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Abstract: Safe path planning for obstacle avoidance in autonomous vehicles has been developed.
Based on the Rapidly Exploring Random Trees (RRT) algorithm, an improved algorithm integrating
path pruning, smoothing, and optimization with geometric collision detection is shown to improve
planning efficiency. Path pruning, a prerequisite to path smoothing, is performed to remove the
redundant points generated by the random trees for a new path, without colliding with the obstacles.
Path smoothing is performed to modify the path so that it becomes continuously differentiable with
curvature implementable by the vehicle. Optimization is performed to select a “near”-optimal path of
the shortest distance among the feasible paths for motion efficiency. In the experimental verification,
both a pure pursuit steering controller and a proportional–integral speed controller are applied to
keep an autonomous vehicle tracking the planned path predicted by the improved RRT algorithm. It
is shown that the vehicle can successfully track the path efficiently and reach the destination safely,
with an average tracking control deviation of 5.2% of the vehicle width. The path planning is also
applied to lane changes, and the average deviation from the lane during and after lane changes
remains within 8.3% of the vehicle width.

Keywords: autonomous vehicle obstacle avoidance; path planning; Rapidly Exploring Random Trees

1. Introduction

According to the World Health Organization, there are 1.35 million fatalities due to
traffic accidents each year [1]. With the advances in mobile communication technology,
advanced driver assistance systems and intelligent transportation systems are under devel-
opment to reduce traffic accidents caused by driver negligence. The concept of the Internet
of Vehicles allows vehicles to drive autonomously, reduces the operator’s burden, and
improves driver safety. This is making autonomous vehicles possible through high data
transmission efficiency and low transmission latency [2]. To ensure safety, an autonomous
vehicle must have the ability to identify and avoid obstacles.

Safe path planning is key in autonomous vehicles. An autonomous vehicle has a
perception layer to detect its location, a planning layer to predict the safe path/route, and a
control layer to maneuver the vehicle’s direction and speed [3–5]. Sensors such as receivers
of the Global Navigation Satellite System (GNSS), inertial measurement units (IMUs),
LiDAR, cameras, and radars were all installed to investigate vehicles in an obstacle-free
environment [6,7]. Simultaneous location and mapping by normal distribution transform
was proposed for vehicles in deeply urbanized cities [8]. The simulation of the sensor
uncertainties influencing the path planning was conducted in [9]. The methods of path
planning can be summarized into four categories: the graph search method, the sampling
method, the interpolating method, and the numerical optimization method. Among them,
numerical optimization using deep learning neural networks (DNN) has been the recent
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focus [10]. The Markov random field model was applied to path planning [11], but as
in any numerical optimization, the computational load is often too heavy for real-time
applications at present. Recent studies proposed the application of potential fields to path
planning optimization [12] with fuzzy logic [13] or with a Kalman-filter-like observer [14].
An adaptive potential field was recently developed for autonomous vehicles in complex
driving scenarios such as emergency braking and accelerating [15]. Again, most of the
above were limited to numerical simulation without any tracking/speed control and com-
putation loading concerns. Hybrid path planning for optimization was also reviewed [16].
Hybrid path planning that employed fuzzy logic in decision-making was applied to gen-
erate virtual waypoints for path optimization [17], and another hybrid path planning
approach combining a potential field with a sigmoid curve was proposed to improve
vehicle stability and ride comfortability [18]; however, they remain limited to numerical
simulation. Furthermore, some have proposed the use of the convex model to decompose
the operating space into several regions [19], or the use of potential fields to improve path
planning efficiency [20].

By comparison, the Rapidly Exploring Random Trees (RRT) algorithm is a feasible,
relatively fast, and compatible solution in a searching space which avoids colliding with
obstacles [21]. It has mainly been applied to robot maneuvering [22–26] and modified to
adapt to trajectory curvature constraint [27], collision detection [28], quicker planning by
the triangular inequality method [29], and to consider the bias goal factor [30]; however,
the above were all carried out in numerical simulation only. Recent advances in the RRT
algorithm have been extending to path planning of autonomous vehicles by numerical
simulation [31,32]. The hardware constraints and the computation speed in tracking the
planned path have been seldom investigated. In addition, the path obtained by the RRT
algorithm has many unnecessary turning points that make path planning inefficient [19,32].
Path pruning is therefore needed to reduce the number of turning points. However, the
path after pruning remains infeasible for vehicle tracking because it is not continuously
differentiable. Path smoothing is also needed. Furthermore, the path predicted by the RRT
algorithm may not be efficient (in terms of path/track length) because of the algorithm’s
random nature. An improved algorithm is necessary to construct a safe, smooth path with
optimal distance from start to destination without colliding with obstacles. This work is
organized as follows. Section 2 briefly introduces the RRT algorithm, highlighting the
need for an improved algorithm with pruning, smoothing, and optimization. Section 3
proposes the pruning process in reducing the number of waypoints from a random search.
Section 4 employs the Fibonacci number in defining the waypoints for a Bézier curve to
carry out trajectory smoothing and optimization. Finally, Section 5 reports the experiments
conducted on an autonomous vehicle to verify the effectiveness of the improved RRT
algorithm through tracking control, lane change, and lane keeping.

