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Abstract: Breast cancer is a remarkably complex and diverse disease. Subtyping based on morphology,
genomics, biomarkers and/or clinical parameters seeks to stratify optimal approaches for management,
but it is clear that every breast cancer is fundamentally unique. Intra-tumour heterogeneity adds
further complexity and impacts a patient’s response to neoadjuvant or adjuvant therapy. Here,
we review some established and more recent evidence related to the complex nature of breast cancer
evolution. We describe morphologic and genomic diversity as it arises spontaneously during the
early stages of tumour evolution, and also in the context of treatment where the changing subclonal
architecture of a tumour is driven by the inherent adaptability of tumour cells to evolve and resist the
selective pressures of therapy.
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1. Introduction

That breast cancer is heterogeneous is beyond all doubt. We now count at least 20 histological
subtypes of invasive breast cancer, defined by morphologic growth patterns and cytological
appearance [1] and three broad biological subtypes, based on the expression of diagnostic biomarkers
(oestrogen (ER) and progesterone (PR) receptor positive; HER2 positive; and triple negative (lacking
hormone receptors and HER2). The ‘big data’ revolution has dramatically enhanced our appreciation
of the molecular heterogeneity of breast cancer, further stratifying the disease into biologically and
clinically meaningful subtypes, including six or more intrinsic subtypes (normal, claudin-low, luminals
A and B, HER2 enriched and basal) [2–5]; four triple negative molecular subtypes (basal-like 1, basal-like
2, mesenchymal and luminal androgen receptor) [6]; and, ten integrative clusters captured by combined
transcriptional and DNA copy number profiling [7]. Adding to this, the diversity of extra-tumoral
components such as the tumour matrix and immune infiltrate is substantial and so it is easy to imagine
that no two breast cancers will respond to therapy, or potentially progress to metastasis in quite the
same way.
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The recent advances in genomics technology is providing elaborate detail to the somatic architecture
of breast tumour genomes, and with it, unprecedented insight into the mechanisms at play driving
tumour development, adaptation and progression in response to treatment. Next generation sequencing
technology has built on foundational knowledge created by candidate gene sequencing and comparative
genomic hybridisation to provide very high depth, targeted gene panel sequencing for identifying
targetable mutations and subclonal mutations; whole exome sequencing (WES) for comprehensive
mutational analysis of all coding sequences; and whole genome sequencing (WGS) for an unbiased
survey of all coding and non-coding sequences to capture the full repertoire of genetic alterations,
encompassing single nucleotide variants (SNVs), small insertions and deletions (indels), copy number
alterations (CNAs) and structural variants (SVs). Most somatic genetic alterations are perceived
to provide little or no advantage to the neoplastic cells in which they arise (passenger mutations),
however some enhance or inhibit the activity of cancer genes, and hence are termed driver mutations.
One of the great powers of WGS is the ability to use the large numbers of SNVs, indels, CNAs and
SVs to call mutational signatures and the analysis of these ‘genomic scars’ reveal great insight into
the causative factors driving an individual cancer [8–12]; i.e., the exogenous carcinogenic processes,
defective endogenous cellular processes or germline predisposition that have played a significant role
in the aetiology of an individual cancer.

Here we outline how the molecular genetic analysis of tumour genomes has shed light on the
inter- and intra-tumour heterogeneity exhibited by breast cancer; we elaborate on the concepts of
cancer drivers and clonal evolution linked directly to the diverse morphological characteristics of the
disease; and the complex processes of metastasis.

2. Genomic Diversity of Primary Breast Cancer

There are several landmark studies that have characterised the genomic landscape of invasive
breast cancers [10,11,13–16]. It is increasingly clear that each breast cancer is genomically distinct, with a
high level of diversity in the overall number of individual genetic alterations (SNVs, indels, CNAs,
SVs), the cancer genes affected, and the global patterns of mutations captured by mutational signatures.

Most breast cancers have relatively low numbers of SNVs and indels, compared to other
cancer types, however, approximately 20% of tumours are associated with defective homologous
recombination (HR) double strand break repair (e.g., in particular those arising in BRCA1, BRCA2,
PALB2, RAD51C germline mutation carriers), and these exhibit high rates of SNVs and indels. Further,
a minority of tumours (<10%) exhibit hypermutator phenotypes, for instance in tumours associated
with defective base excision repair (e.g., MUTYH inactivation), mismatch repair (e.g., MSH2, PMS2,
MLH1 inactivation) or APOBEC cytidine deaminase activity mutational signatures [8,9,12,14,17–19].

