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High-mobility group box-1 (HMGB1) is a nuclear protein associated with

early inflammatory changes upon extracellular secretion expressed in various

cells, including neurons and microglia. With the progress of research,

neuroinflammation is believed to be involved in the pathogenesis of

neurological diseases such as Parkinson’s, epilepsy, and autism. As a key

promoter of neuroinflammation, HMGB1 is thought to be involved in the

pathogenesis of Parkinson’s disease, stroke, traumatic brain injury, epilepsy,

autism, depression, multiple sclerosis, and amyotrophic lateral sclerosis.

However, in the clinic, HMGB1 has not been described as a biomarker for the

above-mentioned diseases. However, the current preclinical research results

show that HMGB1 antagonists have positive significance in the treatment of

Parkinson’s disease, stroke, traumatic brain injury, epilepsy, and other diseases.

This review discusses the possible mechanisms by which HMGB1 mediates

Parkinson’s disease, stroke, traumatic brain injury, epilepsy, autism, depression,

multiple sclerosis, amyotrophic lateral sclerosis, and the potential of HMGB1

as a biomarker for these diseases. Future research needs to further explore the

underlying molecular mechanisms and clinical translation.
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Introduction

High-mobility group protein (HMG) was first discovered in bovine thymus in

1973 (1). Subsequent studies found that inhibition of high-mobility group-1 (HMG-

1) protein could reduce the mortality of patients with sepsis, thus confirming the

role of HMG-1 as an inflammatory factor (2). In 2000, Bustin (3) systematically

classified the HMG family and divided them into three categories: high-mobility

group-A (HMGA), high-mobility group box (HMGB), and high-mobility group-N

(HMGN) according to their functions. Among them, HMGB was further divided into

HMGB1, HMGB2, and HMGB3. HMGB1 is composed of three domains, including

two DNA-binding domains (A box and B box) and an acidic tail (Figure 1) (4). Both

A box and B box are composed of three α-helix structures, which can interact with

deoxyribonucleic acid (DNA) nonspecifically (5). HMGB1 has two nuclear localization

sequences (NLSs) located between the A box (aa 28–44) and the B box and C-terminal tail
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(aa 179–185) (6). When immune cells respond to endogenous or

exogenous stimuli such as endotoxin, interleukin, and hypoxia,

HMGB1 can be actively released (7). Meanwhile, necrotic or

damaged cells can passively release HMGB1 (8). In addition,

phagocytosis of apoptotic cells by macrophages can lead to

the further release of HMGB1 (9). HMGB1 utilizes various

membrane receptors during its signaling cascade. Among the

numerous HMGB1 extracellular receptors, the receptor for

advanced glycation end products (RAGE) and toll-like receptor

4 (TLR4) are the widely studied and reported receptors. Binding

to RAGE occurs at residues 150–183 of the molecule, while

TLR4 binding occurs at residues 89–108 of the HMGB1 B box

(6). HMGB1 binds to receptors such as TLR4 and RAGE and

leads to the upregulation of cytokines by pro-inflammatory

cells by activating nuclear factor kappa-light-chain-enhancer of

activated B cells (NF-κB) and mitogen-activated protein (MAP)

kinase signaling pathways (Figure 2).

Interestingly, overexpression of extracellular HMGB1 has

been observed in clinical and preclinical studies on Parkinson’s

disease (10), stroke (11), traumatic brain injury (12), epilepsy

(13), autism (14), depression (15), multiple sclerosis (16),

and amyotrophic lateral sclerosis (17). Although relevant

clinical studies are lacking, positive structures have been

achieved in animal models based on HMGB1 antagonists (anti-

HMGB1monoclonal antibody, ethyl pyruvate, and glycyrrhizin)

targeting extracellular HMGB1 therapy. However, there are

different isoforms of HMGB1, fully reduced (frHMGB1) and

disulfide HMGB1 (dsHMGB1), which are thought to bind

to the receptor and can play a pro-inflammatory role, and

fully oxidized HMGB1(oxHMGB1) is inert (5). The fact

that a mixture of different HMGB1 isoforms is present

in the extracellular matrix challenges determining the exact

role of individual antagonists. The preclinical and clinical

evidence discussed here reinforces HMGB1 as a promising

candidate as a common biomarker and therapeutic target for

neurological disorders in which neuroinflammatory pathways

play a central role.

Parkinson’s disease

Parkinson’s disease is the second most common

neurodegenerative disorder in the elderly, mainly manifested

by resting tremor, bradykinesia, rigidity, and postural reflex

abnormalities. Parkinson’s disease (PD) is pathologically

Abbreviations: OMT, oxymatrine; ROT, rotenone; ALO, alogliptin; MACO,

middle cerebral artery occlusion; SSA, Saikosaponin A; Hp, haptoglobin;

AG, Arctigenin; CCI, controlled cortical impact; PSNL, partial sciatic nerve

ligation; BA, Baicalin; LPS, lipopolysaccharide; SSRI, selective serotonin

reuptake inhibitor; PBO, placebo; MOG, myelin oligodendrocyte

glycoprotein; AQ, autism spectrum quotient; SQ, systemizing quotient;

GI score, gastrointestinal dysfunction scores; ADI-R, Autism Diagnostic

Interview-Revised.