2. Rapidly Exploring Random Trees (RRT) Algorithm

The RRT algorithm is used to construct a path from the start xstart to the destination
xdest in a metric space X by searching the free space X f ree, X f ree ⊂ X, away from the
obstacle Xobs, Xobs ⊂ X. Consider that xstart and xdest are both points in two-dimensional
space. The RRT algorithm starts from xstart and randomly samples a point xrand to find
the nearest neighboring point xnear to construct a tree. The definition of “nearest” is the
shortest distance in Euclidean distance, such that xnear is in the direction toward xrand at a
distance for the new point, also called the node, xnew. If xnew ⊂ X f ree, the tree expansion
continues, and the algorithm connects xnear to xnew and checks if the connection collides
with any obstacle Xobs. If it does, the algorithm restarts; otherwise, xnew is added to the tree
as a new point, and the search repeats until the tree reaches the destination or the number
of iterations of expanding the tree reaches the limit. Figure 1 illustrates the RRT algorithm
of expanding the searching tree so as to plan a safe path from the start to the destination.
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Figure 1. Illustration of the RRT algorithm with the tree expanding from the start xstart on the upper
left to the destination xdest on the upper right. The thin lines and points are the roots of the searching
tree and the thick line is the path predicted by the algorithm. Note that the predicted path has many
redundant points, unnecessary turns, and small curvatures infeasible for vehicle operation.

Due to the random nature of the algorithm, there were many redundant turning points
(nodes) in the path, as shown in Figure 1, and this made the path planning inefficient in
reaching the destination. These redundant points were also the reason that the planned
path was not continuously differentiable and hence infeasible for autonomous vehicle
operation. Moreover, there was certainly more than one feasible path to the destination, but
the random nature also made the search for the “optimal” path inefficient. Path smoothing
and optimization are therefore needed.

3. Improved RRT Algorithm with Pruning

The path obtained by the RRT algorithm was plagued by the randomly generated
nodes that can result in a poor connectivity path. Furthermore, the path was often not
continuously differentiable and was thus infeasible for vehicle implementation. Pruning
is a prerequisite for smoothing. The pruning process shown in Figure 2 was conducted
to remove the redundant points in the RRT algorithm for a new path without colliding
with obstacles. The process started from three consecutive path points, P1, P2, and P3, as
illustrated in Figure 2a. If there was no collision, P1 and P3 were directly connected as a
new path and P2 was redundant. Conversely, if a collision was found between P1 and P3,
then P2 was retained as the path point. The pruning process can remove redundant path
points and obtain a more efficient path to the destination, as illustrated in Figure 2b.
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ure 2b, the number of nodes is reduced significantly by 99% after pruning. Such pruning 
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for reaching the destination. With pruning, the unnecessary turns along the path taken by 
the RRT algorithm will no longer affect the autonomous vehicles. 

Figure 2. (a) Illustration of the pruning process by taking three consecutive path points P1, P2, and P3 to check if the new
connection P1 to P3 is safe. If so, P2 is redundant; if not, P2 remains the path point. (b) The path after the pruning process
(dash line) compared with that of the RRT algorithm (dot line).