From an architectural point view, some breast cancers have ‘simple’ genomes (e.g., tumours
with the 1q gain and 16q deletion pattern of alterations), whilst other tumours exhibit complex
arrays of structural variants involving interchromosomal rearrangements and high level amplification
of major oncogenic driver genes (e.g., including ERBB2/HER2, CCND1, ZNF703/FGFR1, MYC);
and tumours associated with defective HR repair exhibit extremely high levels of chromosomal
instability [7,9,13,14,20,21].



Cancers 2020, 12, 848 3 of 21

A meta-analysis of breast cancer sequencing studies has established that there are at least 147 breast
cancer driver genes [22]. Approximately three driver gene mutations are found per tumour [14] and
there are a multitude of combinations possible [23]. Some are mutated or altered at high frequency (e.g.,
TP53, PIK3CA, MYC, CCND1, ERBB2) whilst most are affected infrequently, with only 39/147 (26.5%)
of these driver genes being altered in 5% or more of the TCGA breast cancer samples (Figure 1A).
Further, some genes exhibit a strong genotype/phenotype relationship and so when altered they
contribute to the resulting molecular and phenotypic lineage that subsequently develops. For instance,
the distribution of driver mutations differs between ER positive and ER negative tumours [14], including
the most common driver genes, PIK3CA and TP53, respectively. This is also evident in familial breast
cancer, where the inheritance of a pathogenic germline driver mutation is also strongly related to
the resulting tumour phenotype: ER-negative in BRCA1-associated tumours (with high frequency
of TP53 mutations); ER-positive in BRCA2, ATM and CHEK2-associated tumours; HER2-positive in
TP53-carriers; and E-cadherin negative and lobular growth pattern in CDH1-carriers [19,24–29].

Some driver mutations manifest more frequently in morphologically distinct tumours and some
are pathognomonic for special histological types of the disease (Figure 1B–D). Elegant examples
of this occur in rare breast cancer special types; for example secretory carcinomas arise due to the
highly recurrent oncogenic driver created by a balanced t(12;15) (p13;q25) translocation creating an
ETV6-NTRK3 fusion gene; similarly the MYB-NFIB translocation (t(6;9) (q22–23; p23–24)) is a key
driver in the development of adenoid cystic carcinomas of the breast. Both these tumour types are
low-grade, typically of a triple negative phenotype and have counterparts in other tissues (e.g., salivary
gland) driven by the same translocations [30–34].

Invasive lobular carcinoma (ILC) is the most common special histological type of breast cancer,
defined by a characteristic diffuse growth pattern, with discohesive neoplastic cells. The archetypal
alteration in ILC involves dysfunction of the epithelial cell adhesion complex involving E-cadherin and
its binding partners β-catenin and P120-catenin. E-cadherin is encoded by the gene CDH1, which is
inactivated in ~65% of ILC by gene mutation and loss of heterozygosity. Building on formative work
by others, the recent large TCGA study [15], Desmedt et al. [35] defined the unique genomic features
of ILC compared to invasive breast carcinoma of no special type (IBC-NST or IC NST, previously
called invasive ductal carcinoma, IDC) through a deep characterisation of the TCGA breast cancer
multi-omic data and the targeted mutation profiling of a large cohort of ILC. In addition to CDH1
mutations, the only other highly recurrent oncogenic driver was PI3KCA (43–48%), with a plethora of
low frequency (<15% of cases) driver mutations affecting FOXA1, TBX3, ERBB2, ERBB3 and PTEN
that were enriched in ILC relative to IC NST, while GATA3 and TP53 mutations were enriched in IC
NST relative to ILC. TP53 mutations occur at significantly different frequencies between ER+ and ER−
tumours, and so the TP53 mutation finding is likely driven by the presence of ER negative tumours
in the IC NST cohort. Metaplastic breast cancers are at the other end of the histological spectrum
to ILC; they are a rare and heterogeneous special tumour type, which exhibit metaplastic change
to squamous and/or mesenchymal elements; tumours are high grade and are associated with an
overall poor outcome. Although generally triple-negative, they have a high frequency of PIK3CA
mutations [36–38], and indeed have the unusual co-occurrence of PIK3CA and TP53 driver mutations
in some instances [36].
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Figure 1. Genomic alterations across breast cancers. (A) Frequency of genomic alteration (mutation and
copy number variation) in the 147 breast cancer driver genes across the TCGA pancancer breast cancer
dataset (n = 1033); and stratified by oestrogen receptor (ER) status (in magnified plot): ER positive,
n = 795; ER negative, n = 238. Top ten most frequently mutated genes in (B) Invasive Carcinoma-No
Special Type (IC-NST) [15]; (C) Invasive Lobular Carcinoma (ILC) [15]; and, (D) Metaplastic breast
cancer [36–38].