characterized with loss of dopamine (DA) neurons in the

midbrain substantia nigra pars compacta (SNpc) (18) and

α-synuclein (α-syn) containing Lewy bodies (LBs) formation

(19). The pathogenesis of PD is currently unclear. Recent

studies have found that elevated levels of HMGB1 protein

were detected in postmortem midbrain tissue as well as

cerebrospinal fluid (CSF) and serum of PD patients. At the

same time, it was found that HMGB1 protein is mainly located

in the cytoplasm of PD patients and in the nucleus of control

patients, which may indicate that HMGB1 translocation is

involved in the pathogenesis of PD (20). In Parkinson’s disease,

HMGB1 specifically binds to α-syn aggregated in LBs isolated

from rat brain, suggesting a promoting role of HMGB1 in

neurodegenerative processes in the chronic phase of the disease

(21). Extracellular α-syn aggregates can activate astrocytes or

microglia, leading to persistent inflammation and subsequent

neurodegeneration (22). In primary cultures of mouse neurons

and glial cells, HMGB1 was found to bind to the microglial

membrane receptor macrophage antigen complex 1 (Mac1)

and activate the NF-κB pathway and nicotinamide adenine

dinucleotide phosphate (NADPH) oxidase expression, thereby

inducing pro-inflammatory factor expression and neurotoxicity.

Furthermore, the HMGB1-Mac1 interaction reduces dopamine

uptake and the number of dopaminergic neurons (23). On

the contrary, the translocation of HMGB1 from the nucleus

to the cytoplasm leads to the binding of HMGB1 to Beclin1

to dissociate Beclin1-B-cell lymphoma (Bcl-2) and induce

autophagy (24), promoting the self-clearance of α-syn (24, 25),

thereby delaying disease progression. Experiments on the PC12
cell line confirmed that inhibition of HMGB1 translocation

inhibits autophagy, resulting in the accumulation of α-syn
that exacerbates neuronal damage (26). In a 1-methyl-4-

phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mouse

model of acute Parkinson’s disease, HMGB1 can promote the

expression of tyrosine hydroxylase (TH) in the striatum, thereby
maintaining dopaminergic neuron function (27).

In view of the above, HMGB1-targeted or HMGB1/TLR4

pathway inhibition can serve as a rational approach for

PD therapy and may serve as a potential biological target
(Tables 1, 2). Intravenous administration of HMGB1 antibody

attenuated MPTP-induced dopaminergic cell death (20) and
reduced PD behavioral symptoms (28). Injection of ethyl
pyruvate (EP) into a mouse subacute Parkinson’s model can

effectively reduce the activation of microglia and inhibit the

neuroinflammation mediated by microglia (29). These results

are consistent with another study showing that intravenous

injection of anti-HMGB1 monoclonal antibodies (mAbs) in

a rat PD model significantly inhibited microglial activation

and reduced the loss of dopaminergic neurons in SNpc (33).

Furthermore, the anti-HMGB1 treatment group inhibited the

disruption of the blood–brain barrier (BBB) and the increase in

vascular permeability caused by 6-hydroxydopmaine (6-OHDA)

neurotoxicity (28). At present, the conventional methods for

the clinical treatment of PD are limited, and the targeted
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FIGURE 1

Schematic view of HMGB1 structure.

FIGURE 2

HMGB1 can be actively secreted by immune cells or passively secreted by necrotic or damaged cells. HMGB1 binds to RAGE and TLR4 to

activate downstream signaling pathways, resulting in the upregulation of cytokines by pro-inflammatory cells. As HMGB1 antagonists, GL and EP

can inhibit the release of HMGB1. The anti-HMGB1 mAb neutralizes HMGB1.

therapy of HMGB1 provides a possible idea. However, long-term

efficacy and safety in humans have not been studied. At the

same time, the related side effects of HMGB1-targeted therapy

should also be alerted. However, glycyrrhizin (GL) may lead

to complications, such as hypertension and hypokalemia (34).

EP is a non-specific HMGB1 inhibitor that inhibits the release

of HMGB1 only in live cells, but not in dead cells (35). Long-

term use of antibodies may also lead to autoimmune and

hematological diseases (28).

Stroke

Stroke is one of the leading causes of disability and

death, and its pathophysiology is complex. Neuroinflammation,

oxidative stress, and apoptosis are thought to be involved in the

occurrence and development of stroke (36). Neuronal HMGB1

release is increased in stroke models. Zhang et al. (37) found

elevated levels of HMGB1 in the CSF of an animal model of

cerebral ischemia. During ischemic stroke (IS), HMGB1 may

signal through its possible receptors, such as RAGE, toll-like

receptors (TLRs), and matrix metalloproteinases (MMPs) (38).

Studies have found that HMGB1 translocation is very sensitive

to hypoxia, and it is released from the nucleus early in stroke to

function as a pro-inflammatory factor (39, 40). Animal studies

have found that HMGB1 is translocated from the nucleus to the

cytoplasm of the peri-infarct cortical region 2 h after ischemia–

reperfusion (41). Another study yielded the same results that

HMGB1 was released from the nucleus into the cytoplasm of

the ipsilateral brain 1 h after intracerebral hemorrhage (ICH)

induction, possibly as an early pro-inflammatory mediator

promoting neuroinflammation within the neurovascular unit
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TABLE 1 Studies targeting HMGB1 in PD.

