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Abstract: The COVID-19 pandemic, as well as the more general global increase in viral diseases, has
led researchers to look to the plant kingdom as a potential source for antiviral compounds. Since
ancient times, herbal medicines have been extensively applied in the treatment and prevention of
various infectious diseases in different traditional systems. The purpose of this review is to highlight
the potential antiviral activity of plant compounds as effective and reliable agents against viral
infections, especially by viruses from the coronavirus group. Various antiviral mechanisms shown by
crude plant extracts and plant-derived bioactive compounds are discussed. The understanding of the
action mechanisms of complex plant extract and isolated plant-derived compounds will help pave
the way towards the combat of this life-threatening disease. Further, molecular docking studies, in
silico analyses of extracted compounds, and future prospects are included. The in vitro production
of antiviral chemical compounds from plants using molecular pharming is also considered. Notably,
hairy root cultures represent a promising and sustainable way to obtain a range of biologically active
compounds that may be applied in the development of novel antiviral agents.

Keywords: bioactive compounds; coronavirus; hairy roots; herbal medicines; molecular farming;
plant extracts; respiratory diseases
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1. Introduction

Bronchitis is a respiratory disease caused by bacterial infections, viral infections, or
irritant particles [1]. In response to infection, the bronchial tubes become inflamed and
swollen, which may eventually result in acute respiratory arrest. Coronavirus disease-19
(Covid-19), which recently emerged as a pandemic, is an infectious respiratory disease
caused by a newly discovered coronavirus. The first report of this novel coronavirus was
traced back to the Huanan wholesale seafood market in Wuhan city, China, in Decem-
ber 2019, where a group of patients exhibited a mysterious kind of viral pneumonia [2].
Nowadays, viral pneumonia is diagnosed through analyzing a sample of bronchoalveolar
lavage fluid using PCR, cell cultures, and whole-genome sequencing [3]. The virus was
isolated from infected individuals and recognized as genus beta-coronavirus, placing it
alongside other viruses causing Severe Acute Respiratory Syndrome (SARS) and Middle
East Respiratory Syndrome (MERS) [4]. Previously, SARS had been reported in Southern
China during 2002–2003, and its outbreak has been reported in 29 countries, with almost
8000 infected cases and around 700 mortalities (http://www.who.int/csr/sars/en/, the ac-
cessed date: 7 February 2021). A decade after the appearance of SARS, MERS was reported
during 2012–2014 as a second coronavirus generation that caused a global pandemic. MERS
affected people in more than 27 countries with over 2000 (32.97%) case-fatality. Coronavirus
is an enveloped, positive-sense, and single-stranded RNA or (+) ssRNA virus with a large
genome of approximately 30 kb.

Covid-19 is a life-threatening illness with a tremendous rate of spreading in humans
due to its high level of infectiousness [5]. The treatment of this disease is a great challenge
due to several reasons, including the rapid emergence of mutant strains, the consequent
high rate of virus adaptation, and the development of resistance to antiviral medicines.
Another factor is that of unwanted side effects and the high cost of synthetic antiviral
drugs. There has been a significant global interest in developing safe and effective Covid-19
vaccines since 2020. Forman and his colleagues provided an overview of current phase
II/III, III, and IV COVID-19 vaccine candidates (20 different vaccines) [6]. The standard
approach for viral infections comprises antiviral medicines that do not cause damage to
the human host but can help shorten viral infection, inhibit virus expansion, and help in
reducing/blocking complications [1]. In parallel with the generation of vaccines in 2020,
studies on the antiviral properties of natural compounds have also been performed via the
molecular docking methodology [7–10]. The potency of marine natural products has been
confirmed to target SARS-CoV-2 main protease (Mpro) [11].

Medicinal plants have been identified as reliable resource against several diseases for
millennia. More than 70% of the global population still depends on herbal medicines due
to their relatively low cost and better compatibility with the human body compared to
synthetic drugs [12]. During the pandemic period, studies were performed using databases
of scientific literature to screen and identify the potential of herbal plants to act as anti-
coronavirus medication [13]. It has been reported that water and ethanol plant extracts
contain biologically active substances with antiviral activity [14].

A wide range of compounds identified in several plant species have demonstrated
antiviral activities, including alkaloids, flavonoids, triterpenes, anthraquinones, and lig-
nans. Interestingly, plant selection based on ethnomedical concerns provides a higher
hit rate than screening plants or general synthetic products [15]. For instance, lycorine
extracted from Lycoris radiata L. and glycyrrhizin from Glycyrrhiza uralensis Fisch showed
anti-SARS-CoV activities [16]. Some known pharmacophore structures of bioactive sub-
stances may be useful in the creation of new anti-Covid-19 drugs. Natural compounds
such as betulinic acid, indigo, aloe emodin, luteolin, quinomethyl triterpenoids, quercetin,
and gallates have been reported to inhibit viral proteases with the potential to develop
antiviral drugs [14]. In addition, plants have also been introduced as a safe and reliable
bioreactor for the production of recombinant virus proteins that can be used in vaccine
development [17], e.g., nuclear transformed tomatoes and tobacco-expressing antigens
have been reported to induce immunogenic responses against SARS-CoV [18].

http://www.who.int/csr/sars/en/
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The main objective of the current review is to provide the complete overview of the
ethnomedicinal uses of herbs employed to treat respiratory diseases. We address questions
regarding the potential of plant-derived compounds in inhibiting virus propagation, thus
providing relief for viral-induced pathogenesis. We also discuss how biotechnology may
help solve the challenge of rapidly obtaining pure antiviral compounds. Furthermore, this
review discusses the current state of the art regarding the possible antiviral activities of
herbal medicine and makes an effort to tackle the gaps in scientific knowledge that may
lead to the advancement of innovative treatments for the welfare of people and against the
spread of viral diseases, especially SAR-CoV.

2. A Brief Model of Viral Entering/Replication in Host Cells

The life and replication cycle of a virus is dependent on the cell processes of its host
(Figure 1). The reproduction cycle of viruses causes significant structural (cytopathic)
and biochemical damage that, in severe conditions, may ultimately result in the death of
the host organism [19]. Viruses can enter host cells via different biological mechanisms
including phagocytosis, pinocytosis, and endocytosis. To enter and spread to the cells of
a living organism, the virus fuses at the plasma membrane in the first phase, and then it
infects the other cells of the host organism via cell-to-cell syncytia or fusion in the second
phase. The respiratory system is the main site of entrance for viruses into host organisms,
and severe infection of the respiratory tract may cause life-threatening damage to the
lungs [20]. Generally, viral replication is completed within several hours [21] and involves
various phases including attachment, penetration, un-coating, replication, assembly, and
release [22].

Figure 1. The most important viral replication chain includes virus attack to the host cell (Steps 1–3); entry using receptor
bindings (Steps 1 and 4–6); and mRNA transcription/replication, and protein translation, and assembly and budding
of progeny virus particles (Steps 1, 7, and 8). These steps are the most important goals for viral polymerase inhibition,
replication (e.g., protease inhibitors, inhibitors of entry, and integrate inhibitors, among others), budding, and assembly [23].

3. General Model of SARS-CoV Pathogenicity

Coronaviruses (CoVs) are considered as a subfamily of Orthocoronavirinae and be-
longs to a cluster of vertebrate animal and human viruses that affect the respiratory tract,
liver, central nervous systems, and digestive systems [24]. Currently, no specific anti-viral
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treatment has been recommended for COVID-19, and investigations have focused on
vaccine development [25]. This human pathogen is a positive-strand RNA virus (positive-
sense (5′-to-3′) viral RNA) enveloped by spike glycoproteins (S). These proteins bind to
their receptor on the surface of the host cells. The spike proteins possess two compartments,
namely envelop proteins (E) and membrane proteins (M), which play important roles in
pathogenesis. Some spike glycoproteins have envelope-associated hemagglutinin-esterases
(HEs) [26]. CoVs can bind to angiotensin-converting enzyme (ACE2) receptors through the
receptor-binding domain (RBD) and then enter cells. The virus has two different shapes, L
and S. The “L” from is assumed to be more virulent and adaptable than the “S” form to
interact with the [27]. Specifically, the S1 domain of Covid-19’s spike glycoprotein interacts
with an immunoregulatory factor for virulence and hijacking, the human CD26 [28]. CD26
is linked to inflammation; it plays a vital function in T-cell activation and is expressed in
plasma and on the cell surface of several non-immune and immune cell types. It has been
reported that high-fiber diets and citrus flavonoids that ameliorate the effects of type 2
diabetes mellitus (T2DM) are also inhibitors of CD26 [20].

Furthermore, the epigenetic dysregulation of ACE2 and interferon-regulated genes
may suggest increased Covid-19 susceptibility and severity in lupus patients [29]. The S
protein has two functional domains: (a) the receptor-binding domain and (b) sequences that
mediate the fusion of viral and cell membranes. S-glycoprotein must be cleaved by cellular
proteases to provide access to fusion sequences and is required for cell entry. The nature of
the cell protease that cleaves the S glycoprotein varies according to the coronavirus type.
For instance, the MERS-CoV S glycoprotein contains a furin protease cleavage site and is
processed by these intracellular proteases during exit from the cell. This protein processing
by the host’s furin protease is necessary for the development of the virus and allows it
to enter the next cell. In contrast, SARS-CoV S glycoprotein is uncleaved upon release of
virus from cells. It is probably cleaved during virus entry into a cell. Furin proteases may
therefore be targeted for therapeutic uses [20] (Figure 2).

Figure 2. The replication cycle of SARS-CoV-2 and its inhibitors. The binding of the spike (S) protein to the host cell receptor
initiates SARS-CoV-2 infection. SARS-CoV-2 has so far been linked to two cellular receptors: angiotensin-converting enzyme
2 (ACE2) and CD147. The cleavage of the S protein by the cell surface-associated enzyme occurs after receptor engagement.
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The viral genomic RNA is translated through ribosomal frameshifting to produce the polyproteins pp1a and pp1ab, which
are co-translationally proteolytically processed into the 15 non-structural proteins (nsp1–nsp10 and nsp12–nsp16) that make
up the replication-transcription complex (RTC). The RTC is involved in the replication of genomic RNA and the transcription
of a series of nested subgenomic mRNAs that are essential for the expression of structural and accessory protein genes. New
virions are formed by budding into the intracellular membranes of the ER–Golgi intermediate compartment membranes
and then being released via exocytosis. In addition, blue denotes the extensive host-based therapy choices, and pink denotes
specific viral-based treatment possibilities [30].