In path planning, collision detection is necessary to check whether the path between
the two checkpoints, say P1 and P3, is in contact with any obstacle in the space. Polygon
modeling for collision detection is often too complicated, time-consuming, and computa-
tionally complex, and most choose to simplify the obstacle’s geometric shape for computa-
tional efficiency. Consider the obstacle as a rectangle with safety boundary ds, which is
set at half the vehicle’s width for autonomous vehicle applications, as shown in Figure 3a.
In a collision check, if both checkpoints and their connection are on the same side of the
obstacle, as in Figure 3b, the path after pruning is considered safe. Conversely, if the two
checkpoints are on different sides of an obstacle, then one has to check:{ (

Acp ≤ Aco1
)
∪
(

Aco3 ≤ Acp
)

Aco1 ≤ Acp ≤ Aco3

i f P1 is on the le f t o f the obstacle
i f P3 is on the right o f the obstacle

(1)

where Aco1 and Aco3 are the angles of the connection between the path points and the
corner(s) of the obstacle, and Acp is the angle of the connection between the two checkpoints,
as shown in Figure 3c. This collision detection will ensure path safety in the pruning process.
For the example of path planning in the obstacle environment shown in Figure 2b, the
number of nodes is reduced significantly by 99% after pruning. Such pruning paves the
way for efficient path planning, in terms of path length and number of turns, for reaching
the destination. With pruning, the unnecessary turns along the path taken by the RRT
algorithm will no longer affect the autonomous vehicles.
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Figure 3. (a) The obstacle definition by a rectangle boundary with safety ds. Illustration of collision detection when two
checkpoints P1 and P3 are (b) at the same side or (c) at different sides of the obstacle. The latter then requires calculation of
the angle Aco1, Aco2, and Acp in a collision check.

4. Improved RRT Algorithm with Smoothing and Optimization

After the pruning process, a simplified path as shown in Figure 2b was obtained but
the path was still not continuously differentiable. There remained several turning points in
the path to the destination. This work applied the Bézier curve to generate a continuously
differentiable path to the destination. The advantage is its simple implementation and
thus comparably low computation cost to guarantee kinematic feasibility while avoiding
obstacles. A Bézier curve is often adopted in computer graphics to obtain a continuously
differentiable curve tangent to the two lines connecting the adjacent control points. It has
also been used in the lane change [33] and path planning [34] of intelligent vehicles. The
quadratic Bézier curve (n = 2) is written as

B(t) = ∑n
i=0 Pi+1bi,n(t), t ∈ [0, 1] (2)

where Pi+1 are the control points of the Bézier curve and the polynomial bi,n(t) is

bi,n(t) =
(

n
i

)
ti(1− t)n−i, i = 0, 1, 2, . . . , n (3)

The optimal way to select the control points is to take a turning point, say P2, as the
center point and follow the path (after pruning) forward and backward a certain distance,
at a ratio set at 0.382 (Fibonacci number) from each turning point to the adjacent path
points. Two sets of control points for the quadratic Bézier curves are shown in Figure 4a.
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By this process, a Bézier curve can be obtained at each turning point for a smooth path, as
shown in Figure 4b. The calculation in low order of a Bézier curve is simple and the results
provide good performance without computational burden.
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Figure 4. (a) Illustration of using two control points for smoothing each turning point in the path by a Bézier curve and (b)
comparison of the paths predicted by the RRT algorithm (the zigzag) and by the improved RRT algorithm with the pruning
and smoothing (the smooth) of this work.

The random nature of the RRT algorithm makes it capable of finding a path to the
destination in complex space, but there definitely will be more than one path to the desti-
nation. For example, there are many feasible paths, upward or downward, as illustrated
in Figure 5a. In terms of path length, the downward path is not as efficient. It is thus
important to find a “near”-optimal path for efficient planning. The path planning will be
repeated to yield multiple results, which are then compared to find the desired path. To
ensure safety, the path points are checked to see whether they are in free space during
every planning stage of the improved RRT algorithm. If all path points are in free space,
the result of the smoothing process is retained as a candidate path; conversely, the path is
abandoned and the planning repeats until a path is found.
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Figure 5. (a) The result of the improved RRT algorithm in planning of 10 paths during optimization, and (b) among the 10
paths, the one in the shortest path (solid line) is much more efficient than the path taken by the RRT algorithm (dot line) in
reaching the destination.

Table 1 lists the success rate and average calculation time of the optimization process
in one, five, and ten repeated planning steps. The success rate of one-time planning, i.e.,
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no optimization process, is 56%, with 0.09 s of calculation time. The success rate of five-
time planning is 74% within 0.42 s, and that of ten-time planning is 96% within 0.90 s
of calculation time. The results show that increasing the number of planning steps will
increase the chances of finding a better path. The calculation time is acceptable with the
advent of high-performance onboard computers. Figure 5a shows the results of 10 repeated
planning steps, where the shortest is selected to be the path of the improved RRT algorithm.