S.N. Study model Treatment Mode of

inhibition

Observations References

1 MPTP-induced PD mouse

model

Anti-HMGB1 mAb Neutralization Inhibits dopaminergic cell death and reduces

RAGE and TNF-α levels

(20)

2 6-OHDA-induced PD mouse

model

Anti-HMGB1 mAb Neutralization inhibits the activation of microglia, the

destruction of the BBB and the expression of

IL-1β and IL-6

Reduced PD behavioral symptoms

(28)

3 MPTP-induced PD mouse

model

EP Release inhibition Restoration of dopaminergic neuron

numbers in substantia nigra and striatum

(29)

4 MPTP-induced PD zebrafish

larvae model

GL Release inhibition Increases the length of DA neurons in the

zebrafish brain and reduces the number of

apoptotic cells in the zebrafish brain

(30)

(42). In addition, HMGB1 can increase the level of glutamate

leading to excitotoxicity (43). PC12 cells exposed to oxygen-

glucose deprivation (OGD) increased HMGB1 secretion and

induced cell death in a dose-dependent manner (44, 45).

Furthermore, there was a correlation between extracellular

HMGB1 levels and stroke severity in the rat middle cerebral

artery occlusion (MCAO) model. Higher levels of extracellular

HMGB1 in serum and cerebrospinal fluid were associated with

larger infarct volume (46) and more severe disease (11).

Anti-HMGB1 antibody can significantly reduce the size

of cerebral infarction in rats and improve the symptoms of

neurological deficit (47). In addition, studies have found that

anti-HMGB1 antibodies can protect the BBB, reduce circulating

HMGB1, and at the same time reduce brain edema (48).

Anti-HMGB1 mAbs treatment inhibited neuronal translocation

and release of HMGB1 itself, suggesting the existence of a

positive feedback loop between HMGB1 mobilization and brain

inflammatory responses (49). Short hairpin RNA-mediated

HMGB1 (ShHMGB1) can reduce the infarct size in the

rat MCAO model, which may be caused by shHMGB1

reducing HMGB1 expression in the acute phase (39). GL,

a natural inhibitor of HMGB1, potently inhibits MMP-9

activity, protects tight junction claudin-5 and extracellular

matrix collagen IV, and preserves BBB integrity in the brain of

delayed tissue plasminogen activator (t-PA)-treated ischemia–

reperfusion rats. In addition, in the setting of delayed t-PA

treatment, GL reduces mortality, neurological deficit scores, and

brain edema in MCAO brains (48). In contrast, in a rodent ICH

model, HMGB1-RAGE signaling appears to upregulate vascular

endothelial growth factor (VEGF) expression and promote

angiogenesis in the late post-ICH period (50). In conclusion,

HMGB1 may be involved in the pathophysiology of stroke, but

animal experiments have shown that HMGB1 has a biphasic

effect in stroke patients, and it is unclear to what extent it

promotes the development of the disease. However, elevated

levels of HMGB1 within the first 24 h after ischemic stroke are

considered to be a good predictor of stroke severity and clinical

outcome (51), thus serving as a potential therapeutic target

(Table 3). However, how to inhibit the harmful form of HMGB1

while retaining its vascular remodeling function presents new

challenges for future research.

Traumatic brain injury

Traumatic brain injury (TBI) is a global public health

problem, and severe TBI is characterized with high mortality

(56). Neuroinflammation plays an important role in the

pathological process of TBI. One study found that plasma

HMGB1 levels in TBI patients were significantly higher than

those in healthy controls, and HMGB1 could be used as a

predictor of TBI 1-year survival (57). Animal studies found that

30min after TBI, HMGB1 staining disappeared from the core

of the contused area and was transferred to the cytoplasm at

the edge of the contused area (58). Another study validated

this finding by detecting HMGB1 in the cytoplasm of glial cells

4 h after TBI (59). The translocation indicated the functional

activity of HMGB1 as an inflammatory mediator. However,

the release of HMGB1 was age-dependent, with increases in

extracellular HMGB1 in both the lesion and the perilesional

neocortex in both young (3 weeks) and adult mice (8–10

weeks). However, the elevation of HMGB1 was only statistically

significant in the perilesional neocortex of adult mice (60).

However, enzyme-linked immunosorbent assay (ELISA) cannot

distinguish between actively and passively released HMGB1,

so the detected levels of HMGB1 may be actively released

by immune cells, or passively released by necrotic cells, or a

combination of the two (61). TBI induces an inflammatory

response in brain tissue characterized by nucleocytoplasmic

translocation of HMGB1, upregulation of HMGB1/HMGB1
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TABLE 2 Studies targeting HMGB1/TLR4 pathway in PD.

S.N. Study model Treatment Mechanism Observations References

1 MPTP-induced PD

mouse model

OMT Inhibition of

HMGB1/TLR4/NF-

κB

pathway

Inhibits HMGB1/TLR4/NF-κB signaling pathway

Attenuates microglia-mediated

neuroinflammatory responses

Dose-dependently attenuates MPTP-induced

dyskinesia

(31)

2 ROT-induced PD

mouse model

ALO Inhibition of

HMGB1/TLR4/NLRP3

pathway

Inhibits striatal microglial activation (32)

TABLE 3 Studies targeting HMGB1 in stroke.