4. Replication Inhibitors of SARS-CoV

Previous investigations have demonstrated that the development of proteases is an
ideal goal to be tackled for the inhibition of CoV replication. In silico analysis demon-
strated a 96% similarity between 2019-CoV main protease and the SARS-CoV Mpro, and no
mutation was reported in the active sites in both proteins [31]. Though the protease activity
disruption causes various diseases, host proteases are considered reliable therapeutic tar-
gets. For several different viruses, protease activity represents a vital factor in replication;
thus, proteases are frequently targeted as protein candidates during antiviral therapeutics
studies [32]. Lopinavir and nelfinavir are in the category of medications named protease
inhibitors with a high level of cytotoxicity recommended for the treatment of cells infected
with MERS, SARS, and HIV [33]. Some preliminary investigations have examined the
potential of protease inhibitor ritonavir/lopinavir, which is regularly implemented to
cure human immunodeficiency virus (HIV)/acquired immunodeficiency syndrome cases
for the therapy of Covid-19-infected patients. In addition, other studies on the antiviral
treatment of pathogenic forms of human CoV have reported on lamivudine (3TC), teno-
fovir disoproxil (TDF), umifenovir (arbidol), remdesivir, neuraminidase inhibitors, and
nucleoside analogues, among others [34]. Moreover, another effort demonstrated that
nelfinavir was the best potential inhibitor candidate over praziquantel, perampanel, and
pitavastatin against COVID-19 Mpro. The efficiency of nelfinavir has been reported due
to the binding free energy calculations using the molecular mechanics with generalized
Born and surface area solvation (MM/GBSA) model and solvated interaction energy (SIE)
methods. In this regard, the crystal structures of protease/chymotrypsin-like protease
(3CLpro) [27] from Covid-19 patients have shown that this protease could have the capabil-
ity to inhibit CoV replication [35]. On the other hand, molecular docking investigations
revealed that epicatechin-gallate, catechin, curcumin, oleuropein, apigenin-7-glucoside,
demethoxycurcumin, and luteolin-7-glucoside may have the potential to inhibit Covid-19
Mpro. Additionally, an in silico analysis showed that the mentioned phenolic compounds
share a pharmacophore with nelfinavir [36]. Thus far, different flavonoid compounds
derived from medicinal plants have shown antiviral bioactivities for inhibiting protease.

5. Inhibitors of Assembly and Packaging of SARS-CoV

During the virus’ life cycle, the assembly and release of infectious particles is the
final phase [37]. In this phase, viral structural proteins (often mentioned as pre-structural
proteins such as P1 of enterovirus 71) mature until they are assembled into viral capsids.
In this phase, the SARS-CoV genomes are actively tightly packaged into pre-formed
viral protein capsids for enveloped intracellular cargo transport and then released [38].
Notwithstanding the absolute necessity for virus infection, so far, no antiviral drugs/agents
have tackled this phase [39]. However, the results of studies have shown that some
medicinal plants can interfere with the viral packaging and assembly mechanisms [23].

6. Evidence Supporting the Antiviral Efficacy of Medicinal Plants

The use of therapeutic plants against viral infection can be traced back to the dawn
of civilization; however, BOOTS Pure Drug Co., Ltd., Nottingham (England) made the
first systematic effort to screen plants against influenza [40]. Later on, the inhibitory effect
of medicinal plants on the replication of viruses was studied on severe acute respiratory
syndrome (SARS) virus, emerging viral infections linked with poxvirus, hepatitis B virus
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(HBV), HIV, and herpes simplex virus type 2 (HSV-2) [41–46] (Table 1). Many studies
have applied either alcoholic or aqueous extracts of medicinal plants. However, only a
few investigations have been conducted to study active natural compounds presenting
antiviral effects. It has been demonstrated that molecular mechanisms linked to the antivi-
ral effects of medicinal plant extracts vary among various types of viruses. Nonetheless,
medicinal plant extracts potentially improve the inherent antiviral defense mechanisms of
the human body, which involve a complicated system and might use several concurrent
pathways. Thus far, some investigations have discovered immunostimulatory properties
of medicinal plant extracts possessing antiviral activity [47]. Many plants including Vi-
tex negundo, Solanum nigrum, Scharicum guerke, Ocimum kilim, Sambucus ebulus, Ocimum
sanctum, Euphorbia granulate, Eugenia jambolana, and Acacia nilotica have been revealed
to target reverse transcriptase activity and have shown inhibitory actions towards HIV
proteases [48–53]. The root extracts of Heracleum maximum Bartr. (Apiaceae) enhanced
interleukin 6 (IL-6) in a macrophage activation test, thus proving antiviral effects linked
with the immunostimulatory characteristics [47]. Likewise, Plantago asiatica Linn. (Plantagi-
naceae) and Plantago major Linn. are frequently used as folk medicinal plants in Taiwan for
the treatment of different infectious diseases, and both were found to induce the secretion
of interferon-gamma (IFN-γ) and lymphocyte proliferation at low concentrations. Both
the secretion of interferon-gamma (IFN-γ) and the induction of lymphocyte proliferation
activity are reliable indicators of cell-mediated immune response modulation [47,54].

Table 1. Example of biological active agents extracted from medicinal plants against SARS-CoV and other virus infections.

Plant Species or Plant Organ Common Name Active Against Mode of Action Compound(s) Isolated/Target Reference

Torreya nucifera Coniferous tree SARS-CoV 3CLpro inhibitor Plant extract [55]
Thuja orientalis Oriental Arborvitae SARS-CoV Viral growth inhibitor Plant extract [35]
Angelica keiskei Tomorrow’s leaf SARS-CoV 3CLpro inhibitor Chalcones [56]

Radix glycyrrhizae Licorice root SARS-CoV Inhibits viral replication Glycyrrhizin [57]
Dioscoreae Rhizoma Yam Rhizome SARS-CoV Viral growth inhibitor Plant extract [58]
Psoralea corylifolia Babchi SARS-CoV PLpro inhibitor Plant extract [59]

Allium sativum Garlic HCMV
Inhibits viral replication in earlier
stages of viral cycle before viral

DNA synthesis
Allitridin [60]

Myrica faya Fire tree SARS-CoV Helicase inhibitor Myricetin [61]
Laggera

pterodonta Curly Blumea EV71 Inhibits viral RNA replication Chrysosplenetin and penduletin [62]

Cassiae semen n/a SARS-CoV Viral growth inhibitor Plant extract [58]

Cryptomeria japonica Sugi SARS-CoV
Viral

growth
inhibitor

Hydroxy-deoxycryptojaponol [63]

Triterygium regelii Regel’s threewingnut SARS-CoV 3CLpro inhibitor

Celastrol
Pristimerin
Tingenone
Iguesterin

[55]

Gentianae Radix Gentian Root SARS-CoV Viral growth inhibitor Plant extract [58]
Pterocarpus santalinus Red sandalwood SARS-CoV 3CLpro inhibitor Savinin [63]

Betula pubescens Downy birch SARS-CoV 3CLpro inhibitor Betulinic acid [63]
Fructus arctii Burdock Flu Inhibits viral replication Arctigenin [64]

Galla chinensis Nutgall tree SARS-CoV
Viral spike protein and
Human ACE2 receptors

inhibitor

Tetra-O-galloyl-
β-d-glucose [65]

Saxifraga melanocentra
Rhodiola kirilowii

Saxifrages
Golden root HCV Inhibits viral NS3 serine protease

Polyphenolic compounds
(−)-Epicatechin-3-O-gallate,

3,30-digalloylproprodelphinidin B2,
3,30-digalloylprocyanidin B2, and
(−)-epigallocatechin-3-O-gallate

[66,67]

Paulownia
tomentosa Princess tree SARS-CoV PLpro

inhibitor
Flavonoids [67]

Radix scutellariae
Salvia miltiorrhiza

Ranunculus sieboldii
Ranunculus sceleratus

Radix sophorae
Radix bupleuri

Huang Qin
Red sage
Buttercup

Celery-leaved buttercup
Shrubby sophora
Thorowax Root

HBV

Inhibits viral DNA polymerase
Inhibits viral replication
Inhibits viral replication
Inhibits viral replication

Inhibits viral DNA replication
and

HBeAg production

Wogonin
Protocatechuic aldehyde/Tanshinones
Apigenin 40-O-a-rhamnopyranoside,

apigenin
7-O-b-glucopyranosyl-40-O-a-rhamnopyranoside,

tricin 7-O-b-glucopyranoside, tricin,
isoscopoletin

Apigenin 4′ -O-α-rhamnopyranoside,
apigenin

7-O-β-glucopyranosyl-4′ -O-a-rhamnopyranoside,
tricin 7-O-β-glucopyranoside, tricin,

isoscopoletin
Saikosaponin C

[16,68–70]

Scutellaria lateriflora Blue skullcap SARS-CoV Helicase inhibitor Scutellarein [71]
Loranthi ramus Mulberry SARS-CoV Viral growth inhibitor Plant extract [58]

Stephania cepharantha n/a SARS-CoV Viral growth inhibitor Biscoclaurine [35]
Cinnamomum cassia Chinese cassia SARS-CoV 3CLpro inhibitor Plant extract [71]
Linum usitatissimum Flax SARS-CoV 3CLpro inhibitor Herbacetin [55]

Alnus japonica East Asian alder SARS-CoV PLpro inhibitor Plant extract [72]
Laurus nobilis Bay laurel. SARS-CoV Viral growth inhibitor Plant Extract [35]

Rhizoma coptidis
Chrysanthemum

Morifolium
Vatica cinerea

Aesculus chinensis
Kadsura matsudai

Huang Lian
Florist’s daisy

Resak Laut
Chinese horse chestnut

Kadsura

HIV/SARS-CoV

Inhibits viral DNA
synthesis/3CLpro inhibitor

Inhibits viral integrase
Inhibits viral replication
Inhibits viral protease

Inhibits viral replication

Berberine
Apigenin-7-O-b-D-g-lucopyranoside

Vaticinone
(23E)-27-nor-3-hydroxycycloart-23-en-25-one

Triterpenoid saponins
Schizanrin B, C, D, and E

[73–77]
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Table 1. Cont.