3. Subclonal Genomic Diversity in Primary Breast Cancer

Multi-region sequencing of an individual tumour gives intriguing insights into the subclonal
nature of the disease (Figure 2A). The level of subclonal heterogeneity identified across a cohort of
50 breast cancers was variable [39]: most cases had a driver mutation that was shared by all regions
sequenced (i.e., an early founder driver gene mutation, and indicating an evolutionarily conserved
lineage); about half the cancers showed limited variation in the mutations identified across different
regions sequenced, whereas for three tumours there was profound subclonal diversity. Sub-clonal
driver mutations (e.g., in TP53, PIK3CA, PTEN, MYC amplification) were identified in a subset of
tumour regions sequenced. Subclonal driver alterations have been previously evident, but not to
such detail, through more standard in situ techniques in the diagnostic setting, i.e., breast tumours
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with heterogenous ERBB2 amplification. The geographical expansion of mutant subclones was often
confined to 1–3 adjacent regions, but interestingly in some cases, mutationally distinct subclones
were found to be growing admixed with one another. Cases studied pre- and post- neoadjuvant
chemotherapy or targeted therapy revealed evidence that treatment can dramatically alter the clonal
make-up of a tumour [39,40].

Eirew and colleagues [41] studied mutations and subclonal dynamics using patient-derived
xenograft (PDX) models, and demonstrated that engraftment and subsequent propagation of patient
samples led to selective changes in subclonal frequencies. Notably, independent grafts of the same
tumour resulted in reproducible expansion of specific subclones that were presumably ‘fitter’ in
this new environment [41]. These striking findings recapitulates the clonal diversity observed in
patient samples, but also highlights the idea that human tumour cells in PDX models are dynamic and
continually evolve in response to the pressures they are subjected to.

Mixed ductal lobular carcinomas are a unique histological subtype of breast cancer; like metaplastic
breast cancers they elicit morphological evidence of intra-tumour heterogeneity, this time
showing tumour regions with both ductal and lobular-like differentiation. Multi-region exome
sequencing supplemented by copy number profiling of cases exhibiting distinct morphological
components demonstrated these were clonally related tumour regions as opposed to being collision
tumours [42]. In contrast to the above studies, where topographically defined regions were analysed,
here morphologically defined populations of cells representing the different growth patterns (ductal
and lobular, including associated pre-invasive lesions) were isolated by microdissection and analysed.
In individual cases, all lesions shared precise genetic alterations as likely early events in tumour
development; all cases also exhibited private mutations unique to a morphological lineage (e.g., TBX3),
suggesting they may be important in the separate evolution from a common antecedent [42].

This theory is supported by data from an analysis of multiple invasive tumours from patients
with multifocal breast cancer, using targeted gene sequencing analysis, supplemented by low coverage
WGS to identify structural and copy number variants [43]. Here, all lesions within an individual case
were morphologically identical and expressed the same biomarker profile (same grade, ER and HER2
status). In two thirds of cases, all lesions shared precise genetic alterations, whilst the remaining cases
shared no common mutations, from the panel of 360 genes analysed, but they shared structural/copy
number variants. Thus, all cases exhibited compelling evidence for the multifocal invasive tumours
having a common clonal origin, and for there being subclonal, parallel/branched evolution occurring
prior to invasion into the tissue stroma.

4. The Early Clonal Nature of Breast Cancer—Going Back to the Beginning

The early stages of breast neoplasia are defined by a plethora of morphologically characterised
lesions which reside within the ductal tree. The frequency with which such morphologically distinct
lesions co-existed in the same specimen gave credence to the idea that lesions were evolutionarily
related (later supported by molecular evaluation). Ductal carcinoma in situ (DCIS) and lobular
carcinoma in situ (LCIS) are genetically advanced lesions and direct precursors to invasive cancer.
Columnar cell lesions (CCL), flat epithelial atypia (FEA), atypical ductal hyperplasia (ADH) and
atypical lobular hyperplasia/lobular neoplasia (ALH/LN), among others, are considered ‘earlier’ steps
along the multistep pathway to breast cancer development. Each of these lesions harbour genetic
alterations and are considered clonal neoplastic proliferations; CCL harbour both DNA copy number
alterations and gene mutations, including an usually high rate of PIK3CA mutations (54%) [44–46].
Likewise, ADH may be considered a genetically advanced precursor lesion [47].