S.N. Study model Treatment Mode of

inhibition

Observations References

1 MACO-induced

stroke mouse model

GL Release inhibition Reduces the mortality of t-PA delayed treatment of

ischemic stroke model rats, reduce hemorrhagic

transformation, brain swelling, BBB damage,

neuronal apoptosis, and improve neurological

function

Inhibits ONOO-/HMGB1/TLR2 signaling

pathway

(48)

2 MACO-induced

stroke mouse model

Berberine Release inhibition Dose-dependently inhibits nuclear-cytoplasmic

translocation of HMGB1 protein

Inhibits HMGB1/TLR4/NF-κB signaling pathway

(52)

3 MACO-induced

stroke mouse model

SSA Release inhibition Inhibits the release of HMGB1 in the nucleus (53)

4 MACO-induced

stroke mouse model

HP Neutralization Binds HMGB1

Inhibits activation of macrophages/microglia

(54)

5 MACO-induced

stroke mouse model

Anti-HMGB1

antibody

Neutralization – (55)

receptors (TLR4 and RAGE), enhanced NF-κB activation, and

promotion of inflammatory factors interleukin (IL)-1β, tumor

necrosis factor-α (TNF-α), and IL-6 and other inflammatory

cytokines (62). The HMGB1 protein contributes to brain edema

by causing a decrease in occludin, claudin-5, and zonula

occludens-1 (ZO-1). HMGB1 protein was also found to increase

apoptosis by increasing caspase-3 levels and decreasing bcl-

2 levels and to increase oxidative damage by increasing total

oxidative status (63). High HMGB1 levels may impair synaptic

plasticity late in TBI (64).

Currently, the treatment of TBI patients is limited and

the prognosis is poor, so it is imperative to deeply study the

pathophysiology of TBI and find new therapeutic targets. The

prognostic value of HMGB1 is similar to the Glasgow coma

score (GCS); elevated levels of HMGB1 in the ventricular CSF

are associated with poorer prognosis after TBI in children

(65). This suggests that HMGB1 has potential as a TBI

biomarker. Primary examples of therapeutics targeting HMGB1

include GL, EP, and anti-HMGB1 mAbs (Table 4). Animal

studies have found that GL can reduce inflammation by

inhibiting HMGB1 translocation, inhibiting NF-κB DNA

binding activity, and reducing the expression of inflammatory

cytokines (62). In addition, GL can reduce brain edema, reduce

apoptosis, and improve motor function recovery after TBI.

GL attenuated TBI by inhibiting HMGB1, thereby inhibiting

microglia/macrophages (M1) phenotype activation and

promoting microglia/macrophages (M2) phenotype activation

in microglia/macrophages (66). HMGB1 A-box significantly

reduces brain edema, improves cellular degeneration, reduces

the expression of pro-inflammatory cytokines in post-traumatic

brain injury, and improves behavioral performance in TBI

mice by protecting the integrity of the BBB (67) (Table 4). The

expression of HMGB1 decreased after the application of EP

in TBI rats, while improving cerebral edema and reducing
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TABLE 4 Studies targeting HMGB1 in TBI.

S.N. Study model Treatment Mode of

inhibition

Observations References

1 CCI-induced TBI mouse

model

GL Release inhibition Improves short-term spatial memory and motor

learning impairments

(12)

2 CCI-induced TBI mouse

model

EP Release inhibition Inhibits the expression of HMGB1 and TLR4,

IL-1β, TNF-α and IL-6

Improves walking ability, cerebral edema

(63)

3 CCI-induced TBI mouse

model

GL Release inhibition Improves neurological recovery after traumatic

brain injury

Reduces injury volume

Inhibits the release of HMGB1

(66)

4 CCI-induced TBI mouse

model

HMGB1 A-box Neutralization The HMGB1 A-box fragment is an antagonist that

competes with full-length HMGB1 receptor

binding

Protects the integrity of the BBB, reduces cerebral

edema, reduces the expression of

pro-inflammatory cytokines after brain trauma,

and reverses brain damage in mice with brain

trauma

(67)

5 CCI-induced TBI mouse

model

ω-3 PUFA Release inhibition Inhibits HMGB1 nucleocytoplasmic

translocation/extracellular secretion is suppressed

(68)

6 Fluid percussion -induced

TBI mouse model

Anti-HMGB1 mAb Neutralization Inhibits the activation of microglia and the death

of hippocampal neurons in the ipsilateral

hemisphere rat after traumatic brain injury

(69)

TABLE 5 Studies targeting HMGB1 in epilepsy.

S.N. Study model Treatment Mode of

inhibition

Observations References

1 Pilocarpine-

induced SE mouse

model

GL Release inhibition Decreases levels of malondialdehyde and

glutathione in brain regions

(82)

2 Pilocarpine-

induced epilepsy

mouse model

anti-HMGB1 mAb Neutralization Attenuates damage such as increased intracellular

space in the hippocampus caused by seizures in

epileptic mice

(83)

3 Pentylenetetrazol-

induced epilepsy

zebrafish model

GL Release inhibition Anticonvulsant

Inhibits HMGB1/TLR4/NF-κB signaling pathway

(84)

4 Lithium-

pilocarpine induced

epilepsy mouse

model

GL Release inhibition Inhibits the translocation of HMGB1 from the

nucleus to the cytoplasm

Improves the neuronal damage in the CA1 and

CA3 regions of the hippocampus after SE

Protects BBB

(85)

oxidative damage (63). As an immunonutrient, Omega-3

polyunsaturated fatty acid (omega-3 PUFA) can inhibit HMGB1

nuclear translocation and HMGB1-mediated activation of

TLR4/NF-κB signaling pathway, inhibit the induced microglial

activation and subsequent inflammatory response, and thus

exert neuroprotective effects (70) (Table 4). However, studies

have found that the serum HMGB1 concentration in adults

remained relatively stable in TBI, and the serum HMGB1
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TABLE 6 Overview of the original research studies investigating the role of HMGB1 in autism spectrum disorder.