Plant Species or Plant Organ Common Name Active Against Mode of Action Compound(s) Isolated/Target Reference

Chamaecyparis obtuse
Euphorbia jolkini
Limonium sinense

Ranunculus sieboldii
Ranunculus sceleratus

Limonium sinense

Hinoki cypress
Spurge
Girard

Buttercup
Celery-leaved buttercup

Girard

HSV

Inhibits HSV-1 ICP0, ICP4
expression,

and as viral DNA synthesis
Affects the late stage of HSV-2

Replication
Inhibits viral replication
Inhibits viral replication
Inhibits viral replication

Yatein
Putranjivain A

Samarangenin B
Protocatechuyl aldehyde

Isodihydrosyringetin, (−)-epigallocatechin
3-O-gallate,

samarangenin B, myricetin, myricetin
3-α-arhamnopyranoside,

quercetin 3-O-α-rhamnopyranoside,
(−)-epigallocatechin,

gallic acid, N-trans-caffeoyltyramine,
N-transferuloyltyramine

[16,78–81]

Azadirachta indica Neem tree Dengue virus n/a Leaf extract (Aqueous)
inhibits DEN-2 in vivo [82]

Moringa oleifera Horseradish tree HIV/Epstein-Barr virus
(EBV) n/a

Leaves used to inhibit
viral replication/leaves and seeds inhibits

activity against EBV
activation

[83,84]

Terminalia bellerica Myrobalan HIV-1
Pseudo viruses n/a Plant extract against

HIV-1 [85]

Rheum palmatum Chinese rhubarb SARS-CoV Viral spike protein and Emodin [86]
Avicennia marina Grey mangrove Hepatitis B virus Inhibits HBV antigen n/a [87]
Litchi chinensis litchi SARS-CoV 3CLpro inhibitor Flavonoids extract [52]

Multiflora Tuber Tuber fleeceflower SARS-CoV Viral spike protein and
Human ACE2 receptors inhibitor Emodin [86]

Canthium coromandelicum Alston HIV - Leaf extract controls HIV infection [82]

Houttuynia cordata Fish mint SARS-CoV

3CLpro inhibitor
and RNA-dependent

RNA polymerase (RdRp)
inhibitor

Plant extract [88]

Veronica linariifolia Speedwell SARS-CoV Viral growth inhibitor Luteolin [62]

Carissa edulis Conkerberry Herpes simplex virus
Exhibits anti-HSV-1 and -2

properties in vitro and in vivo
strongly

n/a [89]

Nicotiana benthamiana Benth SARS-CoV Viral growth inhibitor NICTABA Lectin [90]
Urtica dioica Common nettle SARS-CoV Viral spike protein inhibitor Urtica dioica agglutinin [91]

Phyllanthus amarus Indian gooseberry
Human

immunodeficiency
virus/hepatitis B virus

Inhibits HIV replication Plant extract had lost
HBV antigen surface [92]

Guazuma ulmifolia Lam West Indian elm Polio virus Extracts inhibits polio
replications n/a [93]

Achyranthus aspera Chaff-flower Herpes
simplex virus

Inhibits earlier stages of
HSV multiplications n/a [94]

Camelliasinensis Tea tree SARS-CoV 3CLpro inhibitor Tannic acid/3-isotheaflavin-3-gallate [95]

Sesbania grandiflora Vegetable hummingbird Herpes simplex virus n/a Extract possesses strong
antiviral activity against HSV [96]

Ficus religiosa Bo tree
Human rhino virus

(HRV) and Respiratory
syncytial virus (RSV)

n/a
Bark extract endowed
with antivirus activity
against HRV and RSV

[97]

Hippophae rhamnoides Dengue virus Significant anti-dengue
activity Leaf extract [98]

Glycine max(black) Soybean Human adenovirus
(type 1)

Inhibits human ADV-1 in
dose-dependent manner n/a [99]

Acacia nilotica Gum arabic tree HIV-PR Inhibition n/a [100]

Allium sativum Garlic SARS
Proteolytic and hemagglutinating

activity and
viral replication

n/a [101]

Andrographis paniculata
Boerhaavia diffusa

Green chireta
Punarnava

SARS-COV and likely
SARS-CoV-2

Suppression
Inhibition

NLRP3, capase-1, and IL-1β
ACE [31,102,103]

Clerodendrum inerme The glory bower SARS-CoV-2 Inactivation Ribosome [104]
Clitoria ternatea Butterfly pea n/a Metalloproteinase inhibitor ADAM17 [105]

Coriandrum sativum Coriander n/a Inhibition ACE [106]
Cynara scolymus

Cassia occidentalis Scolymus n/a Inhibition ACE [102,103]

Embelia ribes White-flowered Embelia n/a Inhibition ACE [102,103]
Eugenia jambolana Black Plum n/a Inhibition Protease [49]

Euphorbia granulata Asthma-plant HIV-1 PR Inhibition - [100]

Glycyrrhiza glabra
Gymnema sylvestre

Licorice
Gurmar SARS; HIV-1

Inhibition of viral replication;
modulation of membrane fluidity
Inhibition of viral DNA synthesis

Glycyrrhizin [57,107]

Hyoscyamus niger black henbane n/a Inhibition and Bronchodilator Ca2+ [108]
Ocimum

kilimandscharicum Camphor basil HIV-1 Inhibition n/a [51]

Ocimum sanctum Holy basil HIV-1 Inhibition n/a [50]

Punica granatum Pomegranate Human herpes virus-3 Inhibition ACE/Phytochemical extract
exhibits potential antiviral activity [102,103]

Salacia oblonga Oblong leaf salacia n/a Suppression Angiotensin II and AT1 [109]
Sambucus ebulus Danewort Enveloped virus Inhibition n/a [110]
Solanum nigrum European black nightshade HIV-1 n/a n/a [52]

Sphaeranthus indicus East Indian globe Mouse corona virus and
Herpes virus Inhibition n/a [111,112]

Strobilanthes callosa Plietesials HCoV-NL63 Blocking n/a [107,113]
Strobilanthes cusia Kuntze HCoV-NL63 Blocking n/a [113]

Vitex negundo Five-leaved chaste tree HIV-1 Inhibition n/a [52,53,113,114]

Emblica officinalis Emblic Influenza A virus Prevention of virus adsorption
and suppression of virus release Pentagalloyl glucose [114]

Vitex trifolia Simpleleaf Chastetree SARS-COV Reduction n/a [115]

7. Plant-Derived Immunomodulators

The phagocyte–microbe interactions in the immune system comprise a defense reac-
tion that, under more harmful circumstances, may take part in the advancement of various
immune and non-immune chronic inflammatory diseases. The immune system of a healthy
organism manages the homeostasis of the body. Agents that express a capacity to modulate
and normalize pathophysiological processes are named immunomodulators [116]. Most
of the well-known immunostimulants and immunosuppressants used in clinical practice
are cytotoxic drugs, which can have severe side effects. Therefore, plant-derived com-
pounds and extracts have been studied regarding their immunomodulatory potential in
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humans due to their lower cytotoxicity and high bioavailability [117,118]. Plant-derived
immunomodulators can also be used for a long period [119] (Table 2).

Some plant-derived compounds, e.g., curcumin, genistein, fisetin, quercetin, resvera-
trol, epigallocatechin-3-gallate, andrographolide, and colchicine, have immunomodulatory
effects [120–126]. These compounds can downregulate the production of proinflammatory
cytokines induced by some viroidal agents [122]. Andrographolide and other natural
immunomodulators can enhance the activity of cytotoxic T cells, phagocytosis, natural
killer (NK) cells, and antibody-dependent cell-mediated cytotoxicity [125]. The use of
quercetin in combination with highly active compounds such as psoralen, baccatin III,
embelin, and menisdaurin increased its anti-hepatitis B activity up to 10% [127].

At the same time, analyses of other medicinal plant extracts with antiviral properties have
shown that Gymnema sylvestre [121], Stephania tetrandra S Moore roots [128–130], and Vitex trifolia
extracts [107] possess immunomodulating activity. Naser et al. [131] found immunomodulation
potential and antiviral activities against acute common cold in leaf extracts of Thuja occidentalis.
The anti-SARS and immunomodulatory activity of water extracts of Houttuynia cordata have
been reported via the stimulation of lymphocyte proliferation together with enhancing the
proportion of CD4+ and CD8+T cells [81] (Table 3).

Table 2. Plant sources of polyphenolic compounds with anti-protease activity.

Plant Species Sources Compounds Molecular Formula
Lipinski’s Rule of Five

Reference
Properties Value

Spinacia oleracea,
Brassica oleracea, Anethum
graveolens, Brassica rapa,

Sauropus androgynus

Spinach
Cabbage

Dill
Chinese cabbage Katuk

Kaempferol C15H10O6

Molecular weight (<500 Da) 286.24

[132,133]
LogP (<5) 1.58

H-bond donor (5) 4
H-bond acceptor (<10) 6

Violations 0
Anethum graveolens,

Foeniculum vulgare, Allium
cepa,

Oregano vulgare, Capsicum
annum

Dill
Fennel leaves

Onion
Oregano

Chili pepper

Quercetin C15H10O7

Molecular weight (<500 Da) 302.24

[132]
LogP (<5) 1.23

H-bond donor (5) 5
H-bond acceptor (<10) 7

Violations 0

Olea europaea, Averrhoa
belimbi, Capsicum annum,

Allium fistulosum

Olive
Star fruit

Chili pepper
Welsh onion/Leek

Luteolin-7-glucoside C21H20O11

Molecular weight (<500 Da) 448.38

[134]
LogP (<5) 0.16

H-bond donor (5) 7
H-bond acceptor (<10) 11

Violations 2

Curcuma longa,
Curcuma xanthorriza

Turmeric
Curcuma

Demethoxycurcumine C20H18O5

Molecular weight (<500 Da) 338.35

[135,136]
LogP (<5) 3

H-bond donor (5) 2
H-bond acceptor (<10) 5

Violations 0

Citrus sinensis Citrus fruit Naringenin C15H12O5

Molecular weight (<500 Da) 567.78

[137]
LogP (<5) 4.33

H-bond donor (5) 4
H-bond acceptor (<10) 5

Violations 1

Averrhoa belimbi, Lycium
chinese, Apium graveolens,

Olea Europaea

Star fruit
Goji berries

Celery
Olive

Apigenine-7-glucoside C21H20O10

Molecular weight (<500 Da) 432.34

[138–140]
LogP (<5) 0.55

H-bond donor (5) 6
H-bond acceptor (<10) 10

Violations 1

Olea Europaea Olive Oleuropein C19H22O8

Molecular weight (<500 Da) 378.37

[138]
LogP (<5) 1.57

H-bond donor (5) 3
H-bond acceptor (<10) 8

Violations 0

Camellia sinesis Green tea Catechin C15H14O6

Molecular weight (<500 Da) 290.27

[141,142]
LogP (<5) 0.85

H-bond donor (5) 5
H-bond acceptor (<10) 6

Violations 0

Curcuma xanthorriza,
Curcuma longa

Turmeric
Curcuma Curcumin C21H20O6

Molecular weight (<500 Da) 368.38

[135,136]
LogP (<5) 3.03

H-bond donor (5) 2
H-bond acceptor (<10) 6

Violations 0

Zingiber officiale Ginger Zingerol C11H16O3

Molecular weight (<500 Da) 196.24

[36,143,144]
LogP (<5) 1.86

H-bond donor (5) 2
H-bond acceptor (<10) 3

Violations 0

Zingiber officiale Ginger Gingerol C17H26O4

Molecular weight (<500 Da) 294.39

[36,144,145]
LogP (<5) 3.13

H-bond donor (5) 2
H-bond acceptor (<10) 4

Violations 0

Allium sativum Garlic Allicin C6H10OS2

Molecular weight (<500 Da) 162.27

[36]
LogP (<5) 1.61

H-bond donor (5) 0
H-bond acceptor (<10) 1

Violations 0

Camellia sinesis Green tea Epicatechin gallate C22H18O10

Molecular weight (<500 Da) 442.37

[139]
LogP (<5) 1.23

H-bond donor (5) 7
H-bond acceptor (<10) 10

Violations 1
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Table 3. The mode of action against viruses and methods of active compound extraction from medicinal plants.