The role these lesions play in the evolution of ER-positive and ER-negative disease types has
been well described [34,48–51] (Figure 2B). Early hypotheses for the evolution of ER-positive breast
cancer, in particular, was that of a linear progression from CCL to ADH to DCIS to IDC. Yet the level
of intra-tumoural heterogeneity seen within precursor lesions of an individual specimen points to a
more complex situation. For instance, within a surgical specimen both DCIS and LCIS can exhibit
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morphological (e.g., different grades/level of differentiation) and biological (e.g., variable expression
of ER, PR, HER2, Ki67) heterogeneity as well as evidence of subclonal genomic diversity [52–54];
these lesions can also co-exist, even admixed within the same duct (Figures 2C and 3). Whilst a linear
process of evolution might occur, there is more likely a complex array of parallel/branching clones
evolving within the normal ductal structure, and that this probably arises from an underlying bed of
genetic instability already present in normal breast epithelium (Figures 2 and 3).

Figure 2. The morphological and molecular evolution of breast cancer. (A) Hypothetical schematic
showing how the mutation of cancer genes drives the clonal and subclonal evolution of cancer (adapted
from [55]). Key early driver genes impact the subsequent lineage and tumour type that arises, including
mutations in PI3KCA in ER+ tumours, CDH1 in lobular lineage, TP53 in high grade ER- tumours,
ETV6-NTRK3 and MYB-NFIB translocations in secretory and adenoid cystic carcinomas respectively.
(B) the multistep model of breast cancer showing morphological stages of development from normal
epithelium. This simplified model is based on the evolution of ER positive and ER negative breast cancer,
as portrayed in more detail elsewhere [49–51]; evidence derived from morphological evaluation and
the frequency with which lesions are co-localized, as well as molecular evidence showing co-localized
lesions share identical mutations indicating clonal relatedness. (C) Cartoon to illustrate how this might
arise in a ‘sick lobe’, that is a clonal outgrowth of apparently morphologically normal-looking epithelial
cells (green), which harbour early genetic changes. In some areas of the lobe, the earliest morphologically
abnormal changes may appear in some terminal duct-lobular units (lobule) as columnar cell lesions.
These lesions are considered precursors of ADH (light blue cells) and DCIS (purple cells), which arise
in lobules and may travel down ducts. The mutation or loss of CDH1 (E-cadherin) triggers the
evolution of the ’lobular lineage’ (sky blue cells) as ALH then LCIS (lobular neoplasia); these cells
may travel down ducts underneath the normal epithelial lining (pageotoid spread). Both LCIS and
DCIS are genetically advanced lesions and so likely exhibit sub-clonal mutations. As these neoplastic
cells can travel along ductal structures then this means invasion can occur at multiple sites giving
rise to multifocal invasive disease (ILC, IC NST), which continues to undergo subclonal change.
CCL: columnar cell lesion; ADH: atypical ductal hyperplasia. ALH: atypical lobular hyperplasia,
APH: atypical apocrine hyperplasia; DCIS: ductal carcinoma in situ; LCIS: lobular carcinoma in situ;
IC NST: invasive carcinoma no special type; ILC: invasive lobular carcinoma; MDL: mixed ductal
lobular carcinoma; MGA: microglandular adenosis.
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Figure 3. Illustrating morphological and molecular heterogeneity. Low power, haematoxylin and eosin
stained sections of two tissue blocks from the same surgical specimen (scale bar = 2 mm). Both blocks
are widely affected by breast disease with cystically dilated ducts, in situ carcinoma and invasive
carcinoma. The three images in the lower panel are high power views of the same sections stained for
E-cadherin (scale bar in middle image = 0.5 mm). Left picture shows cells of LCIS (E-cadherin negative)
that have grown and then expanded underneath normal epithelial cells lining a duct (pagetoid spread),
adjacent to E-cadherin positive, invasive cells of IC NST. Middle picture shows adjacent ducts in a
complex branching network, one duct populated by DCIS (E-cadherin positive), two smaller ducts by
LCIS and two other ducts co-involved by cells of DCIS and LCIS (DCIS/LCIS). Right picture showing
ducts separately involved by DCIS or LCIS, plus an area of invasive cancer (ILC, E-cadherin negative).
The individual components of this case were previously analysed by whole exome sequencing and all
lesions were shown to be clonally related with early, common diver mutations identified in BRCA2 and
TBX3, ‘lobular’ lineage-specific mutations including in CDH1 and ‘ductal’ lineage-specific mutations
including in NF1 (see [42]). DCIS: ductal carcinoma in situ; LCIS: lobular carcinoma in situ; IC NST:
invasive carcinoma no special type; ILC: invasive lobular carcinoma.