Authors Study population HMGB1 in ASD patients Symptoms

Patients Controls Serums Fecal

Makris G (14) 42 38 ↑ – AQ attention to

detail subscale SQ total score

Babinská K (89) 31 16 ↑ – GI sign severity

Emanuele E (90) 22 28 ↑ – ADI-R Social Scores

Russo AJ (91) 38 40 ↑ – –

Carissimi C (92) 30 14 – ↑ GI sign severity

TABLE 7 Studies targeting HMGB1 in depression.

S.N. Study model Treatment Mode of inhibition Observations References

1 CUMS-induced

depression mouse model

GL Release inhibition Improves chronic stress-induced

depression

(106)

2 CUMS-induced

depression mouse model

EP Release inhibition Depressed behavioral tendency (108)

3 LPS-induced depression

mouse model

GL Release inhibition Eliminates LPS-induced cognitive

dysfunction, anxiety and depression-like

behaviors

(113)

4 PSNL-induced

depression mouse model

Anti-HMGB1 mAb Neutralization Reduces microglia activation and

anxiety-depression-like behavior

(114)

concentration in children increased (60). Therefore, children

may benefit more in targeting HMGB1 inhibition for the

treatment of TBI-induced neuroinflammation. In conclusion,

animal experiments show that HMGB1-targeted therapy is an

effective treatment for TBI, which can protect the integrity of

the BBB, reduce brain edema, and inhibit neuroinflammation

to exert neuroprotective effects. However, current animal

experiments have not proved that HMGB1-targeted therapy

can improve cognitive ability, and its long-term effect still

needs further research. In addition, current research suggests

that disulfide bond-HMGB1 plays a major role in the process

of inflammation (71). How to target and inhibit the harmful

subtype of HMGB1 presents a new challenge for future

clinical translation.

Epilepsy

Epilepsy is considered to be one of the most common

neurological disorders worldwide (72). Epilepsy and the

mechanism of seizures are not well understood, but

inflammation is thought to be an important contributor

to seizures (72). In studies on animal models of epilepsy,

HMGB1 has attracted attention. Animals with active epilepsy

have elevated blood levels of HMGB1 compared to healthy or

well-controlled individuals (73). At the same time, a clinical

study found that HMGB1 levels were proportional to the

severity of epilepsy, and high levels of HMGB1may represent an

increased possibility of antiepileptic drug resistance (74). Serum

HMGB1 concentration can predict seizure frequency (75).

In conclusion, HMGB1 can be used as a potential biomarker

to predict epilepsy recurrence and prognosis. Animal studies

have found that translocation and release of HMGB1 occur

in pathological foci of different types of epilepsy (76, 77).

Glial activation plays an important role in the development

of epilepsy, and HMGB1 may mediate microglial activation

during epileptic seizures through the TLR4/NF-κB signaling

pathway (78). HMGB1 activates the IL-1R/TLR signaling

pathway in neurons and plays a key role in seizures and

relapse by catalyzing the phosphorylation of the NR2B subunit

of the N-methyl-D-aspartate (NMDA-NR2B) receptor via

rapid sarcoma family kinases (79). HMGB1 affects neuronal

excitability by inhibiting astrocyte glutamate transporter to

increase extracellular glutamate concentration (80). It has been

reported that phosphorylation of the NMDA-NR2B receptor

upon activation by HMGB1/RAGE/TLR4 signaling results in

Ca2+ influx, which increases neuronal cell excitability, which in

turn induces epileptogenesis (59). Increased RAGE expression

may also lead to neuronal hyperexcitability associated with

amyloid-β synthesis (81). Among neurotransmitter receptors,

TNF-α induces a rapid increase in neuronal synaptic expression

of the amino-3-hydroxy-5-methyl-4-isoxazole propionic acid
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TABLE 8 Studies targeting HMGB1/TLR4 pathway in depression.

S.N. Study model Treatment Mechanism Observations References

1 CUMS-induced

depression mouse model

BA Inhibition of

HMGB1/TLR4/NF-κB

pathway

Inhibits HMGB1/TLR4/NF-κB pathway (100)

2 CUMS-induced

depression mouse model

AG Inhibition of

HMGB1/TLR4/NF-κB

pathway

Inhibits HMGB1/TLR4/NF-κB pathway (111)

3 LPS-induced depression

mouse model

polydatin Inhibition of

HMGB1/NF-κB pathway

Inhibits Sirt1/HMGB1/NF-κB pathway (115)

TABLE 9 Clinical studies targeting HMGB1 in depression.

S.N. Type of study Treatment Observations limitation References

Experimental Control

1 Randomized,

double-blind,

placebo-controlled

clinical trial

SSRI+ GL SSRI+ PBO The SSRI+ GL group had

more relief of depressive

symptoms than the

SSRI+PBO group

The sample size of this study was

not large enough and the follow-up

time was relatively short

(116)

receptor (AMPAR) and acts on AMPAR to promote neuronal

excitability (82). Seizures lead to brain cell damage, leading to

passive release of HMGB1, creating a vicious cycle.

