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a b s t r a c t

Gene-to-gene networks, such as Gene Regulatory Networks (GRN) and Predictive Expression Networks
(PEN) capture relationships between genes and are beneficial for use in downstream biological analyses.
There exists multiple network inference tools to produce these gene-to-gene networks from matrices of
gene expression data. Random Forest-Leave One Out Prediction (RF-LOOP) is a method that has been
shown to be efficient at producing these gene-to-gene networks, frequently known as GEne Network
Inference with Ensemble of trees (GENIE3). Random Forest can be replaced in this process by iterative
Random Forest (iRF), which performs variable selection and boosting. Here we validate that iterative
Random Forest-Leave One Out Prediction (iRF-LOOP) produces higher quality networks than GENIE3
(RF-LOOP). We use both synthetic and empirical networks from the Dialogue for Reverse Engineering
Assessment and Methods (DREAM) Challenges by Sage Bionetworks, as well as two additional empirical
networks created from Arabidopsis thaliana and Populus trichocarpa expression data.
� 2022 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Gene Regulatory Networks (GRNs) are crucial to understanding
biological systems since they show the regulatory relationships
between transcription factors and target genes. A GRN can be pre-
dicted from an input gene expression matrix (a data set with sam-
ples as rows and genes as columns measuring expression levels of
each gene) using a variety of algorithms such as Weight Gene Cor-
relation Network Analysis (WGCNA) [1] and BackWard Elimination
Random Forest (BWERF) [2]. A conceptual expansion on the GRN is
the Predictive Expression Network (PEN). While typical GRNs tend
to be focused on transcription factor-to-gene relationships, PENs
can capture expression-based relationships beyond regulation by
transcription factors. Unlike GRNs, algorithms that produce PENs
utilize all genes in the input data, creating an all genes-to-all other
genes network. This all-to-all network provides additional infor-
mation not found in a standard GRN, since these non-
transcription factor edges can reveal additional biological relation-
ships, such as genes interacting together in a biosynthetic pathway,
or genes that encode proteins that form larger complexes. How-
ever, due to the increased number of input genes involved, infer-
ring a PEN can be computationally expensive and challenging to
implement on larger datasets. The most common approach, typi-
fied by WGCNA, is to calculate a pairwise correlation between all
genes and then threshold the results. While this is computationally
efficient for large datasets, the simplistic model only accurately
reflects relationships where one gene influences another gene in
a linear manner and absent of influence from any other genes. In
reality, it is possible that a gene’s expression is jointly influenced
by many other genes, possibly in a non-linear manner, and a better
model should account for this.

Random Forest (RF) [3] is a supervised learner that makes few
assumptions about the relationships between variables and is able
to capture complex interactions between variables that are com-
mon in biological systems. The core of RF is the binary decision
tree, which progressively splits the samples into two child nodes
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to maximize the variance explained of the dependent variable.
Individual decision trees tend to over-fit the data, so RF counters
this by using an ensemble of trees (a forest) where each tree uses
a random sample of the data (rows), while only a subset of all fea-
tures (columns) is assessed for each node split. RF is explainable, in
that features are scored according to how influential they are in
generating the trees in the forest, thus producing a ranked list of
feature importance for predicting the dependent variable.

RF provides a good base learner for the purposes of gene regu-
latory inference. One may fit an RF model to predict the expression
of a target gene by using the expression of all other genes across all
samples as model features. The result is a bipartite network with
directional edges between predictor genes (features) with high
importance in the model, and the regulatory target gene. This
approach can be extended with RF-Leave One Out Prediction (RF-
LOOP), which performs this process for every gene in the gene
expression matrix. If there are n genes in the expression matrix
then n RF models are produced. Each gene is used as the dependent
variable once, resulting in n bipartite networks. When the bipartite
networks from all n models are merged, it produces an all-to-all
PEN. RF-subLOOP is a modification of RF-LOOP, in which the fea-
tures used in each individual RF model are limited to a subset of
all possible features (e.g. known transcription factors), while the
dependent variables selected are the potential regulatory target
genes. This produces a traditional GRN containing only TF-to-
target edges.

Several implementations of RF-LOOP and RF-subLOOP exist, the
best known being GEne Network Inference with Ensemble of trees
(GENIE3) [4]. GENIE3 was the overall winner of the DREAM4 and
DREAM5 competitions, proving the robustness of the RF-LOOP
approach to inferring gene-to-gene connectivity based on expres-
sion data [4,5].

Iterative Random Forest (iRF) [6] provides a potential improve-
ment to the RF base learner used by GENIE3 and several other GRN
inference methods. In iRF, a standard Random Forest is initially run
where every feature is given equal weighting in the randomized
feature sampling process. The feature importance scores from the
forest are then used as weights in the feature sampling process
in a new random forest. This process continues for a set number
of iterations. At each iteration, some features may have their
importance reduced to zero and are effectively eliminated from
the model, while other features have their importance boosted.
For expression network inference, iRF provides improvements that
would not be achieved by simply increasing the number of trees in
a single random forest, such as removing spurious edges from the
network completely (when their importance is zero) and boosting
important edges in the final edge ranking list. Furthermore, this
iterative process also improves the robustness of downstream path
analysis algorithms [6], such as Random Intersection Trees (RIT)
[7], which determine sets of features that jointly affect the depen-
dent variable. In the context of gene expression data, applying RIT
to each iRF model has the potential to identify regulatory influ-
ences by sets of genes that form complex conditional relationships.

Here we compare the performance of RF and iRF in producing
GRNs and PENs from gene expression data by comparing the net-
works resulting from using RF-LOOP (via GENIE3) or iRF-LOOP
and iRF-subLOOP or RF-subLOOP (via GENIE3). Using both syn-
thetic and experimental data, we find that iRF outperforms RF on
various metrics, producing more accurate predictions, smaller net-
works with improved signal-to-noise ratio, and higher quality top
ranked edges.