Molecular analysis of morphologically complex cases has given great insight into this diversity.
Topographically mapped single cell sequencing has elegantly demonstrated that most copy number
alterations identified in invasive cancer arise in DCIS; and that clonal diversity observed in invasive
cancer is driven in large part by existing clonal diversity present within DCIS, whereby distinct
subclones may escape from the ductal tree to seed polyclonal invasive disease (neoplastic cells escaping
from different regions of the ductal tree could seed apparently multifocal invasive cancer) [54,56]
(Figure 2C). Weng and colleagues [57] also explored these relationships in detail using massively
parallel sequencing of normal epithelium, various low-grade proliferative and pre-invasive lesions and
associated invasive cancer. Using the somatic mutations to resolve phylogenetic relations between the
lesions, the authors revealed a fascinating and complex hierarchy between lesions within individual
cases; while IC NST and DCIS were always linked by a shared mutational history; CCLs were either (i)
closely related to this DCIS/IC NST lineage with numerous shared somatic mutations, (ii) distantly
related to this lineage owing to sharing very early mutations but subsequently evolving down a
parallel pathway, or (iii) arose quite independently with no mutations detectable or no mutations in
common to higher grade lesions analysed. Interestingly, PIK3CA mutations arise frequently but quite
heterogeneously within this early stage of disease, including in normal epithelium. Sometimes these
mutations are discordant between lesions examined, or are present in CCL but not in synchronous in
situ and invasive lesions [45,57], suggesting such early driver events may enhance cellular proliferation,
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on a background of which other driver mutations may (or may not) arise to trigger progression (or not)
to more advanced lesions.

Recent sequencing has revealed an amazing level of genetic instability in ‘normal’ cells of various
tissues, caused by environmental exposure or local pathological processes related to tissue injury [58–61].
There is a growing wealth of evidence suggesting the same is true in breast tissue, acting as a primer for
neoplasia. Indeed, morphologically normal epithelium adjacent to tumour harbours a higher level of
genetic instability relative to reduction mammoplasty tissue, particularly when normal is within 1 cm
of tumour; furthermore normal epithelium from cancer-free patients who carry a pathogenic germline
mutation in BRCA1 or BRCA2 also acquire an elevated level of chromosomal instability compared to
controls [57,62–66]. In the case of germline mutation carriers, haploinsufficiency for genes with clear
roles in DNA damage response (such as BRCA1 and BRCA2) is likely to underpin the predilection
to acquire genomic alterations in cells prior to morphological abnormalities being observed [67–69];
in non-carriers the genetic instability may be arising as part of a field cancerisation or ‘sick lobe’ effect,
in which a duct/lobe or a proportion of a lobe is clonally affected by genetic instability and hence the
entire lobe is ‘at risk’ of further genetic instability and oncogenic activation [70]. Indeed, this might
explain the observation of multiple atypical proliferations (e.g., CCL, ADH, LCIS, DCIS) co-existing
across the same specimen (Figures 2C and 3).

5. Genomics and Clonal Dynamic Changes During Metastatic Progression

Metastatic dissemination is the cause of most cancer-related deaths, therefore, the goal to develop
a deep understanding of the mechanisms of metastasis cannot be understated. Large scale sequencing
projects of metastatic samples from breast cancer patients, and the analysis of matched cases of the
primary tumour and distant metastasis or multiple metastases from an individual have started to
reveal important advances in knowledge of clonal progression and treatment resistance.

In many cases the growth pattern (histological type), the expression of phenotypic biomarkers
and the molecular subtype of the primary tumour remains quite stable during progression of disease.
Genomic data reveal a high concordance in the mutations and in particular copy number alterations
between matched primary and metastatic tumours [71–75]. Thus, there is a clear clonal ancestry
during progression, and the early molecular drivers of behaviour and phenotype (e.g., mutations
in TP53, PIK3CA, CDH1, GATA3, amplification of MYC, CCND1, ERRB2/HER2) remain prevalent
drivers in metastatic deposits [71–74,76–80]. Despite this, significant intra-patient heterogeneity
develops during progression, even in the absence of systemic therapy; this occurs to a greater
extent in progression to distant metastases relative to local lymph nodes and is exacerbated by the
selective pressures applied during adjuvant therapy [73,77,81–84]. Changes in tumour phenotype or
in the intrinsic molecular subtype during progression occurs in around 30% of patients (most often
involving the down regulation of PR, but may also involve ER and less frequently a change in HER2
status) and may occur in a non-random manner at specific metastatic sites (e.g., lung, liver and bone
metastases) [85–88]. To further complicate matters, the phenotype of different metastases within a
patient can be heterogenous [83,86,89–92].

