ejsing et al., 2009; Subczynski et al., 2017). Most prokaryotes lack sterol biosynthesis machinery
and thus their plasma membranes are sterol-free. Many antimicrobial drugs disrupt the plasma
membrane phospholipid bilayer. Here we ask whether antifungal and antibacterial compounds
are fundamentally different in their physico-chemical properties which reflect their interactions
with plasma membranes with distinct lipid compositions. A drug-membrane interaction can be
divided into two stages: first, a drug moves from the aqueous phase into the water-membrane
interface saturated by polar and charged groups. Next, it penetrates into the hydrophobic core of
the phospholipid bilayer. Thus, we estimated the energy costs of these two steps for the antibacterial
and antifungal compounds commonly used for medical and/or agricultural purposes. We have
deliberately limited our analysis to such practically used compounds because their biological
activities are, obviously, characterized more thoroughly than the ones of the chemicals used, for
instance, for research purposes only. It appeared that while antibacterial compounds differed
considerably in terms of the energy costs, antifungal compounds displayed a significant degree of
similarity. This finding suggests a common mechanism for the interaction between the antifungal
membrane-active compounds and the fungal plasma membrane.

Sterols Stabilize Membranes by Preventing Pore Formation
While bacteria do not possess sterol biosynthesis machinery and thus are typically devoid of sterols,
in eukaryotes sterols may reach up to 50mol.% of total lipids in the plasma membrane (Mouritsen
and Zuckermann, 2004; Ejsing et al., 2009; Subczynski et al., 2017). Sterols are especially efficient
in increasing the resistance of lipid bilayers with respect to lysis via pore formation caused by the
membrane-active chemicals (Sot et al., 2014; Mattei et al., 2015; Caritá et al., 2017). The mechanism
of this protection can be illustrated using the example of lyso-forms of phosphocholine lipids.
These compounds are similar to regular phosphocholine lipids but lack one of two hydrophobic
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FIGURE 1 | (A) sterols protect membrane against pore formation caused by lysolipids and similar compounds. (B) the water-octanol (WAT-OCT) and the

octanol-cyclohexane (OCT-CHX) change in energy of the compounds with antibacterial (AB, red), antifungal (AF, blue), and the dual activity (AB, AF, green). See text for

details.

tails of the molecule. Thus, while the molecules of the regular
phosphocholine lipids are of cylindrical or slightly conical shape,
the shape of the lysolipid derivatives is inverse conical with
the wider polar side positioned close to the membrane-water
interface (Fuller and Rand, 2001). Such an arrangement leads
to the alteration of the lipid monolayer curvature favoring
pore formation (see Figure 1A). The effective shape of sterol
molecules is also non-cylindrical—they are rather conical, and
the base of the cone is typically embedded into the hydrophobic
core (Fuller and Rand, 2001; Kollmitzer et al., 2013). In this way
sterols can compensate for the curvature alterations caused by the
lysolipids, preventing pore formation and irreversible membrane
rupture (Figure 1A) (Karpunin et al., 2005; Strandberg et al.,
2012). Most membrane-active compounds, e.g., amphipathic
antimicrobial peptides, disrupt membranes in a manner similar
to lysolipids: in relatively high concentrations they act as a
classic surfactant leading to micellization of the membrane; in

Abbreviations: ASP, Atomic Solvation Parameter; AB, Antibacterial; AF,
Antifungal.

lower concentrations pores are readily formed in the membrane
(Tamba et al., 2010; Henderson et al., 2016; Pérez-Peinado et al.,
2018). This makes sterols rather universal compounds in terms of
preventing pore formation in eukaryotic membranes.

As prokaryotic membranes, unlike fungal ones, typically
lack sterols, we reasoned that the membrane-active compounds
targeting these groups are likely to be fundamentally different.