We have included an in depth analysis of the top ranked PEN
edges produced by iRF-LOOP on Arabidopsis thaliana gene expres-
sion data as well as the top sets of interacting genes produced by
RIT on the resulting iRF tree paths. This analysis shows that the
predictive power available using iRF can reveal interactions
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beyond TF-driven interactions. Additionally, we have included an
analysis comparing the resulting biological pathways in PENs pro-
duced by GENIE3 and iRF-LOOP on A. thaliana and Populus tri-
chocarpa expression data. Overall, this study shows that iRF
provides meaningful biological information that would not have
been obtained using a RF based method.

2. Methods

In order to compare iRF-LOOP versus GENIE3, we used multiple
synthetic datasets and two empirical datasets for evaluation. Syn-
thetic datasets were provided by Sage Bionetworks in the form of
their Dialogue for Reverse Engineering Assessment and Methods
(DREAM) Challenges, in particular DREAM4 and DREAM5 chal-
lenges for inferring PENs and GRNs from population-scale expres-
sion data.

We also compare iRF-LOOP and GENIE3 in creating PENs from
real gene expression data available for A. thaliana from 1001 Gen-
omes [8,9] and for P. trichocarpa from the NCBI SRA database [10].
The GRNs and PENs generated for each dataset were evaluated
against a gold standard network, which is a known network of con-
firmed true positive and true negative edges expected in the
inferred network.

The computational resource used to run both the HPC imple-
mentation of iRF-LOOP [11] and GENIE3 was Summit. Summit is
a supercomputer at Oak Ridge Leadership Computing Facility
(OLCF) located at Oak Ridge National Laboratory. Summit is an
IBM system that contains 4,608 nodes, each with two POWER9
processors and six NVIDIA Tesla V100 GPUs. Each POWER9 proces-
sor contains 22 cores that contains 4 threads each for a total of 176
threads per node. Each node contains 512 GB of DDR4 memory.

2.1. RF-LOOP and iRF-LOOP

Both RF-LOOP and iRF-LOOP use an input matrix of features
measured in a population of samples to produce all-to-all predic-
tive networks. For example, for an input matrix of n gene expres-
sion features, RF-LOOP and iRF-LOOP will produce n models
where the expression of n� 1 genes are predicting the expression

of the ith gene, and i 2 f1 . . .ng. The importance scores for the ith

model determine the strength of the edges from the predictor

genes to the ith dependent gene. However, importance scores
across each of the n models are not comparable, so they must be
normalized before they are merged into one final network. The
network that results from applying RF-LOOP or iRF-LOOP to a gene
expression matrix is a Predictive Expression network (PEN). We
used five iterations as the default number of iterations for iRF-
LOOP and iRF-subLOOP. The iterations occur within each individual
iRF model, and remains the major difference between RF-LOOP and
iRF-LOOP.

The latest version of GENIE3 [12] is used throughout this anal-
ysis as an implementation of RF-LOOP, in which the importance
scores for each generated random forest are normalized by the
total variance of the dependent variable (Y vector) for that forest.
By contrast, in the High Performance Computing (HPC) implemen-
tation of iRF used for iRF-LOOP, the importance scores of each gen-
erated iterative random forest are normalized by the sum of the
importance scores in that iRF model. This HPC version of iRF is par-
allelized across compute nodes and is capable of running large
datasets of hundreds of thousands of features [11].

2.2. RF-subLOOP and iRF-subLOOP

For cases in which a known list of regulatory genes exists, a
transcription factor-to-all other genes network (GRN) can be cre-



Fig. 1. This diagram shows the process of creating a transcription factor-to-all other genes GRN using the iRF-subLOOP algorithm. The overall algorithm contains two types of
iRF runs. The first run type (a) creates a TF-to-NonTF network by partitioning the expression matrix into TF and NonTF parts. The TFs are then used as the features predicting
each of the individual genes in the NonTF matrix. The second run type (b) creates a TF-to-TF network, similar to iRF-LOOP but instead of all genes being used as the input
features, only the TFs are used. The resulting networks from (a) and (b) are merged to create a TF-to-All GRN.
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ated instead of an all-to-all network (PEN) using the RF-subLOOP
algorithm. This requires subsetting the genes used as independent
features to only the known regulatory genes [Fig. 1]. RF-subLOOP is
implemented in the GENIE3 software by using the regulators

argument, denoting the regulators to be used as predictors. This
use is recommended by the authors due to the computational com-
plexity of performing RF-LOOP for large datasets. Our iRF-LOOP
implementation, however, does not have this same capability, so
in order to implement the subLOOP functionality we used two sep-
arate types of iRF runs [Fig. 1]. The first run (a) separates all the fea-
ture columns into two matrices, one of all transcription factors and
one of all other non-transcription factor genes. For every gene in
the non-transcription factor matrix, the given gene is used as the
dependent variable and the entire matrix of transcription factors
is used as model features. This produces a TF-to-NonTF network.
The second run (b) is similar to iRF-LOOP, but only the transcrip-
tion factors are used as model features and as dependent variables.
This produces a TF-to-TF network. Combining these two networks
creates an overall TF-to-All network. This separation is crucial - if
iRF-LOOP is run on all genes instead and the NonTF-to-All edges
are simply dropped from the final network, the resulting paths of
the trees would include these unwanted features and impact the
final importance scores, making it incomparable to the GENIE3
implementation of RF-subLOOP.

2.3. Dream challenge datasets

The DREAM4 In Silico Size 100 Multifactorial sub challenge pro-
vides five small synthetic expression data sets of 100 samples
and 100 genes to predict five networks [4]. GENIE3 and iRF-LOOP
were used to create PENs from each of the DREAM4 expression
datasets. For DREAM4 datasets, GENIE3 used 1000 trees for each
RF model, while iRF-LOOP used 1000 trees for five iterations, yield-
ing 5000 trees total for each iRF model. GENIE3 was also run with
5000 trees per RF model to ensure that any improvement shown in
iRF-LOOP was due to the iterative process, not the increase in trees.