Table 1. The success rate and average calculation time for 1, 5, and 10 planning steps of the improved
RRT algorithm in obtaining a “near”-optimal path.

Number of Repetitions Success Rate (%) Average Calculation Time (ms)

1 56 91
5 74 420

10 96 900

The results show that after the pruning and optimization process, the path length is
reduced by around one half, as shown in Figure 5b, and the planning efficiency is signifi-
cantly improved. It should be noted that the time needed from the start to the destination
may be just as important. In this study, the path points were pruned significantly and
smoothing was applied to reduce the sharp turns. The path length was considered a good
indicator of optimal path planning. Table 2 shows the path length by the RRT algorithm
and the improved algorithm with pruning and/or optimization processes. The length was
reduced from 1043 to 776, a reduction of around 34% by pruning. The path length was
further reduced to 583, around another 33% by optimization. Figure 6 shows the result of
the improved RRT algorithm in different obstacle environments. The improved algorithm
is an effective path planner for an efficient, continuously differentiable, safe path.

Table 2. The average path length by the RRT algorithm, the improved algorithm with pruning, and
the improved algorithm with pruning and optimization.

RRT Algorithm With Pruning With Pruning and Optimization

1043 776 583
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5. Experimental Verification by Tracking Control

In order to validate the effectiveness of the improved RRT algorithm in obstacle avoid-
ance, an autonomous vehicle with a pure pursuit controller and a proportional–integral
(PI) speed controller was applied to track the planned path. The pure pursuit controller
was used to set a look-ahead point at a fixed distance in front of the vehicle from its current
position. The geometric relationship between the vehicle and the look-ahead point, as
illustrated in Figure 7a, can be defined to obtain the control command of the steering
angle ϕ = tan−1(L/R), where L is the vehicle wheelbase, R =

(
L f /2 + l cos ρ

)
/ sin ρ

is the radius of curvature with respect to the rotation center O of the vehicle, L f is the
forward drive look-ahead distance, l is the distance from the rear axle (for rear wheel
drive) to the forward anchor point, and ρ is the heading of the look-ahead point (con-
strained on the planned path) from the forward anchor point with respect to the vehicle
heading. Details of the vehicle kinematics model can be found in [35]. A PI controller,
us = Kp(Vcmd −Vs) + Ki

∫ t
0 (Vcmd −Vs)dτ, is used for speed control, where us is the speed

control command, Kp and Ki are the proportional and integral gains, respectively, Vcmd is
the command velocity, and Vs is the vehicle speed. The advantage of using the steering
controller and speed controller is that they can provide good results with minimal compu-
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tation load. Advanced controller design can also be implemented on the onboard computer
with sufficient computation power.
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Figure 7. (a) The kinematic model of vehicle dynamics with the steering angle ϕ, the wheelbase L, the distance from the
rear wheel axle to the forward anchor point l, the forward drive look-ahead distance L f and the heading of the look-ahead
point from the forward anchor point ρ on a path with a radius of curvature R. (b) Experimental results of the autonomous
vehicle tracking the planned path in the obstacle 1 environment (left) and the obstacle 2 environment (right), where the
vehicle trajectory of the tracking control (thin line) successfully follows the path predicted by the improved RRT algorithm
(solid line) in both obstacle environments.

The experiment was conducted in a static obstacle environment, and the criterion for
success was the autonomous vehicle’s capability of traveling along the planned path safely,
from the start to the destination, without colliding with obstacles at the speed generating
l g acceleration upon turning. For the vehicle wheelbase L = 26 cm, the distance from the
rear axle to the forward anchor point l = 6 cm, Vcmd = 1 m/s, L f = 50 cm, and the control
gains Kp = 0.3 and Ki = 0.04, the vehicle followed the planned path of the improved RRT
algorithm to the destination on the upper right in Figure 7b. The vehicle trajectory was
captured by an observer camera for verifying the improved algorithm. The deviation of
the vehicle trajectory from the planned path was defined as the tracking error, as shown
in Figure 8a. For the two obstacles in Figure 7b, the tracking errors shown in Figure 8b
had an average tracking error of 4.9% and 4.7% of the vehicle width in the two obstacle
environments, respectively. The maximum deviation of 12.6% and 20.5%, respectively,
was from the vehicle’s initial heading not aligning relative to the planned path, such that
the vehicle had to maneuver to align with the path. The results show that the vehicle can
track the planned path to the destination without colliding with obstacles. The tracking
controller and the speed controller, though classical, were effective. For applications in
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robotics, some systems may have driving wheels with differential speeds or universal
wheels. The vehicle dynamics will definitely have an influence on the controller design.
Nevertheless, the path planning by the improved RRT algorithm remains applicable, for
the predicted path was continuously differentiable, smooth, and efficient.
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Figure 8. (a) Illustration of the trajectory error defined by the distance between the path point and the
vehicle’s trajectory point in the experiment, and (b) the tracking error in the obstacle 1 environment
(above) and the obstacle 2 environment (below).