Plant Species and
Plant Part

Active Compounds

Coumarins Extract Model Organism Mode of
Action/Activity RefTerpenes

Terpenoids
Flavonoids
Flavones Alkaloids Stilbenes

Méntha piperíta
(whole plant)

Lamiaceae

α-pinene
β-pinene

β-caryophyllene
L-Limonene

Menthol

Eriocitrin
Hesperidin
Kaempferol

7-O-rutinoside
Luteolin and its

derivatives

n/a Trans-resveratrol n/a Ethanol Vero cell cultures High antiviral
activity [145–147]

Thymus vulgaris
(whole plant)

Lamiaceae

Thymol
p-cymene
g-erpinene
γ-Terpinene

Linalool

Rutin
Quercetin n/a n/a n/a Ethanol Vero cell cultures

High antiviral
activity and

antioxidant effects
[145,148,149]

Desmodium
canadense

(whole plant)
Fabaceae

Sandosaponin B
and its deriva-

tivesSoyasaponin
I Soyasaponin VI

Homoorientin
Orientin
2-vicenin
Vitexin

Isovitexin
Rutin

Desmodin
Homoadonivernite

Indole-3-
alkylamine

phenylethylamine
alkaloids,

pyrrolidine
alkaloids

n/a n/a Ethanol Vero cell cultures High antiviral
activity [145,150–153]

Camellia japonica
(whole plant,

flowers)
Theaceae

Oleanane
triterpenes
3β,18β-

dihydroxy-28-
norolean-12-en-

16-one
18β-hydroxy-28-
norolean-12-ene-

3,16-dione

Quercetin
Kaempferol

Apigenin

Do not produce
purine alkaloids n/a n/a Ethanol

Vero cells (African
green monkey

kidney cell line;
ATCC CCR-81)

High antiviral
activity on PEDV

corona virus
Inhibitory effects on
key gene and protein

synthesis during
PEDV replication

[154–159]

Saposhnikovia
divaricate

(whole plant)
Apiaceae

n/a n/a n/a n/a

cis-3′ -
Isovaleryl4′ -

acetylkhellactone
Praeruptorin F
Praeruptorin B

(−)-cis-
khellactone

Ethanol

Vero cells (African
green monkey

kidney cell line;
ATCC CCR-81)

High antiviral
activity on PEDV

corona virus
[155]

Quercus ilex L.
(Leaves)
Fagaceae

kaempferol
glycosides
(juglanin,

kaempferol-3-O-α-
L-

arabinofuranoside,
and afzelin,

kaempferol-3-O-α-
L-rhamnoside

n/a n/a n/a DMSO Xenopus oocytes
Inhibits 3a channel

protein of
coronavirus

[156,157]

Bupleurum sp.
(whole plant)

Apiaceae

Triterpenoid
saponins

Saikosaponins
2′′ -O-

Acetylsaikosaponins
Prosaikogenins
Bupleurosides

Etc.

Quercetin
Isorhamnetin

Narcissin
Rutin

Eugenin
Saikochrome A

n/a n/a n/a DMSO

Human fetal lung
fibroblasts

(MRC-5; ATCC
CCL-171)

Saikosaponins
attenuate viral
attachment and

penetration

[160,161]

Houttuynia cordata
(whole plant)
(Saururaceae)

Cycloart-25-ene-
3b,24-diol

Quercetin
7-rhamnoside

Hyperin
Quercetin

Afzelin
Rutin

Arisolactams
Piperolactam A

Caldensin
n/a n/a Water BALB/c mice

Decreases the viral
SARS-3CLpro

activity
Stops viral t RNA

polymerase activity
(RdRp)

Increases the
secretion of

interleukin (IL)-2 and
(IL)-10

[88,162]

Isatis tinctoria
(Roots extracts)

Brasicaceae
n/a

Hesperetin
Quercetin
Isoorientin
Isovitexin

Indigo
Indirubin
Indican

Sinigrin n/a Water Vero cells

Cleavage of the
activity of

SARS-3CLpro

enzyme decreased

[163,164]

Lycoris radiata
(Bulbs)

Amaryllidaceae

β-Myrcene
A-terpineol
Eucalyptol

β-cyclocitral

n/a

Lycorine
Amaryllidaceae

alkaloids
Lycoranines

n/a Ethanol Vero E6 cells
Exhibits

anti-SARS-CoV
activity

[16,165–167]

Litchi chinensis
(seeds)

Sapindaceae

3-Oxotrirucalla-
7,24-dien-21-oic

acid

Herbacetin
Rhoifolin

Pectolinarin
Quercetin

Epigallocatechin
gallate

Gallocatechin
gallate

Litchitannins
Kaemferol
derivatives
Epicatechin

Cinnamtannin

n/a n/a n/a Water
On model with

SARS-CoV
3CLpro

Inhibits
SARS-3CLpro

activity
[168–171]

Stephania tetrandra
S Moore
(Roots)

Menispermaceae

n/a n/a
Tetrandrine

Fangchinoline,
Cepharanthine

n/a n/a DMSO Human cell line
MRC-5 cells

Inhibits the
expression of

HCoV-OC43 spike
and nucleocapsid

protein.
Immunomodulation/

[129,172]

Scutellaria
baicalensis

(Roots)
Lamiaceae

Dodecanedioxins

Scutellarein
Baicalin

Wogonin
Wogonoside

n/a n/a n/a DMSO

Model with
SARS-CoV

helicase, and
nsP13

Inhibits nsP13 by
affecting the ATPase

activity
[61,173]

Allium sativum
(Bulbs)

Alliaceae

Nerolidol Phytol
Squalene
α-pinene

Terpinolene
Limonene
1,8-cineole
γ-terpinene

Catechin
Epicatechin

Allicin
Ajoene
Alliin

Diallyl disulfide
Diallyl trisulfide

n/a n/a Aquaporin Chicken embryos Inhibitory effects on
avian coronavirus [174–177]
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Table 3. Cont.

Plant Species and
Plant Part

Active Compounds

Coumarins Extract Model Organism Mode of
Action/Activity RefTerpenes

Terpenoids
Flavonoids
Flavones Alkaloids Stilbenes

Artemisia sp.
Artemisia
absentium

(whole plants)
Asteraceae

Absinthin
Artemisin
Scopoletin
Artamarin

Rutin
Glycosides of

quercetin

Artamarin
Artamaridin,

Artamaridinin,
Artamarinin
Quebrachito-

lArtemitin

n/a n/a Water Delayed brain
tumor cells

Reduces coronavirus
replication [178,179]

Juniperus
communis

(Fruits)
Cupressaceae

Sugiol
α-pinene
β-pinene

Rutin
Scutellarein

Quercetin-3-o-
rhamnoside
quercitrin

n/a n/a Umbelliferone n/a

Protein-molecular
docking with

network
pharmacology

analysis

Inhibits the
replication, 3CLpro [180,181]

Ecklonia cava
(whole plant)
Lessoniaceae

n/a Quercetin n/a n/a n/a n/a

protein-molecular
docking with

network
pharmacology

analysis

PLpro and 3CLpro [182]

7.1. Lectins

Lectins are a special type of natural proteins (split into seven different classes of
evolutionarily- and structurally-related proteins) found in higher plants that bind to the
sugar moieties of a wide range of glycoproteins [180]. Plant lectins can inhibit virus replica-
tion by preventing the adsorption and fusion of HIV in lymphocyte cell cultures [181–189].
Furthermore, the antiviral effect of agglutinins specific for N-acetylglucosamine and
mannose on HIV has been reported. The inhibitory effect of these plant lectins has
been shown in vitro on infection with influenza A virus, respiratory syncytial virus,
and cytomegalovirus [188–190]. The SARS-CoV spike protein contains 23 putative N-
glycosylation sites and is heavily glycosylated. Among the putative N-glycosylation sites,
12 have been defined to be glycosylated [191]. It can be expected that the infectivity of
the coronavirus will be suppressed by those lectins that are specific to the glycans present
in the spike glycoprotein. The antiviral effect of mannose-specific plant lectins has been
reported against coronavirus.

7.2. Quercetin

Quercetin is a plant-derived flavonol (pigment) that is commonly found in vegetables
and fruits. It is known to possess an antioxidant, antiviral, anti-inflammatory, and anti-
carcinogenic effects, which may reduce risk of infection and improve physical or mental
performance. Moreover, quercetin facilitates the ability to stimulate mitochondrial biogen-
esis and inhibit capillary permeability, platelet aggregation, and lipid peroxidation [20].
Quercetin is widely found in leaves, flowers, barks, nuts, and seeds of a variety of plants
such as tomatoes, tea, shallots, grapes, capers, Brassica vegetables, berries, apples, Sambucus
canadensis, Hypericum perforatum, and Ginkgo biloba [192]. The recommended consumption
of this plant-derived flavonol has been stated to be not less than 4.37 mg/day. Though
the highest concentration of quercetin is reported in capers (234 mg of flavonol per 100
g of edible portion), the main plant source for quercetin glycosides is apples, with 7.4%
13 mg/100 g fruit. During the digestion of food, quercetin and its conjugated metabolites
can be converted into a range of metabolites (phenolic acids) by enteric enzymes and
bacteria in intestinal mucosal epithelial cells (IMECs) [191]. Quercetin also inhibits the
senescence-associated pro-inflammatory response and suppresses stress-induced senescent
cells [193]. Numerous in vitro investigations have confirmed the inhibitory impact of
quercetin on interleukin 8 (IL-8) and tumor-necrosis factor (TNF-α) production in cells.
Additionally, several studies have shown the protective function of this flavonol against
inflammation in human umbilical vein endothelial cells (HUVECs), as well as mediation
via the downregulation of vascular cell adhesion molecule 1 (VCAM-1) and CD80 expres-
sion [20,193]. Quercetin considerably induces the production of derived interferon (IFN)
and T helper type 1 (Th-1), and it consequently downregulates Th-2-derived interleukin 4
(IL-4) by normal peripheral blood mononuclear cells. Quercetin has been found to suppress
the infection caused by a wide spectrum of influenza strains including A/Puerto Rico/8/34
(H1N1), A/FM-1/47/1 (H1N1), and A/Aichi/2/68 (H3N2) with half-maximal inhibitory
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concentrations (IC50) of 7.76, 6.22, and 2.74 µg/mL, respectively [20,194,195]. Investigations
into influenza mechanisms have shown the positive interactions between the viral HA2
subunit (a mark for antiviral vaccines) and quercetin. This discovery may determine the
antiviral potential of quercetin in the early stages of influenza. Furthermore, this anti-viral
compound could prevent H5N1 virus entry into the cell [20,194,196].