The DREAM5 Network Inference challenge provides one syn-
thetic and two experimental expression data sets, of a varying
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number of samples and genes, to predict three networks [5]. Net-
work 1, the synthetic dataset, contains 1,643 total genes and 805
samples. Networks 3 and 4, empirical datasets from E. coli and S.
cerevisiae, contain 4,511 total genes and 805 samples and 5,950
total genes and 536 samples respectively. In each of these datasets,
a subset of genes were flagged as known transcription factors (195,
334, and 333 transcription factors for networks 1, 3, and 4 respec-
tively) and the expectation of the DREAM5 competition was that
TF-to-target GRNs would be inferred for each dataset Therefore,
RF-subLOOP (via GENIE3 with the known transcription factors
used as regulators) and iRF-subLOOP were used to create GRNs
from the DREAM5 expression datasets. For DREAM5, GENIE3 was
run with 1000 trees only, while iRF-subLOOP was run with 1000
trees at each iteration for five iterations.

2.4. A. thaliana and P. trichocarpa PEN inference

We compared the performance of GENIE3 and iRF-LOOP for
inferring PENs from real A. thaliana and P. trichocarpa gene expres-
sion data from leaf tissues. For A. thaliana, SRA data were obtained
from Kawakatsu, et al. [8], totaling 6,584 FASTQ files from 728
samples and 38,186 genes. STAR [13] was used to map reads to
the TAIR 10.1 A. thaliana reference genome. 15 samples and 186
corresponding runs were removed from the resulting raw counts
matrix since the corresponding runs did not have a GSM sample
ID and could not be tied to genotypes. Raw counts per gene were
summed for each sample. Two more samples, GSM2135743 and
GSM2136308, were removed due to low overall counts. Genes with
less than 50 reads in at least 10% of samples were then removed,
removing 18,199 genes. Raw counts were converted to gene length
corrected Trimmed Mean of M-value (geTMM) [14]. The resulting
X matrix for iRF-LOOP contained 711 samples and 19,987 genes.
For P. trichocarpa, a similar process was applied. The RNAseq data
was obtained from SRA (see Yates, et al. [15] Supplementary
Table 11 for SR IDs). Reads were aligned with STAR, using the Pop-
ulus trichocarpa v.3.0 reference genome [10], totaling 470 samples
and 41,335 genes. Genes with less than 50 reads in 10% or more of
the samples were removed. The rest were converted to geTMM,
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resulting in a genotype-transcript matrix with 15,205 genes across
470 samples. For both A. thaliana and P. trichocarpa, GENIE3 was
run with 1000 trees and iRF-LOOP was run with 1000 trees at each
iteration for five iterations.

2.5. Performance evaluation

The competing models were evaluated by scoring their ability
to generate PENs and GRNs that contain correct (gold) edges using
several metrics. For the synthetic DREAM4 challenges, gold stan-
dard networks are provided and, because these data are simulated,
the gold edges contain 100% of the truth with total accuracy. The
gold standard networks provided for the five DREAM4 datasets
contained both true positives and true negatives, where 1 denoted
a positive edge, and 0 denoted a negative edge, for all 9,900 possi-
ble PEN edges that can be inferred from all 100 unique input genes.
The number of true edges (1’s) per network ranged from 176 to
249, meaning that each gold network is heavily imbalanced
towards negative edges.

For the DREAM5 challenges, the gold standard networks and
expression datasets are also provided with some caveats. These
gold standard networks are not complete with 100% accuracy,
and for the two empirical gold standard networks only the high
confidence regulatory interactions are included. The DREAM5
datasets were considerably bigger than the DREAM4 challenge
datasets. The synthetic dataset (DREAM5 Network 1) contained
1,643 unique genes and transcription factors. The gold network
contains 178 unique transcription factors connecting to 1,565 tar-
get genes. Since the DREAM5 goal was to infer a GRN rather than a
PEN, the gold network contains 278,392 TF-to-target edges rather
than all-to-all edges, of which 4,012 are positives (1’s) and
274,380 are negatives (0’s). The empirical E. coli gold network
(DREAM5 Network 3) contains 152,280 edges connecting 141
unique transcription factors to 1,081 target genes. 2,066 of these
edges are positives and 150,214 of these edges are negatives. The
positive edges only include interactions in which there existed
”strong evidence” in RegulonDB [16,5]. The empirical S. cerevisiae
gold network (DREAM5 Network 4) contained 227,202 edges con-
necting 114 transcription factors to 1,994 target genes. 3,940 of
these edges are positives and 223,262 of these edges are negatives.
The positive edges are based on an analysis of ChIP data and TF
binding motifs with a stringent threshold to only consider edges
with high confidence [17,18,5].

For evaluating the A. thaliana and P. trichocarpa PENs, we assem-
bled gold standard networks using only verified true positive edges
of known TF-to-gene and gene-to-gene relationships. The gold
standard network for A. thaliana was manually constructed using
two different sets of edges: a literature curated transcription factor
to target network [19] and a gene to gene network constructed
from AraCyc [20] reactions where two genes are connected if they
share a common metabolite substrate or product. Using only the
transcription factor to target edges as the gold network would
neglect to score non-TF driven relationships that could be observed
in a PEN inferred from all genes. Gold edges that linked to genes
that were not in the original expression matrix were subsequently
dropped from the gold network. The gold TF-to-gene network con-
tained 231 unique transcription factors, 469 unique target genes
for a total of 948 directed edges, and the gene to gene network con-
tained 2,383 unique genes and 17,715 directed edges. Thus, the
overall A. thaliana PEN gold standard network contained 18,663
directed edges between 2,864 unique genes. The gold network
for P. trichocarpa was constructed similarly. The literature curated
transcription to target network from A. thaliana was mapped to P.
trichocarpa using orthologs, and the gene to gene network was con-
structed from PoplarCyc reactions via the Plant Metabolic Network
[21] similar to A. thaliana. Again, edges contained only genes that
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were found in the input expression matrix. The transcription to
target network contained 96 unique transcription factors, 163
unique target genes for a total of 379 directed edges. The gene to
gene network contained 1505 unique genes and 8889 directed
edges. The overall P. trichocarpa PEN gold standard network con-
tained 9268 directed edges for 1690 unique genes.

It is worth noting that these real-world gold standard networks
are incomplete since they do not contain any true negative edges,
are missing many known non-metabolic and non-TF driven rela-
tionships, are missing hitherto unknown biological relationships
that may indeed be evident in the input data, and probably contain
several biologically false positive relationships.