There are currently limited data on HMGB1 inhibitors

in animal models of epilepsy. GL was neuroprotective

against lithium/pilocarpine-induced status epilepticus (SE)

in rats and ameliorated pilocarpine-induced oxidative

damage and inflammatory responses by inhibiting gliosis

and downregulating pro-inflammatory factors, but showed no

antiepileptic activity (82) (Table 5). Anti-HMGB1 mAb may

exert an antiepileptic effect by inhibiting the HMGB1-TLR4

regulatory axis, reducing seizure frequency (83) (Table 5).

RAGE may play a dual role in epilepsy: Constitutively expressed

neuronal RAGE contributes to hippocampal cornu ammonis

(CA)1 cell survival early in SE and is detrimental in subsequent

stages of epileptogenesis (before spontaneous seizures or after

the first seizure), leading to increased neuronal excitability (77).

Current studies have shown that HMGB1 inhibitors (GL and

anti-HMGB1 mAb) can reduce the frequency of different types

of seizures, but data are limited (86). In addition, short-term

seizure remission does not predict its long-term prognosis.

Autism

Autism is a type of neurodevelopmental disorder starting

in early childhood, with characteristic symptoms of social

interaction and communication disorder, and repetitive patterns

of behavior. The pathogenesis of autism is currently unclear

(87). From fetal development to adulthood, the immune

system and the central nervous system interact with each

other, and the activation of maternal immunity during fetal

development can be a risk factor for autism. Patients with

autism have altered immune responses, ranging from alterations

in peripheral immune markers to increased activation of

microglia in the central nervous system (CNS), all of which

contribute to a chronic state of low-grade inflammation in the

CNS (88). Clinical studies have found that plasma HMGB1

levels are elevated in ASD patients (89) (Table 6). Animal

experiments have demonstrated that HMGB1 is associated

with alterations in intestinal barrier function (93). At the

same time, the serum HMGB1 level is positively correlated

with the severity of autism, and the higher the HMGB1

level, the worse the social interaction ability (90). HMGB1

acts via HMGB1/RAGE/TLR4 axis, and activation of TLR4

signaling leads to the upregulation of NADPH oxidase 2

(NOX-2)-dependent reactive oxygen species (ROS) production

by immune cells (94), increased vascular permeability, and

leukocyte infiltration into nerve cells, resulting in persistent

neuroinflammation (95). The neuropeptide oxytocin (OXT) can

affect mood and social functioning and is therefore considered

to be closely related to the pathophysiology of autism (96, 97).

It was found that HMGB1 binds to endogenous secretory RAGE

(esRAGE), resulting in a decrease in plasma RAGE levels, which

in turn affects the transport of OXT from the periphery to

the brain (14). Therefore, HMGB1 may be involved in the

molecular pathway of immune dysfunction in individuals with

ASD. Epidermal growth factor receptor (EGFR) is involved in
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TABLE 10 Studies targeting HMGB1 in MS.

S.N. Study model Treatment Mode of

inhibition

Observations References

1 MOG-induced EAE

mouse model

anti-HMGB1 mAb Neutralization Improves clinical and pathological

severity of EAE

(127)

2 MOG-induced EAE

mouse model

GL Release inhibition Decreases HMGB1 release (128)

TABLE 11 Studies targeting HMGB1/TLR4 pathway in MS.

S.N. Study model Treatment Mechanism Observations References

1 MOG-induced EAE

mouse model

MAT Inhibition of

HMGB1/TLR4/NF-κB

pathway

Relief of inflammatory demyelination

and activation of astrocytes and

microglia/macrophages in the central

nervous system of EAE rats

(131)

TABLE 12 Studies targeting HMGB1 in ALS.

S.N. Study model Treatment Mode of inhibition Observations References

1 Transgenic

SOD1G93A mice

Anti-HMGB1 mAb Neutralization Briefly improves hindlimb grip strength in

mice early in the disease, but not prolonged

survival

Reduces spinal cord TNF-α and complement

C5a receptor 1 gene expression, but did not

affect overall glial activation

(134)

the growth and differentiation of cells in the central nervous

system, and studies have found that plasma EGFR levels are

correlated with HMGB1. In addition, the study found that EGFR

levels correlated with symptom severity in children with autism

(98). However, there are few clinical and preclinical studies on

autism at present, and more research is needed to clarify the

role of HMGB1 in the pathophysiology of autism and to clarify

the specific molecular mechanism by which HMGB1 is involved

in autism.

Depression

Depression manifests as a long-term physical and

psychological downturn that affects ∼300 million people

worldwide (99). Stress is an indirect cause of depression,

which induces depression-like behaviors through the

HMGB1/TLR4/NF-κB signaling pathway in the hippocampus

(100). Persistent expression of HMGB1/RAGE in microglia

increases susceptibility to depression (101). The ventral

medial prefrontal cortex (vmPFC) is one of the key brain

regions involved in the pathogenesis of depression, and it

plays a key role in the affective deficits of depression. Animal

studies have found increased expression of inflammatory

cytokines and decreased astrocytes in rats exposed to

chronic unpredictable mild stress (CUMS) in vmPFC

(102). The reduction of astrocytes in the prefrontal cortex
(PFC) is considered to be one of the pathophysiological

changes in depression (103). Chronic unpredictable mild
stress (CUMS) induces nucleocytoplasmic translocation of

HMGB1 in microglia and neurons (104). HMGB1 may lead

to microglial activation and neuroinflammation through

TLR4/NF-κB and TNF-α/TNFR1/NF-κB signaling pathways.