Lane change is critical to the development of autonomous vehicles, and it can be
modeled as obstacle avoidance. A vehicle parked by the side of the road or a stalled
vehicle in the lane ahead require similar responses to obstacle avoidance, and lane change
is necessary. Determining the time to execute lane change [36] and following the lane
after lane change [37] are also considered obstacle avoidance with regard to autonomous
vehicles. With the advent of vehicular social networks, busy traffic spots can be modeled
as obstacles. Risk assessment for collision avoidance of nearby obstacles/vehicles will be
desirable in future autonomous vehicle development [38]. A decision-making algorithm of
risk assessment for collision avoidance was recently proposed for vehicles with different
driving style preferences [39]. In this work, the improved RRT algorithm was also verified
by the experiment that combined lane change and lane keeping. For an autonomous vehicle
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on a two-lane road, as in Figure 9a, if there is an obstacle in front of the current lane, the
vehicle needs to change lanes and continue lane keeping afterward. The experimental
result of lane change is shown in Figure 9b. Starting from the lower left (say, outer lane), the
vehicle successfully tracked the upper lane (say, inner lane) after the lane change. Figure 9c
shows the discrepancy in the combined lane change and lane keeping to the upper lane.
The maximum discrepancy of over 200% was in the initiation stage of lane change because
the vehicle’s initial position was far from the center of the upper lane. The discrepancy in
lane keeping remained within 21.4% after the lane change, with an average of 8.3% of the
vehicle width. The result also validated that the improved RRT algorithm was efficient
in path planning, and it was also effective in combined lane change and lane keeping. It
should be noted that the proposed algorithm may be limited by the time needed to re-plan
a safe path should an obstacle “suddenly” appear ahead. Care then has to be taken in risk
assessment [38,39].
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6. Conclusions

An improved RRT algorithm was developed for the path planning of autonomous
vehicles in static obstacle avoidance. The algorithm integrates (a) the pruning process
with geometric collision detection to reach an efficient and collision-free safe path, (b) the
smoothing process by the quadratic Bézier curve to obtain a continuously differentiable
path for vehicle implementation, and (c) the optimization process to select the relatively
superior path in terms of path length as the final path. Simulation results show that the
improved RRT algorithm can plan a collision-free, safe path from the start to the destination
in multiple obstacle environments. It has been shown that the pruning process would
substantially reduce the number of turning points in the path by 99% compared with the
RRT algorithm. The smoothing process by the quadratic Bézier curves with the control
points set at Fibonacci number would further avoid the “sharp” turns along the path
distance.

For the path planning example in Figure 5 with the search repeated 10 times, the
success rate in the optimization process of finding a desired path is 96%. The path length is
reduced by 34% after pruning and by another 33% after optimization. In the experimental
verification on autonomous vehicles, a pure pursuit controller and a PI controller were
applied to track the desired, planned path by the improved RRT algorithm. For a vehicle
speed of 1 m/s within l g acceleration upon turning, it was experimentally validated
that the vehicle could track the planned path to reach the destination safely. The average
tracking deviation in the two environments was 4.9% and 4.7%, respectively, of the vehicle
width. Note that the deviation can be further reduced by advanced controller(s), yet for
path planning through a maze of narrow corridors, the constraint of vehicle dynamics of
minimum turning radius should be investigated.

Lane change is considered similar to obstacle avoidance in autonomous vehicles. The
combined lane change and lane keeping was also verified by the experiment. After the
lane change, the discrepancies in lane keeping remained within 8.3% of the vehicle width.
The results show that the improved RRT algorithm can also be applied to combined lane
change and lane keeping. It should be noted that the proposed algorithm may be limited
by the time needed to re-plan a safe path should an obstacle “suddenly” appear ahead.
With the advent of vehicular social networks, busy traffic spots can be modeled as obstacles.
Risk assessment for collision avoidance of nearby obstacles/vehicles [39] will be desirable
in future autonomous vehicle development.
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