Sage Bionetworks provides scoring methods for both DREAM4
(as a python package) and DREAM5 (as a MATLAB script) that cal-
culates the Area Under the Precision Recall curve (AUPR), the Area
Under the Receiver Operator Characteristic curve (AUROC), and p-
values for AUPR and AUROC. The p-values represent the probability
that the AUPR or AUROC that is achieved is better than a random
permutation of the network edges that have been submitted to
the official DREAM challenge. For DREAM4, all of the 9,900 net-
work edges are used in the random permutation for each of the five
networks, but in DREAM5 only the network edges of the submitted
challenge networks are used. In the final scoring for DREAM4 all
submitted edges are scored. For DREAM5 only the top ranked
100,000 edges are scored and the remaining edges are assumed
to occur at random.

In order to summarize scores across all five DREAM4 networks,
Sage Bionetworks provides an overall score, defined as

overall score ¼ �0:5log10ðp1p2Þ
where p1 is the geometric mean of the five AUPRC p-values and p2 is
the geometric mean of the five AUROC p-values. The submissions to
the official DREAM4 challenge are ranked based on the highest
overall score. Similarly, for the DREAM5 networks, the overall score
is defined as

AUPR score ¼ 1
3

X3
i¼1

� log10ðpAUPR;iÞ

AUROC score ¼ 1
3

X3
i¼1

� log10ðpAUROC;iÞ

overall score ¼ AUPR scoreþ AUROC score
2

where pAUPR;i is the AUPR p-value for network i, and pAUROC;i is the
AUROC p-value for network i. Like DREAM4, the submissions to
the official DREAM5 challenge are ranked based on the highest
overall score. Although Sage Bionetworks has provided leader-
boards for these two challenges, GENIE3 was rerun on these data
sets to verify results with the updated codebase.

Implementing AUPR and AUROC comes with some caveats.
AUPR and AUROC will penalize a false positive edge that does
not appear in the gold standard network, but it is possible for edges
to be ranked highly due to an uncharacterized yet true relationship
between the two genes that is present in the dataset at hand. Since
a 100% complete gold standard network is not possible in real
empirical datasets, AUPR and AUROC are not ideal to use in these
scenarios. Additionally, precision and recall at threshold k do not
take into consideration the ranking of each edge. For example, it
is possible at threshold k two networks can have the same number
of true edges and false edges corresponding to the same precision
and recall values, but the rank order of these edges can be wildly
different. In addition to calculating the AUPR and AUROC of the
empirical datasets, normalized Discounted Cumulative Gain
(nDCG) [22] was calculated for every edge from one to k, where
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k is the number of true positive values in the gold standard net-
work. This is defined as follows:

nDCGnetwork;k ¼ DCGnetwork;k

IDCGgold standard;k

DCGnetwork;k ¼
Xk

i¼1

x
log2ðiþ 1Þ

x ¼ 1 if edge is a true positive
0 if edge is a false positive

�

IDCGgold standard;k ¼
Xk

i¼1

1
log2ðiþ 1Þ

Using nDCG accounts for how early the true positive edges are
found. If a true positive edge is found at a higher rank in the net-
work than another true positive edge, the higher rank edge boosts
the score more than the lower ranked true positive edge. This
yields a better score if the true positive edges are found earlier in
the ranking versus spread out across the whole list. Usually, the
resulting networks are large and are thresholded before use, thus
capturing true positive edges earlier in the ranking is necessary
to retain them after thresholding.

To emphasize the biological significance of iterative RF in net-
work prediction, we included an analysis of two select biological
pathways from AraCyc and PlantCyc for A. thaliana and P. tri-
chocarpa respectively, produced by GENIE3 and iRF-LOOP.

2.6. Random Intersect Trees (RIT)

The algorithm RIT [7] works by mining the node-split pathways
in the forests resulting from iRF to find sets of features that occur
consecutively along the pathways more than expected by chance.
This suggests that the model uses those features in conjunction
with each other in a potentially non-linear manner. RIT is able to
efficiently discover feature interactions of any order if their joint
importance is high enough. We ran RIT on the resulting forests
from the A. thaliana iRF-LOOP and identified a sample of highly
prevalent sets of interacting genes.
3. Results and discussion

3.1. Replacing RF with iRF improves overall DREAM scores

For the synthetic DREAM4 overall score metric, iRF-LOOP using
1000 trees per iteration (40.521) outperformed RF-LOOP as imple-
mented by either the original GENIE3 or by the updated GENIE3
code [Table 1]. This was the case whether GENIE3 was run with
1000 trees, or with 5000 trees to match the total number of trees
produced by iRF-LOOP. This suggests that the addition of iterations
Table 1
This table depicts the overall scores for the DREAM4 In Silico Size 100 Multifactorial and D
algorithms outperform all three RF based algorithms. This table also shows that simply inc
used in an iRF based model does not account for the overall score increase seen in iRF-LOOP
Tables A.4,A.5,A.6,A.7.

DREAM Challenge Base Learner Algorithm

DREAM4 RF GENIE3 (original)
DREAM4 RF GENIE3 (new)
DREAM4 RF GENIE3 (new)
DREAM4 iRF iRF-LOOP

DREAM5 RF GENIE3 (original)
DREAM5 RF GENIE3 (new)
DREAM5 iRF iRF-subLOOP
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of random forest improves the overall quality of PENs inferred
from these datasets, and that the increase in overall score observed
for iRF-LOOP is not simply due to the increase in overall number of
trees from 1000 to 5000.

The DREAM5 results showed a similar, but more dramatic
improvement in the overall DREAM score metric when using iRF
in place of RF for inferring GRNs with the subLOOP algorithm.
iRF-subLOOP obtained a score over 50% greater than the best per-
forming GENIE3 score [Table 1]. For synthetic Network 1 data, iRF-
subLOOP produced a GRN with a p-value of 3.8e-269, while
GENIE3 produced a GRN with a p-value of 6.1e-121 [Supplemen-
tary Table A.6,A.7]. This resulted in an overall AUPR score of
91.829 for iRF-subLOOP and 47.097 for GENIE3. However, for the
empirical datasets (DREAM5 Network 3 and DREAM5 Network 4)
the raw AUPR and AUROC values for GRNs generated by GENIE3
and iRF-subLOOP were highly similar [Supplementary Tables A.4
and A.5]. Thus the improvement of iRF-subLOOP over GENIE3
was primarily driven by the AUPR p-value component of the
DREAM scoring metric for the synthetic DREAM5 Network 1
dataset.