Compared to early breast cancer, distant metastases tend to harbour a higher mutation burden
and more frequent alterations to driver genes that may confer resistance to chemotherapy or targeted
therapy, in particular endocrine therapy [74,75,78–80]. Most notably, activating mutations in ESR1
and amplification of the ESR1 gene region (6q25.1) are rarely observed in primary disease, but are
prominent and critical drivers of resistance observed in around 20% of metastases arising following
endocrine therapy [73,74,78–80,93,94]. Enrichment of mutations in TP53, GATA3, KMT2C, AKT1, NF1,
PTEN, ERBB2, FGFR4, or amplification of 7p11.2 (EGFR), 8q24 (MYC), 11q13.3 (CCND1) and 20q13.2
(AURKA) may also underpin endocrine therapy resistance as they are more frequently identified in
ER+/HER2− breast cancer metastases compared to ER+/HER2− primary tumours; many of these
gene mutations are mutually exclusive to ESR1 mutations, emphasising their potential equivalence in
driving resistance [78–80,95].
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Mutational signatures found in the primary tumour are also found in metastases; but as with
individual gene mutations, the frequencies of individual mutation signatures may also change, with an
enrichment in signatures associated with APOBEC enzymatic activity and homologous recombination
deficiency being higher in metastases than in primary tumours [75,78,82]. Evidence suggests the
acquisition of APOBEC signature maybe a driver of intra tumour heterogeneity and endocrine
resistance [17,84,96,97].

The genomic analysis of matched primary and metastatic samples has revealed fascinating
insight regarding the evolution of metastatic disease [73,75,82–84,86,90,98–100]. Such efforts reveal,
for example, that driver mutations that are enriched in metastasis are indeed rarely found in the matched
primary tumour, indicating they arose either in a small subclone not sampled when the primary tumour
was sequenced, or they occurred during the metastatic process after cells had disseminated from the
breast (i.e., treatment induced mutations) [39,73,79,80,82,101]. Indeed, mutations in ESR1, ERBB2
and NF1 were significantly enriched in ER+/HER2− tumours post hormone treatment compared to
tumours from ER+/HER2− untreated patients [80].

The genetic relationship between multiple metastases within a patient is exceedingly complex
but accruing sequencing data and phylogenetic analysis suggests that all metastases within a patient
are genetically related, arising from a common ancestral clone. However, subclonal divergence
of metastases is invariably observed within patients: driver and non-driver gene mutations are
heterogeneously accumulated in different metastases, subsets of metastases may therefore be more
closely related to each other than they are to other metastases, and heterogenous tumour phenotypes
(ER positive and ER negative) often coincide with this divergent history [75,84,90].

The data supports various models of progression; evidence for both linear and parallel models are
evident, in which multiple metastases may arise from a single seeding event from cells disseminating
from the primary tumour, or indeed metastases may be seeded from already established metastases in
a more linear fashion. The longer the time span between diagnosis of primary tumour and that of
the metastases, then the larger the divergence in genetic make-up of the metastases, as expected [98].
Further, in patients with advanced disease at the time of diagnosis, there is evidence of multiple seeding
events from the primary tumour, or even from different parts of the same primary tumour [84,98].

An important finding arose through the analysis of the variant allele frequency of shared mutations
between metastases or between the primary tumour and resulting metastases: subclonal mutations
remained subclonal in the resulting tumour, indicating that metastases were seeded by heterogeneous
collections of disseminated cells as opposed to being seeded by a single cell or a single clone (monoclonal
origin) [75].

6. Capturing Intra-Tumour Heterogeneity in Tissue or Liquid Biopsy

Predicting the extent of intra-tumour heterogeneity in primary or metastatic disease may provide
valuable diagnostic insight into improving the management of patients undergoing neoadjuvant or
adjuvant therapy, respectively. This may provide a framework for understanding likely response to
chemotherapy or targeted therapy in these settings. As described above, it is clear that tumours may
develop and progress on a linear, monoclonal trajectory, with little diversity in phenotype. A single
biopsy of the primary tumour or a metastatic deposit may therefore be sufficient to capture the most
functionally important alterations to determine therapy.

However, tumours that exhibit intra-tumour heterogeneity and hence with parallel/branching
models of progression at play, are more likely to harbour subclones with innate treatment resistance or
metastatic capability, or to harbour the capability to evolve in response to treatment to develop resistance.
Capturing this level of intra-tumour heterogeneity at diagnosis maybe challenging, but could encompass
the recording of a heterogeneity score with regards to morphology and biomarker expression/molecular
subtype. Pathologists already record the presence of mixed growth patterns or grades, or the diversity
across a tumour for the expression of ER, PR, HER2. Comprehensive sequencing of the entire primary
tumour to characterise the subclonal architecture of a mass is not feasible, but evidence suggests that
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sequencing of two different regions of the tumour provides meaningful information to record clonal
heterogeneity and to identify targetable genomic alterations [40].