This neuroinflammation-induced behavioral change is thought

to be related to the activation of indoleamine-pyrrole 2,3-

dioxygenase (IDO) in the kynurenine pathway and changes in

neurotransmitter metabolism (5-hydroxytryptamine, 5-HT)

(5). HMGB1 can activate the tryptophan degradation (canine

purine) pathway and increase the activity of the rate-limiting

enzyme IDO (105, 106). On the one hand, IDO catalyzes the

conversion of tryptophan into neurotoxicity. Metabolites,

such as quinolinic acid (QUIN), selectively bind to NMDAR,

resulting in glutamate signaling and neuronal Ca influx,

ultimately leading to excitotoxicity. At the same time, it also

activates the secretion of glutamate in neurons (107). Both high

concentrations of glutamate and QUIN enhance glutamatergic
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neurotransmission, leading to the development of depression

(108); on the other hand, 5-HT biosynthesis is reduced and

leads to depressive mood (109). Another possible mechanism of

HMGB1-mediated depression involves damage to dopaminergic

neurons. After exposure to stress, microglia secrete reactive

oxygen species (ROS) and nitrogen (NOS), which may rapidly

reduce the availability of neopterin and tetrahydrobiopterin

(BH4), which in turn leads to the DA synthesis rate-limiting

enzyme amphetamine amino acid hydroxylase (PAH) and

tyrosine hydroxylase (TH) are inactivated and DA synthesis is

blocked (110).

The HMGB1 inhibitors GL and EP can improve depression-

like behaviors (104, 108). Arctigenin exhibits significant

antidepressant effects in rodent models of depression,

attenuates microglial activation and neuroinflammation

through HMGB1/TLR4/NF-κB and TNF-α/TNFR1/NF-κB

signaling pathways, and inhibits IDO increase and decrease in

5-HT (111). Minocycline can inhibit CUMS-induced HMGB1

nucleocytoplasmic translocation in microglia and neurons and

improve behavioral and cognitive deficits in CUMS-depressed

mice (104). In addition, inhibition of phosphodiesterase-4

(PDE4) can exert antidepressant effects by inhibiting the

HMGB1/RAGE signaling pathway (112). TAK-242 (TLR4

inhibitor) can significantly inhibit dsHMGB1, downregulation

of hippocampal myelin basic protein and upregulation of

hippocampal TNF-α protein, and improve depressive behavior

in rodents (15). The glutamate receptor antagonist ketamine

and the IDO inhibitor 1-methyltryptophan can also improve

depressive symptoms in rodents (110). In conclusion, inhibition

of HMGB1 release or inhibition of HMGB1/TLR4/RAGE

signaling pathway by HMGB1 inhibitors is beneficial for the

treatment of depression (Tables 7–9). However, most of the

study results are based on animal experiments and lack the

verification of clinical research results.

Multiple sclerosis

Multiple sclerosis (MS) is an immune-mediated chronic

inflammatory demyelinating disease of the central nervous

system, often involving the brain, spinal cord, and optic

nerves. At the same time, clinical studies have found that the

concentration of HMGB1 in the serum and cerebrospinal fluid

of MS patients is significantly increased (117). Experimental

autoimmune encephalomyelitis (EAE) provides the most widely

used MS experimental model (118). EAE model studies have

found that HMGB1 may be released by activated macrophages

and microglia during MS and induce neuroinflammation

(119). Acetylated HMGB1 may be released during chronic

inflammation in the clinically stable phase of MS, whereas

HMGB1 may be in an unacetylated form during clinically

relapsing acute inflammation (120). Serum HMGB1 levels

can serve as a potential marker of MS activity and correlate

with clinical relapse rates and disease duration (121). HMGB1

may be involved in the pathogenesis of MS by promoting

autophagy. HMGB1 can further promote the binding of

autophagy factor Beclin1 to type III phosphoinositide 3

kinase (PI3K Class III), thereby promoting the nucleation

process of ex vivo membranes, thereby initiating autophagy

(117). HMGB1 elevates inducible nitric oxide synthase

(iNOS) and superoxide, leading to peroxynitrite (ONOO−)

formation and increased pro-inflammatory factors (122).

ONOO induces ceramide production in astrocytes, which

in turn leads to demyelination, inhibition of remyelination,

and increased BBB permeability. On the contrary, high levels

of ceramides can promote cell death (122). In microglia,

ceramides promote the assembly of NOD-like receptor pyrin

domain containing 3 (NLRP3) inflammasome activation,

thereby increasing the release of the IL-1β and IL-18, which

further contributes to neuroinflammation (123). Furthermore,

iNOS-mediated cytokine-induced nitric oxide excess can cause

tissue damage in the central nervous system of EAE (124).

Cellular senescence is a cellular feature of MS progenitor cells,

and senescent neural progenitor cells can secrete HMGB1

oligodendrocyte progenitors (OPCs) to mature into myelinating

oligodendrocytes (OLs), promoting chronic demyelination

(125, 126).