3.2. iRF-LOOP on A. thaliana and P. trichocarpa Improves Early nDCG
and AUnDCG

Since the DREAM scoring system does not adequately capture
the rankings of the edges within the networks, applying nDCG to
these DREAM networks and observing the changes over iterations
may be more beneficial to determining whether iterations in ran-
dom forests provides an improvement for all types of network
prediction.

The nDCG scores for both GENIE3 and iRF-LOOP were calculated
at every value of k from zero to the number of true positive values
in the gold standard network, 18,663 for A. thaliana and 9,268 for P.
trichocarpa. For the DREAM4 networks, this ranges from 176 to 249
edges. For the DREAM5 networks, this ranges from 2,066 to 4,012
edges. When we scored the DREAM4 and DREAM5 networks with
nDCG, we found that the AUnDCG was greater in iRF-LOOP than
GENIE3 for all expression networks except for DREAM5 Network
4 [Supplemental Fig. A.7]. For A. thaliana, iRF-LOOP obtained an
AUnDCG of 91.897, which is a 1.75-fold increase over GENIE3’s
AUnDCG of 52.694 [Fig. 2]. The improvement in AUnDCG when
using iRF-LOOP instead of GENIE3 was even more pronounced in
the P. trichocarpa networks where iRF-LOOP scored a 18.672, a
2.5-fold increase over GENIE3. Thus, iRF-LOOP is more likely to
rank true positive edges more highly than GENIE3. Furthermore,
iRF-LOOP tends to have a higher early nDCG, i.e., the nDCG for
the higher ranked edges of the network, than GENIE3.

3.3. iRF boosts important edges and improves feature selection

Adding iterations to RF-LOOP provides two major advantages.
First is feature selection, which comes from the feature culling per-
REAM5 Network Inference networks using the DREAM scoring system. The iRF based
reasing the number of trees in an RF based model to match the total number of trees
. Raw AUPR and AUROC values as well as their p-values can be found in Supplementary

Number of Trees Per Iteration Overall Score

1000 37.428
1000 39.375
5000 39.446
1000 40.521

1000 40.279
1000 43.329
1000 65.466



Fig. 2. This figure depicts the nDCG scores for both A. thaliana and P. trichocarpa for both GENIE3 and iRF-LOOP as k, the number of edges scored, increases. The maximum k
for each organism is equal to the size of the gold standard network. For both A. thaliana and P. trichocarpa, the early nDCG is higher in iRF-LOOP than GENIE3, and the overall
AUnDCG for both organisms is also higher in the iRF based algorithm. For A. thaliana, AUnDCG for iRF-LOOP and GENIE3 were 91.897 and 52.694 respectively. For P.
trichocarpa, AUnDCG for iRF-LOOP and GENIE3 were 18.672 and 7.972 respectively. This suggests that iRF-LOOP outperforms GENIE3.
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formed at each iteration. In Fig. 3, the A. thaliana and P. trichocarpa
networks both see a twofold reduction in the resulting network
sizes at each iteration as certain genes are deemed to have zero
importance in the model predicting the target gene. The networks
from the DREAM4 and DREAM5 challenges also see a decrease in
network sizes, but with the smaller data sets used in this challenge
this effect is not as extreme [Supplementary Fig. A.8]. With this
decrease in network size comes an increase in the signal-to-noise
ratio, where the percentage of edges kept that are true positive
edges increases over iterations. This culling of noisy edges is a form
Fig. 3. In this figure, the blue line depicts the truly observed signal-to-noise ratio for eac
number of edges are dropped from consideration due to their importance scores equaling
thresholding the networks, the RF network is thresholded to match the network size of th
thaliana and P. trichocarpa, the observed signal-to-noise ratio in iRF is greater than both
shows that the unsupervised thresholding from iRF provides an improvement over a sim
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of unsupervised thresholding. When comparing the effectiveness
of this unsupervised thresholding in iRF-LOOP to manually remov-
ing the same number of lowest ranked edges from the GENIE3 net-
work, it performs best in larger networks and data sets, such as the
A. thaliana and P. trichocarpa networks [Fig. 3].

The second major advantage of the iterative approach to RF is
the boosting of important edges after each iteration. Since resulting
networks are typically thresholded for use, it is imperative that
true positive edges are ranked higher in the network than false
edges. In Fig. 4, the true positive edges within the first 100 and
h network as the number of iterations in iRF increases. As the iterations increase, a
zero. To confirm that the improvement in signal-to-noise ratio is not due to simply
e iRF network at each iteration and is depicted as the orange dashed line. For both A.
what is expected from random and if the RF network is simply thresholded. This
ple manual thresholding.



Fig. 4. This figure shows the true positive edges, depicted as a square, for the top ranked 100 edges and 500 edges across each iteration for A. thaliana and P. trichocarpa
respectively. For iteration 1 in A. thaliana, the first true positive edge is not discovered until rank 325. For iteration 1 in P. trichocarpa, the first true positive edge is not
discovered until rank 965. The shifting of the true positive edges towards earlier rankings indicates the true positive edges moving up in the ranks of the final edge list and are
more likely to be retained when thresholded.
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500 ranked edges and their ranking per iteration are shown for A.
thaliana and P. trichocarpa respectively (where a rank of 1 is the
best possible). The improvement in ranking of true positive edges
can clearly be seen for A. thaliana. There are no true positives in
the first 100 edges after one iteration and the first true positive
edge was not found until rank 325. After the second iteration,
two true positives were found in the top 100 ranks, and as itera-
tions increase these true positives shift up in the rankings and
more true positives move into the top 100 edges. A similar pattern
can be observed in P. trichocarpa, where there are no true positives
in the first 500 edges after one iteration and the first true positive
edge was found at rank 965. As more iterations are added, the true
positives shift up the ranks, boosting the true edges to the higher
rankings in the final network. This boosting of important edges
can also be seen in the Precision-Recall curves, since the AUPR val-
ues increase over iterations for the A. thaliana and P. trichocarpa
networks [Supplementary Fig. A.9]. While this effect is not as obvi-
ous for some of the smaller networks in the DREAM challenges,
there is an overall trend of AUPR increasing as the number of iter-
ations increases [Supplementary Fig. A.9].
3.4. PEN edges and RIT sets capture complex biological relationships in
A. thaliana