There has been some reluctance to biopsy metastatic disease in the past, but it has great value in
the era of molecular evaluation and the potential offerings for precision medicine. Various studies have
demonstrated the feasibility in performing molecular testing on metastatic biopsies [71,79], but this
approach is only possible if the metastasis is accessible and may not be appropriate when a patient has
multiple organs involved.

Alternative approaches to examine tumour heterogeneity or for capturing important phenotypic
or genomic alterations have advanced significantly in recent years. Circulating tumour cells (CTCs)
and cell-free tumour DNA (ctDNA) [102–104] are shed into the circulation from both primary and
metastatic tumour deposits. Such liquid biopsies are very accessible, and very amenable to repeat
sampling while the patient is on treatment to monitor disease. They are, therefore, of great potential
benefit in capturing phenotypic heterogeneity or driver mutations acquired or enriched for during
treatment; and they are not biased by tumour sampling.

Increased concentration of CTCs in early [105,106] and metastatic [107–110] breast cancer is
associated with poor prognosis. The application of single cell analysis technologies to PDX models has
shown that CTCs are continuously released by the primary tumour, however only a proportion of
clones have the capacity to seed a metastatic deposit, and as such the utility of CTCs in predicting
the characteristics of subsequent metastases may be limited [111]. Nevertheless, analysis of CTCs
can capture phenotypic heterogeneity of the tumour of origin, for example in the expression of ER,
HER2 and androgen receptors [112–114], and also of biological processes driving metastasis such as
dynamic changes in epithelial and mesenchymal composition [115,116]. Clusters of CTCs, which may
show intermediate epithelial/mesenchymal properties [115,117], demonstrate higher metastatic capacity
than single cells [118–121]. Genomic analysis of single CTCs reveals important heterogeneity in the
mutation of various driver genes (e.g., PIK3CA, ESR1, KRAS, PTCH1, NOTCH1) reflecting the presence
of discrete subclonal mutations within the tumour of origin and/or the presence of genomic alterations
driving resistance/metastasis [122–127].

To illustrate clinical utility of the serial evaluation of molecular heterogeneity within single CTCs,
Paoletti and colleagues comprehensively profiled single CTCs in a patient with metastatic lobular
carcinoma who progressed following chemotherapy [124]. They demonstrated the presence of four
alterations (CDH1 and TP53 frameshift mutations; PIK3CA and SOX2 amplifications) in CTC samples
at baseline and progression. However, high-level MYCN amplifications were only identified in CTCs
sampled at progression, likely conferring treatment resistance. Similarly, the development of mutations
and splice variants within ESR1 identified in single CTCs of metastatic patients on endocrine therapy
also correlated with the onset of endocrine resistance [124,126,128,129].

ESR1 mutations are also readily detected in ctDNA [130–133], and in fact, ctDNA represents a
more sensitive method of detection compared to CTCs [129]. ctDNA is released from tumour cells
undergoing apoptosis, necrosis and phagocytosis. Like CTC analysis, ctDNA provides an opportunity
for non-invasive molecular testing, akin to the non-invasive prenatal testing (NIPT) in pregnancy,
for monitoring patients on therapy. In early breast cancer, the detection of ctDNA in patients undergoing
neoadjuvant chemotherapy correlated with tumour grade and stage and a slow (versus rapid) drop of
ctDNA levels after one cycle of chemotherapy was associated with a shorter disease-free survival [134].
The detection of minimal residual disease was also demonstrated in patients who continued to have
detectable ctDNA PIK3CA mutations after surgery [135]. In the metastatic setting, the mutational status
is highly concordant between ctDNA and tumour tissue [136,137] with additional private mutations
identified in some cases [137].

Serial ctDNA mutation analysis can help characterise the dynamic evolution of subclonal mutations
in real time [138–140] and hence represents a powerful approach for the prospective analysis of patients
on targeted therapy and the early detection of tumour subclones with resistance capability. This has
been demonstrated in the setting of endocrine therapy (various types of ESR1 alterations, including
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mutations, rearrangements and amplifications), CDK4/6 inhibition with endocrine therapy (ESR1,
RB1 and PIK3CA mutations) and anti-HER2 therapy (copy number variations in the ERBB2 gene
as well as increase in TP53 or PI3K/AKT/mTOR pathway mutations) [131,132,141,142]. Importantly,
and reflecting the inter-metastasis molecular heterogeneity described above, ESR1 mutations identified
from either CTC or ctDNA from an individual patient are often heterogenous, suggesting that distinct
subclones develop in parallel and utilise overlapping mechanisms of resistance [124,131].