Antifungal Membrane-Active Compounds
Display Higher Similarity in
Physico-Chemical Properties Than
Antibacterial Compounds
To test this hypothesis, we first compiled a list of antifungal,
antibacterial or the dual activity compounds targeting the outer
membrane, which are used in medicine and/or agriculture
(Figure 1B). Most of them are listed in four comprehensive
reviews (Fait et al., 2019; Falk, 2019; Zhang and Ma, 2019;
Anestopoulos et al., 2020). An additional literature search for
such compounds added Brilliant Green and Chlorhexidine
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gluconate (general antimicrobial antiseptics) to our list. Also,
Lytixar and Brilacidin were included according to Zhang et al.
(2018), and Morpholine, 4-dodecyl-, 4-oxide were added based
on (Šubík et al., 2021). Membrane-active compounds which
display additional activities, e.g., oxolinic acid, which is also a
DNA-gyrase inhibitor, were not included in the list. Next, we
tried to characterize the basic features of their interaction with
phospholipid bilayers.

A first step of an interaction between a chemical compound
and a phospholipid bilayer is a transition between the aqueous
phase to the aqueous-hydrophobic interface. Second, the
chemical enters the hydrophobic phase of the membrane.
Thus, to characterize the interaction we calculated the free
energy changes for both of the transitions (Figure 1B). The
energies of interaction of each chemical with the media were
calculated as the sums of accessible surface areas of the atoms,
weighted by the atomic solvation parameter (ASP) for different
solvents. ASPs have been calculated based on the distribution
of amino acids between different liquids. This approach has
been successfully tested in the study of interactions of proteins
with membranes (Efremov et al., 1999). To mimic aqueous
and inner membrane media we have used ASP sets for water
and cyclohexane, respectively. To estimate the energy on the
water-membrane interface we used an ASP set for octanol,
which to some extent emulates this medium (Allen, 2007).
Next, we plotted these values: Y-axis shows the water-octanol
(WAT-OCT) change in energy, X-axis shows the octanol-
cyclohexane (OCT-CHX) differences (Figure 1B). The values
corresponding to the compounds with the antibacterial activity
(AB) only are shown in red, the ones corresponding to the
chemicals with antifungal (AF) activity are shown in blue,
the ones with the dual activity (AB, AF) are shown in
green. By looking at the graph one can easily notice that
the antifungal compounds display a much higher degree of
clustering than the antibacterial ones. One of the antifungal
compounds outside the cluster (green dot on the left hand
side, Figure 1B) corresponds to Lytixar, the activity of which
depends on sphingolipids (Bojsen et al., 2013). The mechanism
of action of the other outlier, Dimethyldioctadecylammonium
bromide (the right hand side of the graph), is also a rather special
one. It does not simply disrupt the fungal plasma membrane,
but makes its antigens more accessible to the immune system
(De Serrano and Burkhart, 2017).

DISCUSSION

The clustering of the compounds with antifungal activity
obviously suggests a common mechanism of their action.
Analysis of the literature suggests that simple lysis of cells is
not such a mechanism. Rather than puncturing the plasma
membrane, these compounds seem to induce intracellular
changes: inhibit the hyphal growth and/or biofilm formation,
cause ROS generation, etc. (reviewed Fait et al., 2019; Falk, 2019;
Zhang andMa, 2019; Anestopoulos et al., 2020). This is consistent
with the protective role of ergosterol against pore formation
(Figure 1A). As the clustered compounds contain positively
charged quaternary amine groups within their structures, one
may suggest that they can bind to anionic xenobiotics and
thus facilitate their penetration through the plasma membrane
by neutralizing the negative charge. Importantly, a number
of fatty acids do possess antifungal activity. The list includes
palmitic, lauric, arachidonic and the other major fatty acids
present in animals and plants. Among other activities, they
inhibit the biosynthesis of ergosterol and induce ROS generation
in fungal cells. One can easily imagine that, for instance, the
benzalkonium cation binds to palmitic acid and this facilitates its
transport across the phospholipid bilayer—a phenomenon which
has been already shown by us for a quaternary phosphonium-
based compound (Severin et al., 2010). Regardless of whether
this explanation is correct or not, the clustering illustrated
by Figure 1B suggests a novel approach for identifying novel
antifungals. For instance, one can consider in silico screening
of FDA-approved chemicals with physico-chemical properties
similar to those of the compounds within the antifungal cluster.
The data provided by this paper suggest that each such chemical
may be a potential candidate for re-profiling as an antifungal.
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