Table 2 contains the top five ranked edges from the iRF-LOOP
network on A. thaliana. None of these five edges are found in the
gold standard network. However, many of these edges describe a
relationship that is not as simple as gene-to-gene or regulator-
to-target. For example, third ranked edge show connections
between extensin genes and are associated with functions in the
cell wall [25]. The edges ranked second and fourth represent the
relationship between two genes with two different directionalities,
and both are involved in the Aminoacyl-tRNA biosynthesis
Table 2
This table depicts the top five ranked edges from the PEN created using iRF-LOOP on A. tha
network, but have some existing biological relationship. This table shows that PENs produ

Rank Impor-
tance Score

Start Gene –
End Gene ID

Start Gene – End Gene Function

1 0.970 AT5G05430 —
AT5G05420

RNA-binding protein — FKBP-like peptidyl-
cis–trans isomerase family protein

2 0.962 ArthCt101 —
ArthCt092

Transfer RNA — Transfer RNA

3 0.959 AT3G28550 —
AT1G23720

Proline rich extensin like family protein —
rich extensin like family protein

4 0.949 ArthCt092 —
ArthCt101

Transfer RNA — Transfer RNA

5 0.941 AT5G44120 —
AT4G28520

RmlC-like cupins superfamily protein — Cru
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pathway [24]. The edge ranked fifth shows connections between
the two genes CruA (AT5G44120) and CruC (AT4G28520), which
both contribute to hexamer formation via an intermediary gene
CruB. In the pathway CruA regulates CruB which regulates CruC
[26,27]. Of the five top edges that were not found in the gold net-
work, all five of these edges had some sort of biological relation-
ship shown in the literature. It is apparent that not only do PENs
capture regulatory information in a biological system, but also cap-
ture other complex biological relationships.

Table 3 contains a sample of three highly prevalent sets from
the RIT analysis on the resulting trees from the iRF-LOOP A. thali-
ana run. These three sets were chosen based on the three highest
prevalence scores, which is dependent on the target gene and thus
not comparable across iRF models. Duplicate sets were removed.
None of the three sets existed as edges in the gold standard net-
work. All three sets existed as edges in the iRF-LOOP network, both
as Gene A to Gene B and Gene B to Gene A, though some had low
importance scores. RIT was able to identify all three highly preva-
lent sets of genes as having some known biological relationship,
such as existing in the same pathway or having the same classifi-
cation. This shows that RIT combined with iRF-LOOP can yield
new information that would not have been possible previously,
and sheds light on higher order sets of interacting genes. Supple-
mentary Tables A.8 and A.9 contains two samples of higher order
sets, one of size four and one of size five, where known biological
relationships were recovered among the sets.
3.5. Replacing RF with iRF captures more members of metabolic
reaction pathways

To compare GENIE3 and iRF-LOOP on the A. thaliana and P. tri-
chocarpa expression data in this section, the GENIE3 PEN is thresh-
olded to match the size of the iRF-LOOP PEN which was
liana expression data. None of the edges were true positive edges in the gold standard
ced with iRF-LOOP capture relationships beyond simple gene regulation.

Relationship

prolyl Endosperm specific genes [23]

Noncoding transfer RNAs, both in Aminoacyl-tRNA biosynthesis
pathway [24]

Proline EXT genes in cell wall [25]

Noncoding transfer RNAs, both in Aminoacyl-tRNA biosynthesis
pathway [24]

ciferin 3 Seed storage proteins that are down and up regulated together, both
contribute to hexamer formation [26,27]



Table 3
This table depicts a sample of three highly prevalent sets determined using RIT on the resulting paths from iRF-LOOP on A. thaliana expression data. All three of these sets have
been found to have some known biological relationship. None of these sets were found in the gold standard network, while some were found in the iRF-LOOP PEN as edges with
low importance scores. This shows that RIT combined with iRF-LOOP can be used to discover or validate gene to gene relationships in sets.

Prev-
alence

Gene ID Function Target Target Function Relation-ship

0.966 AT3G44630
–
AT3G44400

Both disease resistance protein (TIR-
NBS-LRR class) family

AT3G44480 Encodes a TIR-NB-LRR R-protein RPP1
that confers resistance to Peronospora
parasitica

All three encode disease resistant proteins,
regulation is linked in some experiments
[28]

0.964 AT3G28550
–
AT3G54590

Proline-rich extensin-like family
protein – Hydroxy-proline-rich
glycoprotein

AT3G54580 Proline-rich extensin-like family protein EXT genes in cell wall [25]

0.957 AT3G44480
–
AT3G44630

Both disease resistance protein (TIR-
NBS-LRR class) family

AT3G44400 Disease resistance protein (TIR-NBS-LRR
class) family

All three encode disease resistant proteins

Fig. 5. This figure depicts the compounds, RXNs, and genes included in the pentose phosphate pathway in A. thaliana, and the genes that are recovered by GENIE3 and iRF-
LOOP. The resulting PEN from GENIE3 was thresholded to match the same size as the iRF-LOOP PEN. A) Steps in the pathway encompassing the three RXNs according to
AraCyc. B) All of the possible edges between the known genes in neighboring steps in the pathway. C) The edges recovered by iRF-LOOP. D) The edges recovered by GENIE3.
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automatically reduced in size due to the culling of edges of zero
importance per iteration. For A. thaliana this is 15,719,197 edges
and for P. trichocarpa this is 10,180,484 edges.