7. Clinical Implications and Utility in Breast Cancer

Many major centres around the world operate routine cancer sequencing programs integrating
clinical applications with research, and commonly using targeted panels of cancer genes [143] for triaging
patients into clinical trials for targeted therapies. For example; Dana Farber Cancer Centre /Brigham
and Womens’ Cancer Centre (BWCC) offers the ‘Profile’ study wherein cancer gene panel testing may
help doctors enrol a patient in a clinical trial or choose the right combination of FDA-approved targeted
therapies. Memorial Sloan Kettering Cancer Centre has been pioneering ‘basket trials’ implementing
the use of their in-house MSK-IMPACT panel sequencing assay [144], where trial inclusion is based on
mutation status rather than disease origin. UC San Diego Moores Cancer Centre uses the Foundation
One panel and has matched 45% of BC patients to a ‘personalised’ therapy [145,146], however it should
be noted that most of these matches were ERBB2 amplifications to HER2 therapies and the applicability
of this panel outside of ERBB2 in breast cancer is uncertain. Increasing numbers of tools are emerging
to facilitate the matching of alterations and therapies, including for example, PanDrugs [147], while the
MD Anderson program [148] is feeding back ‘sequence-drug’ matching data into the public arena
through their Precision Cancer Therapy interface.

By the end of 2015, 39 gene targets with matched FDA-approved therapies were noted in
an extensive review of precision oncology [149] while the OncoKB resource [150] details 20 genes
(42 alterations) as FDA-recognised biomarkers (Level 1 evidence) and 10 genes (22 alterations) as
Level 2 (standard of care; predictive of response in breast cancer or another indication). In breast
cancer, ERBB2 amplifications (targeted with anti-HER2 therapies) and PIK3CA mutations (targeted
with Alpelisib + Fulvestrant) are the only Level 1 biomarkers as noted by OncoKB, while inactivating
mutations of BRCA1 and BRCA2 are classed as Level 2 biomarkers for intervention with talazoparib
and olaparib. Increasing data therefore supports the clinical application of genomics to inform
therapeutic intervention in breast cancer. Whole exome and whole genome sequencing will be
required to account for the diversity of genes mutated in breast cancer [14,151] as well as larger scale
alterations and mutation signatures that may predict treatment response. It is now clear, through
mutation signature analysis, that hallmarks of defective DNA damage repair (specifically homologous
recombination which BRCA1/2 mediate) are indicative of dysfunctional BRCA1/2 [8,10]. A weighted
model (HRDetect) can detect BRCA1/BRCA2-deficient samples using WGS data [9]. The HRDetect
algorithm was independently validated, and its association with platinum response in advanced breast
cancer demonstrated, where a high HRDetect score was associated with clinical improvement on
platinum therapies [152,153]. Recent research has applied a functional HR assay (RECAP) to breast
cancer samples and demonstrated that 29% of HR-defective tumours were not BRCA-related [154],
although the researchers themselves classify this approach as pseudo-diagnostic.

The introduction of immune checkpoint inhibitors (ICI) has revolutionised therapeutics across
a number of advanced solid tumours. While a subset of patients displays a durable response,
the implementation of a robust biomarker has been challenging. Tumour mutation burden (TMB) is
now emerging as a diagnostic biomarker for ICIs such as PD-1/PD-L1 inhibitors [155,156]. It is now
possible to calculate TMB from panel sequencing data [157], not just exome or genome sequencing,
and with time we expect to see a rationalisation of diagnostic ‘cut-offs’. Small molecular inhibitors of the
PI3K/AKT/mTOR pathway are fast approaching the clinic. The pan-AKT inhibitor, AZD5363, is potent
and sensitivity is predicted by PIK3CA mutations [158]. The SOLAR trial [159] investigating the mutant
PIK3CA inhibitor, alpelisib, demonstrated that a combination of alpelisib with fulvestrant prolonged
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progression-free survival among patients with PIK3CA-mutated, HR-positive, HER2-negative advanced
breast cancer.

The application of these genotype–phenotype relationships in the clinical context of heterogeneity
remains to be rationalised. Tumour heterogeneity exclusive of a histological subtype is not standardly
reported; for example, ER positivity is recorded in a binary fashion with a low cut-off for positivity.
Whether drugs are used sequentially to target residual clones, or in combination for simultaneous
targeting will depend on myriad factors including the application of robust biomarkers of sensitivity
to the therapy and the extent of intra-tumour heterogeneity.
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