7.3. Sulforaphane

Sulforaphane is an isothiocyanate (isothiocyanate sulforaphane (SFN)) that has been
stated to be an antiviral agent. It has been reported that the osteoblast supporting transcrip-
tion factor Runx2 is essential for the long-term perseverance of antiviral CD8+ memory T
cells [197,198]. An addition, SFN-rich broccoli homogenate attenuated granzyme B pro-
duction in NK cells that was induced by influenza virus and granzyme B production in
NK cells, and granzyme B levels appeared to have negatively interacted with influenza
RNA levels in nasal lavage fluid cells [199]. Nasal influenza infection can induce complex
cascades of changes in peripheral blood NK cell activation. SFN increases as a result
of virus-induced peripheral blood NK cell granzyme B production, which may enhance
antiviral defense mechanisms [20,199].

7.4. Resveratrol

Resveratrol is a natural polyphenol found in grapes, mulberry, and peanuts. It
is known to have antiviral properties against a variety of viral pathogens in vitro and
in vivo [200]. Resveratrol is available in trans- and cis-isomeric forms. The cis-resveratrol
isomer is unstable and can be easily transformed into the trans form when it reacts with
light. It was demonstrated that resveratrol substantially inhibited MERS-CoV replication
in vitro through the inhibition of RNA production, as well as other pleiotropic effects.
Studies have shown that indomethacin and resveratrol can act as adjuncts for SARS-
CoV-2/COVID-19 [201,202]. Medina-Bolivar et al. developed the hairy root lines from
Arachis hypogaea (peanut) for the sustained and reproducible production of resveratrol and
resveratrol derivatives [201].

7.5. Baicalin

Baicalin (baicalein glucuronide) accumulates in the roots of Scutellaria baicalensis [202].
Baicalin has been reported as an antioxidant possessing anti-apoptotic properties, and
it has been used for pulmonary arterial hypertension treatment [203]. This flavone glu-
curonide has been reported to have anti-SARS-CoV inhibitory effects comparable to those
of interferon-beta 1a, interferon-alpha, and glycyrrhizin. At the same time, this compound
has a low toxicity in human cell lines [204]. Baicalin showed considerable anti-viral proper-
ties on lipopolysaccharide-activated cells, while the oral application of baicalin expressively
increased the survival rate of influenza A virus-infected mice [57]. The in silico analysis
of the inhibitory effect of baicalin showed that this flavone inhibits ACE2 in the case of
COVID-19 disease. It has been revealed that baicalin can inhibit 3CLPro activity of the
SARS-Cov2 virus in vitro [205].

7.6. Glycyrrhizin

Glycyrrhizin (a triterpene saponin) is one of the most important phytochemical compo-
nents of the Glycyrrhiza glabra (licorice) root [206]. Glycyrrhizin has anti-inflammatory and
antioxidant properties used for treatments of different diseases such as jaundice, bronchitis,
and gastritis [204]. Glycyrrhizin could block the SARS-Cov virus attachment to the host
cells, especially during the initial stage of the viral life cycle [207]. An in silico analysis of
glycyrrhizin behavior showed the inhibitory effect of this compound on SARS-Cov2 [208].

7.7. Narcissoside

Narcissoside (synonym: narcissin) is a phytochemical belonging to the group of
mono-methoxyflavones. This isorhamnetin-3-O-rutinoside flavonoid is extracted from
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leaves of various folk plants such as Atriplex halimus L., Gynura divaricate, Caragana spinose,
and Manihot escylenta. An in silico analysis demonstrated that narcissoside has inhibitory
potential for the viral COVID 19 protein 6W63 [209].

7.8. Curcumin

Curcumin is diarylheptanoid that possesses inflammatory and antioxidant properties
and is mainly extracted from Alpinia galanga, Curcuma longa, and Caesalpinia sappan [210].
This active compound has been applied in the treatment of hyperlipidemia, anxiety, arthri-
tis, and metabolic syndrome [211]. Additionally, curcumin displays antibacterial and
antiviral properties against Pseudomonas, Streptococcus, and Staphylococcus strains, as well as
HIV, hepatitis C, and the influenza virus. Moreover, antiviral properties of this compound
have been reported against chikungunya virus (CHIKV), human papillomavirus (HPV),
HIV-1 and HIV-2 proteases, emerging arboviruses like the Zika virus (ZIKV), influenza
viruses, HIV, HSV-2, and hepatitis viruses [212]. However, due to its rapid elimination,
rapid metabolism, and poor absorption, curcumin has poor bioavailability, which reduces
its therapeutic effect [213]. It has been reported that the combination of this diarylhep-
tanoid with other chemical compounds like piperine can increase bioavailability (by up
to 2000%) and provide multiple benefits to human health [214,215]. This compound can
diminish various forms of free radicals, such as reactive nitrogen and oxygen species, and
modulate the function of SOD [216], catalase, and GSH enzymes in the neutralization of
free radicals [217]. Furthermore, curcumin can block ROS-generating enzyme activities
such as xanthine oxidase/hydrogenase and cyclooxygenase/lipoxygenase [20]. It has been
reported that this plant-derived compound can inhibit the NF-κB activation caused by
numerous inflammatory stimuli such as markers of soluble vascular cell adhesion molecule
1 (sVCAM-1), IL-1 beta, IL-6, and inflammation (soluble CD40 ligand (sCD40L)). The
results of studies have shown that curcumin can inhibit SARS-CoV through binding to
three different protein receptors: SARS-CoV-2 protease (PDB ID:6LU7), PD-ACE2 (PDB ID:
6VW1), and RBD-S (PDB ID:6LXT) [218].

7.9. Epigallocatechin Gallate

Epigallocatechin gallate or epigallocatechin-3-gallate is the ester of gallic acid and
epigallocatechin [219]. This compound possesses activity against neurological diseases,
premature aging, metabolic diseases, and inflammation [220]. Epigallocatechin gallate
has shown anti-inflammatory and antioxidative properties, facilitated DNA repair and
stability, ensured the modifications of miRNAs, and modulated the epigenetic methylation
of histones [20,221]. The antiviral activity of this compound has been reported against
a broad spectrum of viruses such as hepatitis B virus (HBV; Hepadnaviridae), human
papillomavirus (HPV; Papovaviridae), adenovirus (Adenoviridae), and herpes simplex
virus (HSV; Herpesviridae). It has been observed that epigallocatechin gallate can inhibit
(+)-RNA viruses such as chikungunya virus (CHIKV; Togaviridae), West Nile viruses
(WNV; Flaviviridae), dengue virus (DENV; Flaviviridae), Zika virus (ZIKV; Flaviviridae),
and hepatitis C virus (HCV; Flaviviridae). On the other hand, it can inhibit (−)-RNA viruses
such as influenza virus (Orthomyxoviridae), Ebola virus (EBOV; Filoviridae), and HIV
(Retroviridae) [13]. Epigallocatechin gallate inhibits the early stage of infections, such as
attachment, entry, and membrane fusion, by interfering with viral membrane proteins [222].
The anti-viral mechanism of this compound may be generated from interactions with
helicase, ACE-2, and DNMTs [20].

8. Laboratory Evidence Supporting Application of Medicinal Plants Against
Respiratory Disorders

Some investigations have identified the antiviral properties of medicinal plants against
bronchitis. For example, it has been demonstrated that Verbascum thapsus, Justicia adhatoda,
and Hyoscyamus niger can reduce infections risks associated with influenza viruses [108].
Polyphenol, extracted from Cistus incanus (a Mediterranean plant), possesses anti-influenza
activity in MDCK and A549 cell cultures infected with human influenza strains and differ-
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ent subtypes of the avian virus [223]. Similarly, sambucol, extracted from Sambucus nigra,
showed positive activity against influenza by boosting immune responses through the
secretion of inflammatory cytokines (IL-1 beta, TNF-alpha, IL-6, and IL-8) [224].

8.1. Artemisia annua

Artemisia annua (commonly known as sweet wormwood) is a traditional Chinese
medicinal herb. It is a source of the sesquiterpene lactone artemisinin, which is used for
the manufacturing of the antimalarial drugs artemether and artesunate [225]. The results
of an investigation demonstrated that artemisinin is a reliable source to act as an antivi-
ral compound [226]. Furthermore, sterols extracted from A. annua presented inhibitory
potential against viruses [227]. An in vitro investigation on the antiviral properties of A.
annua against SARS-CoV showed positive feedback by using an ethanolic extract with a
50% effective concentration (EC50) value of 34.5 ± 2.6 µg/mL and 5a 0% cytotoxic con-
centration (CC50) of 1053 ± 92.8 µg/mL. This result suggested the possibility of applying
A. annua against SARS-CoV infectious diseases [16]. An analysis of antiviral activity of
methanolic extracts of A. annua against herpes simplex virus type 1 showed the antiviral
properties of the aerial parts of plant. It has been suggested that high levels of bioactive
compounds are the main reasons for antiviral activities, which has led to the use of this
plant as a potential candidate against viruses [226]. Pulmonary fibrosis (lungs become
scarred) is caused by the infection of SARS-CoV with spiked severity, which mediated
by interleukin-1 [227]. It has been shown that the consumption of natural antioxidants
like polyphenolic compounds [228] is effective in the treatment of lung fibrosis associated
with oxidative stress [229]. The positive effect of artesunate, an artemisinin-based drug, to
treat pulmonary fibrosis was confirmed due to it inhibiting pro-fibrotic molecules linked to
pulmonary fibrosis [230].

8.2. Allium cepa

Allium cepa (commonly known as onion) is a common raw material served in salad and
is rich in natural resources of organosulfur and flavonoids with antioxidant activity [231].
Reportedly, quercetin and isorhamnetin (two potential therapeutic agents in onion) can
reduce blood pressure and prevent angiotensin-II-induced endothelial dysfunction. Fur-
thermore, superoxide production was increased and subsequently and led to a high nitric
oxide bioavailability [232]. It has been reported that the chemical compounds of onion-like
flavonoids or even prolines possess antiviral properties against respiratory viruses by
stimulating proinflammatory cytokines [233].