HMGB1 monoclonal antibody has been shown to improve

the progression of EAE (127) (Table 10). Meanwhile, HMGB1

promotes the release of Sonic hedgehog (Shh) through

the HMGB1-RAGE signaling pathway, which can repair

the BBB and reduce BBB permeability to promote axonal

growth in spinal cord injury (129). Genetic inhibition of

acid sphingomyelinase (aSMase)/ceramide prevents classic MS-

like pathophysiology, including BBB disruption, leukocyte

extravasation, and demyelination, in a model of EAE (130).

Matrine (MAT) and GL alleviate inflammatory demyelination

and activation of astrocytes and microglia/macrophages in the

central nervous system of EAE rats by inhibiting HMGB1

(131, 132) (Tables 10, 11). The cumulative effect of HMGB1 will

determine the outcome of the local inflammatory response of

HMGB1 in terms of tissue damage. Blocking theHMGB1-RAGE

interaction in damaged nerves reduces neurite outgrowth. On

the contrary, inhibition of HMGB1 at inappropriate times may

prevent tissue repair due to its role in neurite outgrowth and

stem cell chemotaxis. Therefore, the role of HMGB1 in MS still

needs further study.

Amyotrophic lateral sclerosis

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative

disease that selectively damages motor neurons, resulting

in rapid muscle wasting and weakness after onset (133).

The pathogenesis of ALS is still unclear, but current

studies have found that immune and inflammatory factors
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may be involved in the pathophysiology of ALS. HMGB1

induces neuroinflammation through the HMGB1/RAGE or

HMGB1/TLR4 signaling pathway leading to increased release

of tumor necrosis factor-α and interleukin (134). Serum levels

of HMGB1 autoantibodies were upregulated in ALS patients

compared with age-matched healthy controls (135). At the

same time, the nucleocytoplasmic translocation of HMGB1

in reactive astrocytes and microglia was observed in ALS

patients and mouse models (134). Therefore, HMGB1 may

serve as a biomarker for ALS diagnosis and clinical assessment.

In SOD1G93A mice exhibiting overt disease symptoms,

HMGB1-immunopositive motor neurons progressively

decreased, possibly due to passive release from damaged

cells, whereas the subcellular distribution of HMGB1 in glial

cells did not change, which helps stability and regulation of

transcriptional activity during maintenance of its responsive

response to motor neuron degeneration (136). The binding of

HMGB1 to RAGE and TLR4 leads to the activation of NF-κB

and inflammatory cytokines, the latter of which have been

implicated in the pathogenesis of ALS. Animal studies have

found that TLR4 signaling may lead to motor nerve death

and, ultimately, ALS disease progression. Loss of TLR4 and

RAGE can prolong survival and improve hindlimb grip strength

(137, 138).

HMGB1 antibody improved early symptoms in SOD1G93A

transgenic mice, but did not prolong survival or improve

exercise performance (134) (Table 12). HMGB1 blockade

therapy has limited efficacy in the SOD1G93A mouse model,

possibly due to the presence of other endogenous ligands

that activate TLR2, TLR4, and RAGE (134). On the contrary,

astrocyte HMGB1 signaling in ALS can protect nerves

by releasing neurotrophic factors, such as brain-derived

neurotrophic factor and glial cell-derived neurotrophic

factor (139).

Conclusion

Neuroinflammation is thought to be involved in the

pathogenesis of Parkinson’s disease, stroke, traumatic brain

injury, epilepsy, autism, depression, multiple sclerosis, and

amyotrophic lateral sclerosis, and HMGB1 plays an important

role as a neuroinflammatory mediator in the above diseases.

Meanwhile, HMGB1 has the potential as a common biomarker

for the aforementioned neurological diseases and may be an

important therapeutic target for these neurological diseases.

Anti-HMGB1 monoclonal antibodies and HMGB1 inhibitors

have been shown to improve neurological symptoms in animal

models of the above diseases within a specific therapeutic time

window, providing a new therapeutic idea. Antagonists such

as anti-HMGB1 monoclonal antibodies, ethyl pyruvate, inhibit

HMGB1 by interfering with its cytoplasmic export, while other

antagonists such as glycyrrhizin directly bind to HMGB1 and

render its receptors unavailable. However, the current research

still has certain limitations. Although clinical and preclinical

studies have shown elevated levels of HMGB1 in the blood and

cerebrospinal fluid of patients with Parkinson’s disease, stroke,

traumatic brain injury, epilepsy, autism, depression, multiple

sclerosis, and amyotrophic lateral sclerosis, it is unclear to

what extent HMGB1 contributes to the disease phenotype. In

addition, most clinical or preclinical studies detect serum or

cerebrospinal fluid HMGB1 content by ELISA, which cannot

distinguish between active release of HMGB1 from immune cells

or passive release from necrotic cells and cannot distinguish

HMGB1 subtypes. Different isoforms of HMGB1 play different

roles in the process of inflammation, and the currently studied

HMGB1 inhibitors cannot target the harmful HMGB1 isoforms.

Meanwhile, the duration of HMGB1 neutralization/inhibition

by HMGB1 antagonists still needs further study. Although

HMGB1 antagonists have yielded positive results in animal

studies, clinical findings are limited. Finally, HMGB1 is thought

to promote post-injury inflammation in vertebrates, but its

benefit in neuroregeneration cannot be ruled out. Therefore,

the role of HMGB1 in the nervous system injury response,

the release mechanism of HMGB1, and the structure–function

interaction with inflammatory receptors and downstream

signaling pathways need to be further studied, and the

clinical translation of HMGB1 antagonists still needs a lot of

clinical research.
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