There are 1,996 unique RXN-to-RXN pathways found in the gold
standard AraCyc gene-to-gene edges. 535 of these pathways were
discovered using GENIE3 on the A. thaliana expression data, com-
prising 1,076 edges in the network. For iRF-LOOP 688 RXN-to-
RXN pathways were discovered comprising 1,776 edges in the net-
work. This increase shows that the true positive edges were ele-
vated in the rankings. Additionally, the average percentage of
edges discovered for each RXN-to-RXN pathway in GENIE3 was
8.279%, where the percentage in iRF-LOOP is 12.878%. Fig. 5 shows
this improvement in edges discovered in a pathway in A. thaliana.
The pentose phosphate pathway is shown in Fig. 5A, containing 2
RXN-to-RXN pathways, EC 1.1.1.49 to EC 3.1.1.31 and EC 3.1.1.31
to EC 1.1.1.44. Fig. 5B shows the gold edges expected in this path-
way, and Fig. 5C shows the edges discovered using iRF-LOOP com-
pared to Fig. 5D which shows the edges discovered using GENIE3.
While not all edges from the gold standard pathway are discovered
in iRF-LOOP, it is possible that iRF-LOOP is discovering the most
important edges. Additionally, iRF-LOOP discovers more edges
than GENIE3 does.

There are 1,075 unique RXN-to-RXN pathways found in the gold
standard PlantCyc gene-to-gene edges used for the P. trichocarpa
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analysis. Similar to the A. thaliana pathways, GENIE3 discovered
244 RXN-to-RXN pathways using 523 edges, while iRF-LOOP dis-
covered 269 RXN-to-RXN pathways using 625 edges, again show-
ing the boosting of true positive edges. The average percentage of
edges discovered for each pathway also increased from GENIE3
to iRF-LOOP, from 5.270% to 6.357%. Fig. 6 contains the Phenyl-
propanoid biosynthesis pathway, an important pathway used in
bioenergy research. Since only a little over half of the total possible
pathways were discovered using iRF-LOOP, Fig. 6B only shows the
single RXN-to-RXN pathway discovered in iRF-LOOP, EC 6.2.1.12 to
EC 2.3.1.133. Fig. 6C shows the edges discovered by iRF-LOOP and
Fig. 6D shows the edges discovered by GENIE3. Again, not all edges
are discovered in iRF-LOOP, but it is possible that only the most
important edges are discovered, and it is clear that iRF-LOOP dis-
covers more edges than GENIE3.

4. Conclusion

The use of whole networks in biology is unwieldy, an all-to-all
directed network of tens of thousands of genes quickly becomes
hundreds of millions of edges. Typically either only the top k edges
or top n percent of edges are selected to be used in further studies
or computational analysis. The value to use for thresholding is
often difficult to discern, the goal being capturing high quality



Fig. 6. This figure depicts the compounds, and a selection of RXNs and genes that are included in the phenylpropanoid biosynthesis pathway in P. trichocarpa. This figure also
depicts the genes that are recovered by GENIE3 and iRF-LOOP in the EC 6.2.1.12 and EC 2.3.1.133 RXNs within the phenylpropanoid biosynthesis pathway. For comparison, in
this figure the GENIE3 PEN is thresholded to match the same network size as the PEN created by iRF-LOOP. A) The entire phenylpropanoid pathway in P. trichocarpa is shown
with the two RXNs of interest shown in blue. B) All of the theoretically possible edges between the known genes associated with the two RXNs. C) The genes and edges
recovered by iRF-LOOP. D) The genes and edges recovered by GENIE3.
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edges and culling noise [29]. To determine whether to use a net-
work created by one method over another, the chosen network
must have the correct edges found higher in the ranking of all
edges than the network not chosen. The better algorithm must
boost the true edges up in the ranking so that they are retained
after thresholding. Culling noisy and true negative edges from
the network entirely helps to ameliorate the thresholding problem.

The A. thaliana and P. trichocarpa empirical networks were
many orders of magnitude larger than the DREAM challenge net-
works, thus the effect of this unsupervised thresholding can be
observed. At the end of each iteration in the empirical networks
around half of the edges were dropped entirely from the network,
removing noisy edges from the final network. When comparing the
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final network after five iterations of iRF to the network resulting
from one iteration of RF, a higher number of total RXN pathways
were discovered in the iRF network, as well as a higher percentage
of the individual RXN pathways being discovered. This process of
discovering pathways is comparable to nDCG, where iRF ranks
the true positive edges higher in the network than RF.

PENs serve a different purpose than GRNs. GRNs focus on pri-
marily regulatory relationships while PENs capture directional
gene to gene relationships other than the direct regulation of one
gene on another. RIT as applied to iRF tree paths can be used to cre-
ate new layers in addition to PENs and GRNs and captures unique
set relationships beyond gene to gene that are likely quite common
in biological systems. PENs and other non-regulatory layers can
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provide expanded functional content for graph learning algorithms
and other downstream applications such as Random Walk with
Restart and other lines of evidence methods [30]. iRF can be used
successfully in contexts beyond gene expression analysis. RF-
LOOP tools such as GENIE3 have been a benchmark for other net-
work inference problems, such as networks of transcriptomic and
proteomic data [31]. iRF can be used beyond building networks,
since RF has also shown to be effective in classification problems
[32]. iRF contains a multitude of advantages that could replace
the use of RF in biology and beyond.

Data availability

The A. thaliana and P. trichocarpa iRF-LOOP networks have been
made available at https://doi.org/10.25983/1871691.
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Appendix A. Supplementary figures and tables

Tables A.4,A.5,A.6,A.7,A.8,A.9, Figs. A.7,A.8,A.9.
hallenges.

Trees Per Iteration Net 1 Net 2 Net 3 Net 4 Net 5

0.154 0.155 0.231 0.208 0.197
0.165 0.158 0.237 0.218 0.213
0.161 0.158 0.249 0.220 0.213
0.177 0.150 0.267 0.248 0.253

0.291 – 0.093 0.021 –
0.303 – 0.095 0.020 –
0.387 – 0.070 0.020 –

challenges.

Trees Per Iteration Net 1 Net 2 Net 3 Net 4 Net 5

0.745 0.733 0.775 0.791 0.798
0.755 0.738 0.786 0.802 0.801
0.758 0.739 0.784 0.800 0.805
0.743 0.711 0.775 0.794 0.792

0.815 – 0.617 0.518 –
0.816 – 0.617 0.516 –
0.816 – 0.614 0.516 –

https://seed-sfa.ornl.gov/
http://energy.gov/downloads/doe-public-access-plan
http://energy.gov/downloads/doe-public-access-plan


Table A.6
This table contains the AUPR p-values for the networks within the DREAM4 and DREAM5 challenges.