8.3. Andrographis paniculata

Andrographis paniculata (which is commonly known as King of Bitters) is extensively
applied in the treatment of several ailments like liver disorders, viral fever, cold, and
cough [231]. Andrographis paniculata has shown a strong therapeutic effect against viral
respiratory infections [234–237] by suppressing interleukin-1β molecules and increasing
NOD-like receptor protein 3 (NLRP3) and caspase-1, which are widely known to play
roles in SARS-CoV and likely SARS-CoV-2 pathogenesis [238,239]. Andrographolide
(a diterpenoid), is the main bioactive compound extracted from the leaves and stem
of this plant and possesses anti-inflammatory capacity. Notably, andrographolide has
antiviral potential against different viruses diseases such as chikungunya virus, human
immunodeficiency virus, human papillomavirus, Epstein-Barr virus, herpes simplex virus,
hepatitis C and B, and influenza A virus (H1N1, H5N1, and H9N2) [125].

8.4. Aloe vera

Aloe vera is a kind of medicinal plant that possesses antiviral activity against dif-
ferent viruses including human papillomavirus, cytomegalovirus, poliovirus, influenza
virus, human immunodeficiency virus, varicella-zoster virus, herpes simplex virus type
2, herpes simplex virus type 1, and hemorrhagic viral rhabdovirus septicemia. Molecular
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investigations have shown the effectiveness of this plant against other viruses by different
action mechanisms such as the breakdown of the viral envelope and interactions with
virus enzymes. The presence of some minerals like zinc, copper (Cu), iron (Fe), potassium
(K), sodium (Na), magnesium (Mg), and calcium (Ca) make Aloe vera a suitable candi-
date against SARS-CoV-1 [240]. Reports have shown that Zn2+ blocks arterivirus RNA
polymerase and SARS-CoV activity and inhibits SARS-CoV replication in cell lines [241]
(Figure 3).

Figure 3. Antioxidant properties of Aloe vera.

8.5. Nigella sativa

Nigella sativa (black seed) is a kind of medicinal plant used for the treatment of a
variety of diseases, disorders, and conditions pertaining to the respiratory system, immune
systems and cardiovascular, liver, kidneys, and digestive tract. Recently, the result of studies
showed that the oil extract of N. sativa reduced the H9N2 avian influenza virus (which
is fundamentally associated to SARS-CoV-2 pathogenicity in chicken), and consequently
supported the immune response. The most important active compounds which have been
identified in N. sativa are monoterpenes, e.g., t-anethol, 4-terpineol, carvacrol, p-cymene,
thymohydroquinone, and thymoquinone or dimers thereof like dithymoquinone [20].

8.6. Salvia officinalis

Salvia officinalis (sage) is a medicinal plant with antiviral, antibacterial, antimalarial
and antifungal effects. Reportedly, the antiviral and antifungal properties of this plant are
most probably facilitated by sageone, safficinolide, and diterpenoids [242].
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8.7. Toona sinensis

The crude oil of the tender leaves of Toona sinensis Roem induced apoptosis in A549 lung
cancer cells but also improved the lipolysis of differentiated 3T3-L1 adipocytes [243,244].
Further, the leaf extract of T. sinensis Roem was reported to relieve hyperglycemia via
modifying adipose glucose transporter 4 [245]. Studies of purified compounds of T. sinensis
leaves have shown several compounds include toosendanin, phytol, stigmasterol gluco-
side, beta-sitosterol-glucoside, stigmasterol, beta-sitosterol, (−)-epicatechin, (+)-catechin,
kaempferol-D-glucoside, rutin, quercitrin, quercetin, kaempferol, gallic acid, and methyl
gallate [246]. Additionally, it has been reported that, quercetin, one of T. sinensis leaves’
compounds, has an antiviral impact against HIV-luc/SARS pseudotyped virus [65].

8.8. Eckolina cava

Eckolina cava (Laminariaceae) is a type of brown alga with anti-viral activity against
influenza virus neuraminidase and HIV-1 reverse transcriptase 11 phlorotannin chemotype
(a diphenyl ether-linked dieckol) extracted from E. cava (IC50s = 2.7 and 68.1 µM) that
was found to highly block the cleavage of SARS-CoV 3CLpro in a cell-based test with no
toxicity [182].

8.9. Isatis indigotica

Isatis indigotica (I. indigotica root Radix isatidis) is a Chinese medicinal plant belonging
to the family of Cruciferae, with a high phenolic content in the root. The root of this plant
was frequently applied during the outbreak of SARS in Taiwan, Hong Kong, and China.
Additionally, the antiviral effects of different compounds of this plant such as sinigrin,
γ-sitosterol, indican (indoxyl-β-D-glucoside), β-sitosterol, indirubin, and indigo have been
reported against Japanese encephalitis, hepatitis A, and influenza [247,248]. Indirubin and
indigo were recognized as inhibitors of promiscuous chymotrypsin [249]. Moreover, the an-
tiviral effects of naringenin, quercetin, hesperetin, phenolics, and aloe emodin derived from
I. indigotica have been accredited against parainfluenza virus, sindbis virus, herpes simplex
virus types 1 and 2, vesicular stomatitis virus, poliovirus, and vaccinia virus [250,251]. It
has been well-demonstrated that the 3C-like protease (3CLpro) can mediate the proteolytic
processing of polypeptides 1a and 1ab into functional proteins, which is an ideal target for
the development of drugs against SARS-coronavirus. In a cell-based assay, the investigation
of seven different phenolic compounds derived from I. indigotica revealed that only two
polyphenols, namely hesperetin (8.3 µM) and emodin (366 µM), could inhibit the cleavage
activity of the 3CLpro in a dose-dependent manner [163].

8.10. Azadirachta indica

Azadirachta indica (commonly known as neem) is a kind of biological antiviral agent
against duck plague virus, herpes simplex virus type-1, bovine herpesvirus type-1 (BoHV-
1), poliovirus type 1, group B coxsackieviruses, polio, and dengue virus type-2, as well as
infectious bursal diseases like viral infections, Newcastle disease, and highly pathogenic
avian influenza virus (H5N1) [252]. It has been shown that different extracts of this neem’s
explants have potential against common clinical symptoms of Covid-19 [253,254]. In
this regard, crude leaf extracts of neem could be effective against malarial and normal
fever [246], as well as a gastrointestinal disorders [255]. The leaf extract of this plant
possesses strong antioxidant potential by directly scavenging the hydroxyl radical and
preventing hydroxyl radical-mediated oxidative damage in the rat model [256].

8.11. Other Medicinal Herbs

Studies on some medicinal plants including Evolvulus alsinoides, Pergularia daemi,
Clerodendrum inerme Gaertn, Clitoria ternatea, Sphaeranthus indicus, Cassia alata, Leucas aspera,
Abutilon indicum, Gymnema sylvestre, Vitex trifolia, and Indigofera tinctoria (AO) have shown
anti-mouse coronaviral activity [107]. C. inerme Gaertn was observed as a promising
medicinal plant having potential to inactivate the viral ribosome [104]. Additionally,
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anti-inflammatory cytokines are significantly reduced by Sphaeranthus indicus and Vitex
trifolia when using the nuclear factor kappa-light-chain-enhancer of activated B (NF-kB)
signaling cascade, associated with acute respiratory distress syndrome [152] in SARS-
CoV [256,257]. Furthermore, C. ternatea (Asian pigeonwings) has been reported as an
inhibitor of metallopeptidase domain 17 (ADAM17), a metalloproteinase involved in
angiotensin being converted for enzyme shredding, and can be targeted with Clitoria
ternatea. ACE-2 shredding is associated with the spike formation of viruses [105]. Likewise,
Strobilanthes cusia was found to inhibit viral RNA genome synthesis and to induce papain
like protease (PLpro) activity targeting the human coronavirus OC43 [1,113]. Allium sativum
and Glycyrrhiza glabra have been identified to inhibit the viral replication of SARS-CoV.
Inhibitory effects on the Ca2+ channel were observed when Hyoscyamus niger was applied
as a bronchodilator [108]. This plant is able to target the orf3a Ca2+ channels that attack
downstream pathways upon viral infection. The inhibitory effect of other medicinal plants
including Embelia ribes, Cassia occidentalis, Punica granatum, Coscinium fenestratum, Cynara
scolymus, Boerhaavia diffusa, and Coriandrum sativum have been identified against ACE [107].
However, Punica granatum has been shown to exhibit a competitive style of action against
virus infection [102,103]. Salacia oblonga was found to exhibit suppressive impacts on
angiotensin II, an AT1 signal, which was related to lung damage [109] (Table 4).

Table 4. List of commonly used medicinal herbs involved in treatment of respiratory disorders.

Scintific Name Common Names Mode of Action References

Tinospora cordifolia Heart-leaved moonseed Chronic fever

[257,258]

Andrograhis paniculata Creat or green chireta Fever and cold
Cydonia oblonga Quince Antioxidant, immune-modulatory, anti-allergic, smooth

muscle relaxant, and anti-influenza activityZizyphus jujube Jujube
Cordia myxa lasura

Agastya haritaki Agastya Rasayana Upper respiratory infections

Anu Thailam - Respiratory infections
Fever

Adathoda siddha Malabar nut Fever
Bryonia alba White bryony Reduce lung inflammation

Rhus toxicodendron Eastern Poison Oak Viral infections
Atropa

belladonna Deadly nightshade Asthma and chronic lung diseases

Bignonia
sempervirens Yellow jessamine Asthma

Eupatorium perfoliatum Agueweed Respiratory symptoms

Kabasura Kudineer - Fever, cough, sore throat, shortness of
breath

Abutilon indicum Mallow Immunomodulatory function [107,259]

Withania somnifera Ashwagandha General tonic and to boost immunity/against herpes
simplex virus [260]

Hydrastis canadensis Goldenseal
root

Reduces plasma TNF-α, INF-γ, and
NO levels; inhibits the T helper-type 2

cytokine profile.
[261]

Acalypha indica Indian Acalypha Anthelmintic [262]
Achyranthes aspera Prickly chaff flower Anti-viral activity [263]

Momordica charantia bitter melon
Inhibits the release of TNF-α,

NO and proliferation of spleen cells
induced by PHA and Con A.

[261]

Adhatoda vasica Adulsa Anti-asthmatic, anti-allergic and anti-tussive activity [264]

Nigella sativa Black cumin

Reduces the pancreatic ductal adenocarcinoma
cell (PDA) synthesis of monocyte

chemoattractant protein-1 (MCP-1), TNF-
α, IL-1β, and cyclooxygenase (COX)-2,

as well as inhibiting the polymorphonuclear leukocyte
functions.

[261]

Alangium salvifolium Sage-leaved alangium Anti-rheumatoid [265]

Urtica dioica Common Nettle Reduction of TNF-α and other
inflammatory cytokines [261]

Cassia alata Candle Bush Anti-helmintic activity [107,266]
Cassia fistula Golden Shower Antibacterial activity [267]
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Table 4. Cont.

Scintific Name Common Names Mode of Action References

Cayratia pedata Birdfoot Grape Anti-inflammatory activity [268]
Chloroxylon swietenia East Indian satinwood Anti-helmintic activity [269]
Clitoria ternatea linn. Asian pigeonwings Anti-oxidant activity [270]

Eugenia singampattiana Jungle Guava Anti-inflammatory activity [107,268]

Hippophae rhamnoides Sea-buckthorn Eliminating phlegm, stopping coughing, improving
digestion, and treating lung diseases [271]

Indigofera tinctoria True Indigo Immunomodulatory function [107,272]

Justicia adhatoda Malabar Nut Anti-oxidant and anti-mutagenic activity; hepatoprotective
activity

[1,236,273–
275]

Leucas aspera Thumbai Hepatoprotective activity, acaricidal properties [107,276,277]
Mucuna pruriens

Xanthium strumanium
Monkey Tamarind

Common Cocklebur Antibacterial drugs against pneumonia [278]

Pergularia daemia Pergularia Hepatoprotective effect [107,279]
Piper longum Long pepper Anti-pneumonia drug [280]

Salacia reticulata Meharimula Anti-inflammatory activity [268]

Santalum album White Sandalwood Anti-inflammation of the lungs, blood, and pus in the
sputum [271]

Solanum tornum Turkey Berry Anti-pneumonia drug [281]
Solanum suratens Surattense Nightshade Anti-viral activity [263]

Solanum xanthocarpum Yellow-fruit nightshade Anti-asthmatic [264,271]
Strychnos minor Snakewood Anti-inflammatory activity [268]

Strychnosnux vomica Strychnine tree Anti-inflammatory activity [268]
Syzygium aromaticum Caryophyllus Hepatoprotective properties [282]

Tinospora cordifolia Moonseed Anti-pneumonia drug [283]
Trichopus zeylanicus Arogyapacha Anti-oxidant and anti-fatigue activity [284]

Tylophora indica Indian Ipecac Anti-asthmatic [264]
Verbascum thapsus Great mullein Enhancing peroxidase, phenolics, and antioxidant activity [1]

Vitex altissima Peacock Chaste Tree Acts against acute inflammation [285]
Vitex trifolia Hand-of-Mary Tracheospasmolytic activity [107,257]

Wrightia tinctoria Pala Indigo Anti-inflammatory activity [268]

Yuthog’s Bamboo Bamboo Reduction of pain and anti-inflammation of the lungs and
respiratory tract [271]

Zingiber officinale Canton Ginger Modulation of macrophage functions, phagocytic
properties, anti-viral activity, and bronchial infections [1,286,287]

Garcinia Kola Bitter Kola Anti-bacterial drug against respiratory pathogens [288]
Cymbopogon citratus West Indian lemon grass Anti-viral infections [289]

Camellia sinensis Tea plant Anti-infective activity [290]
Achillea mellefolium Yarrow Protects upper respiratory tract from viral infections [291]
Apium graveolens Celery Anti-bacterial and anti-viral agent [292]

Borassus flabellifer Palmyra Palm Protects from pulmonary infections; anti-bacterial and
anti-viral activity [293]

Caesalpinia bonduc Grey Nicker Treatment for asthma (anti-bacterial and anti-viral agent) [294]
Calotropis gigantea Crown flower Anti-bacterial and anti-viral agent [293]

Crocus sativus Saffron Crocus Treatment for asthma and cough [295]
Euphorbia hirta Asthma-Plant Anti-bacterial and anti-viral agent [291]
Piper nigrum Black pepper Anti-viral agent [296]

Strychnos potatorum Clearing-Nut Tree Treatment for bronchitis [297]
Terminalia bellirica Roxb Beleric Myrobalan Effective for asthma [298]
Tylophora indica Merrill Antamul Treatment for bronchitis and asthma [299]

Tussilago farfara Coltsfoot Treatment for cough and asthma [300]
Thymus linearis Himalayan Wild Thyme Anti-viral activity [290]

Senecio chrysanthemoides Senecio Treatment for lung diseases [301]
Portulaca oleracea Duckweed Anti-inflammatory and anti-asthma properties [294]

Papaver somniferum Opium Poppy Treatment for respiratory diseases [293]
Morus laevigata Wall. ex Brandis White Mulberry Treatment for cough [302]
Ephedra gerardiana Wall. ex Stapf Gerard’s Jointfir Treatment for cough and asthma [303]

Geranium wallichianum Sylvia’s Surprise Treatment for cough [292]
Micromeria biflora Lemon Scented Thyme Treatment for cough [295]

Picrorhiza kurroa Royle ex. Benth Kutki Treatment for asthma and bronchitis [289]
Primula denticulata Sm. Drumstick Primula Treatment for cough and bronchitis [304]

9. In Silico Analysis of Medicinal Plants Role Against SARS-CoV

The in silico analysis of 18 extracted compounds of 11 Indian herbal plants demon-
strated different inhibitory properties against Covid-19. Based on the data achieved through
log S and log P, as well as the binding affinity (Table 5), the potential inhibitory effect of
plants were in the following order: Nyctanthes arbortristis (harsingar) > Aloe barbadensis
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miller (aloe vera) > Tinospora cordifolia (giloy) > Curcuma longa (turmeric) > Azadirachta
indica (neem) > Withania somnifera (ashwagandha) > Allium cepa (red onion) > Ocimum
sanctum (tulsi) > Cannabis sativa (cannabis) > Piper nigrum (black pepper). However, the
results of this investigation confirmed that harsingar, Aloe vera, and giloy are more reliable
natural resources for future investigations [305]. The in silico analysis of compounds with
anti-viral, anti-malaria, or other similar activities are presented in Table 5.

Table 5. In silico analysis of phenolic compounds extracted form medicinal plants.

Plant Parts Scientific Name The Major Phenolic
Compound Formula Active Sites/Binding

Residue/H-Bond Length (Å)

Leaves of harsingar Nyctanthes arbortristis Nictoflorin C27H30O15 N-H–O/GLY-143/2.311
Astragalin C21H20O11 O–H/PHE-140/2.197

Lupeol C25H26O4 N-H–O/THR-26/2.027

Giloy Tinospora cordifolia Berberine
Sitosterol

C28H18NO4
C29H50O

N-H–O/GLY-143/2.540
N-H–O/GLY-143/2.577
O–H/PHE-166/2.080

Aloe vera leaves Aloe barbadensis Aloenin
Aloesin

C19H22O10
C19H22O9

O–H/PHE-140/2.151
N-H–O/GLY-143/2.016
N-H–O/GLU-166/2.297

The dried ground
rhizome of the turmeric Curcuma longa Curcumin C21H20O6 N-H–O/GLY-143/2.243

The oil of neem Azadirachta indica Nimbin C30H36O9 N-H–O/GLY-143/2.161

Steroidal constituents
of ashwagandha

Withanolide
Withaferin A

C28H38O6
C28H38O6

O–H/GLU-166/1.991
N-H–O/GLU-166/2.110
N-H–O/GLY-143/2.577

Constituents of
pungent ketones,

which result in the
strong aroma of ginger

Zingiber officinale Gingerol
Shogaol

C17H26O4
C17H24O3

O–H/THR-190/2.026
N-H–O/GLY-143/2.289
N-H–O/THR-26/2.398

O–H/THR-24/2.345
Red onion Allium cepa Quercetin C15H10O7 O–H/THR-26/1.936

Tulsi leaves Ocimum sanctum Ursolic acid
Apigenin

C30H48O3
C15H10O5

N-H–O/GLY-143/2.330
O–H/THR-26/1.994

Cannabis extracts Cannabis sativa Cannabidiol C21H30O2 N-H–O/GLY-143/2.325
Isolated from the plants

of both the black and
white pepper grains

Piper nigrum Piperine C17H19NO3 N-H–O/THR-26/2.529

On the other hand, an in silico molecular docking study on thirty-six phytochemical
compounds showed high binding affinities for betulinic acid (−10.0 Kcal/mol), silib-
inin (−9.13 Kcal/mol), oleanolic acid (−9.08 Kcal/mol), and epigallocatechin-3-gallate
(−8.51 Kcal/mol). These results suggested that the medicinal plants containing the men-
tioned compounds are potential candidates against Covid-19 [306].

10. Biotechnological Production of Vaccines

At time of writing of this document, no antiviral medicines have been proven to be
effective against Covid-19 [307]. As mentioned earlier, remdesivir and hydroxychloroquine
have been documented as the most reliable candidates against SARS-CoV [308]. On the
other hand, a lot of efforts have been made to develop monoclonal antibodies and to
evaluate receptor blockers [309]. Additionally, the use of transfusions by employing the
plasma of recovered donor from the SARS-CoV virus infection is under assessment [310].
Over the last few decades, therapeutic vaccines have been revealed as the most effective
tool against infectious diseases [311]. Due to the high transmissibility of SARS-CoV, the
discovery of novel vaccines is an urgent target to tackle this pathogen [312]. A traditional
way to generate vaccine is the method of inactivated vaccines, which can be made with
SARS-CoV-2 virions previously inactivated by physical or chemical treatments [313]. Cur-
rently, an attenuated vaccine that is generated by reducing the microbial virulence of a
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pathogen is known [314]. Biotechnology is mostly applied to generate vaccines in three
ways: the separation of a pure antigen using a specific monoclonal antibody, the synthesis
of an antigen with the assistance of a cloned gene, and the synthesis of peptides to be
used as vaccines. Furthermore, producing active pharmaceutical chemical compounds
in genetically modified organisms is a novel application of biotechnology achieved by
molecular pharming or hairy root technologies.

10.1. Molecular Pharming: A Mature Technology to Produce Plant-Derived
Pharmaceutical Products

Molecular pharming is one of the biotechnology tools that involves the application of
various plant species for the production of recombinant proteins, which include enzymes,
hormones, vaccines, and antibodies [315] (Figure 4).

Figure 4. Plant molecular pharming products in different plants.