DREAM Challenge Base Lear-ner Algorithm Number of Trees Per Iteration Net 1 Net 2 Net 3 Net 4 Net 5 P-Value

DREAM4 RF GENIE3 (Official Scores) 1000 3.3e-34 7.9e-54 1.8e-54 5.5e-47 4.6e-44 1.0e-46
DREAM4 RF GENIE3 1000 7.7e-37 3.5e-55 4.8e-56 1.3e-49 6.8e-48 4.1e-49
DREAM4 RF GENIE3 5000 5.5e-36 4.8e-55 9.3e-57 5.7e-50 8.5e-48 4.1e-49
DREAM4 iRF iRF-LOOP 1000 9.5e-40 1.5e-51 8.3e-64 5.6e-57 1.2e-57 6.1e-54

DREAM5 RF GENIE3 (Official Scores) 1000 1.60e-104 – 5.15e-20 1.58e-01 – 41.295
DREAM5 RF GENIE3 1000 6.18e-121 – 3.54e-21 2.34e-01 – 47.097
DREAM5 iRF iRF-subLOOP 1000 3.81e-269 – 1.32e-07 6.473e-01 – 91.829

Table A.7
This table contains the AUROC p-values for the networks within the DREAM4 and DREAM5 challenges.

DREAM Challenge Base Lear-ner Algorithm Number of Trees Per Iteration Net 1 Net 2 Net 3 Net 4 Net 5 P-Value

DREAM4 RF GENIE3 (Official Scores) 1000 3.3e-18 1.1e-28 9.7e-34 6.7e-33 1.9e-34 1.4e-29
DREAM4 RF GENIE3 1000 3.1e-19 7.1e-30 2.6e-36 5.2e-35 5.2e-35 4.4e-31
DREAM4 RF GENIE3 5000 1.3e-19 4.1e-30 8.4e-36 1.2e-34 5.8e-36 3.1e-31
DREAM4 iRF iRF-LOOP 1000 6.6e-18 3.0e-24 1.1e-33 1.3e-33 2.7e-33 1.5e-28

DREAM5 RF GENIE3 (Official Scores) 1000 3.06e-106 – 5.00e-11 1.06e-02 – 39.263
DREAM5 RF GENIE3 1000 1.19e-107 – 3.65e-11 4.78e-02 – 39.561
DREAM5 iRF iRF-subLOOP 1000 6.39e-108 – 1.75e-09 4.40e-02 – 39.103

Table A.8
This table depicts a sample fourth order gene set that were discovered using RIT on the resulting paths from iRF-LOOP on A. thaliana expression data. This set had a prevalence of
0.331. This set contains a mix of both known and unknown gene to gene relationships.

Gene ID Function Target Target
Function

Relationship

AT3G10040 –
AT5G39890 –
AT1G12805 –
AT5G15120

Hypoxia Response Attenuator 1 (HRA1) – Plant Cysteine
Oxidase 2 (PCO2), Hypoxia Response Unknown Protein
43 (HUP43) – Nucleotide binding protein – Plant
Cysteine Oxidase 1 (PCO1), Hypoxia Response Unknown
Protein 29 (HUP29)

AT3G27220 Hypoxia
Response
Unknown
Protein 6
(HUP6)

HUP43, HUP29, and HUP6 are all Hypoxia –
Responsive Unknown Proteins (HUPs). HRA1 interacts
with RAP2.12, RAP2.12 binds to PCO1 promoters in the
Hypoxia-Responsive Promoter Element regions, which
includes HUP6. RAP2.12 also binds to HUP29 and
HUP43 [33–35].

Table A.9
This table depicts a sample fifth order gene set that were discovered using RIT on the resulting paths from iRF-LOOP on A. thaliana expression data. This set had a prevalence of
0.153. This set contains a mix of both known and unknown gene to gene relationships.

Gene ID Function Target Target
Function

Relation-ship

AT4G3860 – AT3G50370 –
AT1G80070 – AT3G02260
– AT1G55860

Ubiquitin-Protein Ligase 3 (UPL3) – Hypothetical protein – Encodes a factor
that influences pre-mRNA splicing and is required for embryonic
development – Calossin-like protein required for polar auxin transport –
Ubiquitin-Protein Ligase 1 (UPL1)

AT1G70320 Ubiquitin-
Protein Ligase
2 (UPL2)

UPL1, UPL2, UPL3 are
all ubiquitin protein
ligases
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Fig. A.7. This figure depicts the nDCG scores for all of the DREAM4 and DREAM5 networks for both GENIE3 and iRF-LOOP as the number of edges scored, k, increases. The
maximum k for each network depends on the number of true positive values in the corresponding gold standard network, ranging from 176 to 249 edges for the DREAM4
networks and 2,066 to 4,012 edges for the DREAM5 networks. For all networks except the DREAM5 Network 4, the AUnDCG for iRF-LOOP is higher than the AUnDCG for
GENIE3, this suggests that iRF-LOOP outperforms GENIE3.
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Fig. A.8. This figure depicts the true signal-to-noise ratio for each iteration of iRF-LOOP for the DREAM challenges as the blue line. The orange line is the corresponding
GENIE3 network thresholded to match the same number of edges as the iRF-LOOP network, used to confirm that the unsupervised thresholding contributes to the
improvement in signal-to-noise ratio. Unlike the larger empirical networks shown in Fig. 3, these DREAM networks are too small to make a considerable difference when
thresholdi.ng the networks.
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Fig. A.9. This figure depicts the Precision-Recall curves and the corresponding AUPR values for each iteration in the networks used in this analysis. For many of the synthetic
DREAM networks, the improvement in AUPR plateaus after 2 or 3 iterations, which may be due to the size of the networks. This may suggests that iterations improve RF, but
larger networks are needed to verify this. The Precision-Recall curves themselves showminimal improvement after the second iteration for the empirical networks. However,
the AUPR value increases as the number of iterations increases, even after the second iteration. Thus this shows that the addition of iterations to RF improves the AUPR values
for the two empirical data sets used in this study.
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