Over the last few decades, a lot of efforts have been made to produce different bioactive
compounds and proteins in high yield through plant genetic engineering approaches [316].
The molecular pharming platform has several advantages over other transgenic systems
such as a low overall cost, a high scale-up capacity, safety, high product quality, and the
ability of post-translational modifications [317]. In 2005, Pogrebnyak and colleagues [17]
tried to develop a recombinant vaccine against SARS by expressing the N-terminal frag-
ment of the SARS-CoV S protein (S1) in tomatoes and low-nicotine tobacco plants. The
results of their experiment showed the high expression of recombinant S1 protein in
transgenic lines. The production of plant-derived antigens significantly enhanced the
levels of SARS-CoV-specific IgA after the oral ingestion of tomato fruits expressing the
S1 protein. Sera of mice parenterally primed with tobacco-derived S1 protein revealed
the presence of SARS-CoV-specific IgG as observed with Western blot and ELISA anal-
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ysis. Two companies have announced their effort to produce plant-derived antibodies
and vaccines against SARS-CoV-2. Soon after reporting the SARS-CoV-2 virus S protein,
Medicago Inc. (www.medicago.com/en/pipeline/, the accessed date: 2 December 2020)
announced VLP production in a transient gene expression system. Based on estimation,
this company should be able to produce an attractive production capacity of VLP based
vaccines (10 million doses). This amount of plant-derived vaccine can immunize approx-
imately 10 million US adults who are at severe risk of critical illness or death if infected
with SARSCoV-2. Furthermore, developing epitope-based vaccines is reported to reduce
disease possibility. Kentucky Bioprocessing (www.kentuckybioprocessing.com, the ac-
cessed date: 2 December 2020), protalix (www.protalix.com, the accessed date: 2 December
2020), Greenovation Biopharmaceuticals (www.greenovation.com, the accessed date: 2
December 2020), Ventria (www.ventria.com, the accessed date: 2 December 2020), No-
mad www.nomadbioscience.com, the accessed date: 2 December 2020), and iBio Inc. (
www.ibioinc.com/pipeline, the accessed date: 2 December 2020) are other companies that
are making efforts to produce a VLP vaccine. On the other hand, academic institutions
such as the Infectious Disease Research Centre at Laval University and Medicago have
joined hands together to develop plant-derived pipelines. Simultaneously, several insti-
tutes and universities from different countries including Thailand, Mexico, South Korea,
South Africa, the UK, Germany, and the US are working on the production of plant-derived
products through molecular farming technology against the Covid-19. It is believed that
producing a stable plant-derived product through molecular farming takes a long time,
and a major concern is that these products are not as approachable as expected in response
to the pandemic. However, applying transient systems should be a reliable, fast, and
efficient tool to overcome these barriers. Due to the high adaptability and potential of the
SARS-CoV-2 virus, it seems that oral vaccines like plant molecular farming products are
the most reliable weapons against the SARS-CoV-2 virus [318].

10.2. Hairy Root Culture: A Reliable Method of Producing Pharmaceutical Products

Hairy roots, which are induced by Rhizobium rhizogenes (syn. Agrobacterium rhizogenes),
a Gram-negative bacterium, comprise an important biotechnological system to induce
bioactive compounds from plants. Hairy root cultures employ organs instead of undifferen-
tiated cells, thereby providing better yields than cell culture or natural plant roots [318,319].
Other advantages include biochemical and genetic stability, ease of preservation, and rapid
growth on hormone-free media. Different Agrobacterium strains, which are divergent in
terms of virulence, the growth rate of transformed cells, their morphology, and secondary
metabolite production, are generally employed to induce hairy roots from explants in
different plant species. It has been recognized that Agrobacterium strains have different abil-
ities to promote the production of bioactive compounds in hairy root cultures [302,320,321].
This is mainly due to the differential expression and integration of T-DNA genes into the
plant genome [302,321]. Therefore, the selection of an effective Agrobacterium strain for
hairy root induction and secondary compound accumulation is noticeably dependent on
plant species and must be empirically figured out [302,322] (Figure 5).

www.medicago.com/en/pipeline/
www.kentuckybioprocessing.com
www.protalix.com
www.greenovation.com
www.ventria.com
www.nomadbioscience.com
www.ibioinc.com/pipeline
www.ibioinc.com/pipeline
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Figure 5. Hairy root cultures used to produce recombinant proteins. The final products of hairy root systems have been
used to produce cytokines, vaccines, antibodies, enzymes, and other therapeutic proteins. These systems have various pros
and cons, and these points should be considered when attempting to choose the best platforms.

Mentha spicata, commonly known as spearmint or garden mint, is known to possess
antiviral properties due to the presence of high amounts of phenolic compounds such as
rosmarinic acid, chlorogenic acid, caffeic acid, lithospermic acid B, and cinnamic acid. The
production of phenolic acids in M. spicata was compared among hairy roots induced from
five different A. rhizogenes strains: ATCC15834, 9534, A13, A4, and R318. It was found that
A. rhizogenes strain 9534 efficiently produced caffeic acid, lithospermic acid B, cinnamic
acid, rosmarinic acid, and chlorogenic acid (106.76, 60.22, 44.02, 20.08, and 13.53 µg g−1

DW, respectively), but hairy root induction was effective with A13 and R318 [323–326].
It has been shown in many plant species that transformation by A. rhizogenes strains

leads to the modification of metabolic pathways. As a result, transformed roots differ in
their chemical profiles from normal roots, which shows that Ri T-DNA interferes with the
biosynthesis of secondary metabolites [324–326].

The effects of different media (Schenk and Hildebrandt (SH), Woody plant medium
(WPM), and Gamborg (B5)) and lighting conditions (light or dark) on biomass accumu-
lation and secondary metabolite production in hairy root line (RC3) were examined in
Rhaponticum carthamoides [326]. The WPM supported the highest biomass (93 g L−1 of the
fresh weight after 35 days) under periodic light. Additionally, the higher production of
caffeoylquinic acids and their derivatives was observed in hairy roots grown in the light
as compared to untransformed roots. The biosynthesis of flavonoid glycosides such as
quercetagetin, quercetin, luteolin, and patuletin hexoside from transformed roots was also
found in light conditions [326]. Balasubramanian et al. [327] showed that time, number of
co-cultivation days, acetosyringone concentration, media type, media strength, and sucrose
concentration affect hairy root production for the improvement of quercetin content in
Raphanus sativus (radish). Explants infected with an A. rhizogenes MTCC 2364 suspension
for 10 min and co-cultivated in a 1/2 MS medium containing acetosyringone (100 µM)
for two days displayed a maximum percentage of hairy root induction (77.6%). Hairy
roots were found to produce higher amounts of quercetin (114.8 mg g−1) compared to the
auxin-induced roots of non-transformed radish. Similarly, higher amounts of phenolic
compounds including pyrogallol, hesperidin, naringenin, and formononetin were observed
in Polygonum multiflorum hairy roots compared to untransformed roots [328].

Because it has been found that both endogenous and exogenous factors affect resver-
atrol production in the hairy root culture of grapes and increase resveratrol production,
this strategy could be useful [329]. Different features like the type of explants, seedling age,
concentration of the bacterial inoculum, and inoculation time have been studied to improve
the efficiency of hairy root formation and resveratrol production. Hairy roots induced by A.
rhizogenes strain A4 from internodes of Vitis vinifera subsp. sylvesteris (W16) were found to
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produce the highest amount of resveratrol (31-fold higher than that of control root) [329]. In
Scutellaria baicalensis, hairy roots grown in a full-strength MS medium produced a 2.5-fold
higher amount of resveratrol than those grown in a half-strength B5 medium. The addition
of auxin (indole acetic acid (IAA)) at 0.1 mg/L into the medium resulted in the highest
accumulation of resveratrol [323,330].

The elicitation of hairy root cultures by biotic/abiotic stressors or chemicals for the
exploitation of genetic engineering manipulation can significantly increase the amount of
the desired secondary compound [331]. Different elicitors such as UV radiation, methyl
jasmonate (MeJA), jasmonic acid, gibberellic acid, sodium acetate, salicylic acid, acetic
acid, ammonium nitrate, chitosan, and cyclodextrins have been employed to stimulate
the production of secondary metabolites in hairy roots [332]. Chitosan, methyl jasmonate,
and yeast extract have been employed to enhance the glycyrrhizin contents in Glycyrrhiza
species. Glycyrrhizin, an active component of licorice roots, is known to be effective
against several viral diseases including HIV and SARS [104]. It has been reported that
glycyrrhizin also inhibits the adsorption and penetration of the virus-early steps of the
replicative cycle in addition to the inhibition of virus replication [104]. Elicitation with
100 µM MeJA enhanced glycyrrhizin content (5.7 times higher than the control) after five
days of treatment in G. inflata hairy roots [333]. MeJA (at 100 µM concentration) was found
to be the most effective elicitor for increasing glycyrrhizin production up to 108.9 ± 1.15
µg g−1 DW after five days of elicitation [334].

Elicitation with sodium acetate for 24 h resulted in the 60-fold induction and secretion
of trans-resveratrol into a peanut hairy root culture medium [201]. The authors [335]
studied the effect of different concentrations of abiotic elicitors including MeJA, sodium
acetate, acetic acid, and ammonium nitrate. Their results showed that treatment of hairy
roots with 3 mM acetic acid or 50 µM methyl jasmonate resulted in the highest or lowest
amounts of hairy root biomass and resveratrol content, respectively.

11. Conclusions

The current review provides an overview of employing ethnomedicinal herbs to treat
respiratory diseases. It has been shown that plant biodiversity can be a source of bioactive
compounds of different natures, such as terpenes, stilbenes, coumarins, flavone glycosides,
and alkaloids. The most common of these are lectins, quercetin, resveratrol, glycyrrhizin,
and curcumin. It has been found that qualitative and quantitative biochemical specification
can vary between representatives of the same family. Such a literature analysis could be
used to choose an appropriate plant model for a specific region with specific needs. With
the intervention of biotechnological tools such as hairy root transformation, it is possible
to obtain compounds of interest in a higher amount. Plant-based production systems
comprise another alternative for molecular farming technology. This review not only
provides a reference point for the screening of plants against viral diseases but can also be
useful for practical implications and applications.

12. Future Directions

The present review describes the potential of plant or plant-based compounds for
treating antiviral diseases, especially emphasizing SARS-CoV. The urgency of this work is
that new viruses may appear in the near future. There is a gap between information regard-
ing the complete understanding of the mechanism of action of plant-based compounds and
their execution as treatments of viral diseases. Both empirical and rational approaches are
required to gain insight into the phytochemical evaluation and validation of plant-based
compounds. Critical knowledge of genetic, molecular, and biochemical processes under
in situ conditions could be helpful to better control the accumulation of natural products.
Future studies may be targeted at understanding the mechanisms of action of complex
plant extracts and isolated plant-derived compounds from different biosynthetic pathways.
Molecular docking studies and in silico analyses of extracted compounds from different
herbal plants including aloe vera and giloy could be beneficial for further investigations.
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By employing biotechnological tools like hairy root cultures and molecular pharming, it is
quite possible to enhance the production of the compounds of interest. No doubt, careful
preclinical and clinical procedures need to be followed before coming to the validation of
plant-based drugs or vaccines against these viral diseases. This would help to pave the
way and take important steps to combat this life-threatening and deadly disease.
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