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Abstract
Background: Liver	hepatocellular	carcinoma	(LIHC)	is	a	lethal	cancer.	This	study	aimed	
to identify the N6- methyladenosine (m6A)-	targeted	 long	non-	coding	RNA	 (lncRNA)	
related	to	LIHC	prognosis	and	to	develop	an	m6A- targeted lncRNA model for progno-
sis	prediction	in	LIHC.
Methods: The	expression	matrix	of	mRNA	and	lncRNA	was	obtained,	and	differentially	
expressed	(DE)	mRNAs	and	lncRNAs	between	tumor	and	normal	samples	were	identi-
fied.	Univariate	Cox	and	pathway	enrichment	analyses	were	performed	on	the	m6A- 
targeted	lncRNAs	and	the	LIHC	prognosis-	related	m6A- targeted lncRNAs. Prognostic 
analysis,	 immune	 infiltration,	 and	gene	DE	analyses	were	performed	on	LIHC	 sub-
groups, which were obtained from unsupervised clustering analysis. Additionally, a 
multi-	factor	Cox	analysis	was	used	to	construct	a	prognostic	risk	model	based	on	the	
lncRNAs	from	the	LASSO	Cox	model.	Univariate	and	multivariate	Cox	analyses	were	
used to assess prognostic independence.
Results: A total of 5031 significant DEmRNAs and 292 significant DElncRNAs were 
screened,	 and	 72	 LIHC-	specific	 m6A- targeted binding lncRNAs were screened. 
Moreover,	a	total	of	29	LIHC	prognosis-	related	m6A- targeted lncRNAs were obtained 
and enriched in cytoskeletal, spliceosome, and cell cycle pathways. An 11- m6A- lncRNA 
prognostic model was constructed and verified; the top 10 lncRNAs included 
LINC00152,	 RP6-	65G23.3,	 RP11-	620J15.3,	 RP11-	290F5.1,	 RP11-	147L13.13,	 RP11-	
923I11.6,	AC092171.4,	KB-	1460A1.5,	LINC00339,	and	RP11-	119D9.1.	Additionally,	
the	two	LIHC	subgroups,	Cluster	1	and	Cluster	2,	showed	significant	differences	in	
the immune microenvironment, m6A	enzyme	genes,	and	prognosis	of	LIHC.
Conclusion: The m6A- lncRNA prognostic model accurately and effectively predicted 
the	prognostic	 survival	of	LIHC.	 Immune	cells,	 immune	checkpoints	 (ICs),	 and	m6A 
enzyme	genes	could	act	as	novel	therapeutic	targets	for	LIHC.
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1  |  INTRODUC TION

Liver	hepatocellular	carcinoma	(LIHC)	is	the	primary	malignant	tumor	
of the liver and a key cause of cancer- related deaths worldwide.1 
LIHC	 is	mostly	 found	 in	 the	 late	 stages	 of	 the	 disease,	 and	 there	
are few effective treatments that can improve survival.2 Currently, 
in addition to traditional methods including liver transplantation, 
sorafenib,	 and	 other	 available	 treatments	 for	 LIHC,3 many combi-
nation methods including combinations of different immune check-
point	 inhibitors	 (ICIs)	 are	 under	 investigation.4,5	 For	 prognostic	
prediction	of	patients	with	LIHC,	 the	patient's	physical	status,	de-
gree	 of	 liver	 dysfunction,	 tumor	 expansion,	 and	 alpha-	fetoprotein	
(AFP)	 concentration	are	 the	main	 factors.6,7 Therefore, the identi-
fication and comprehensive analysis of novel molecular biomarkers 
will	benefit	the	ability	to	predict	patient	prognosis	in	LIHC.

Long	non-	coding	RNA	(lncRNA)	is	a	type	of	non-	coding	RNA	with	a	
length is greater than 200 nucleotides.8.	Importantly,	specific	lncRNAs	
can be used as prognostic biomarkers for cancer.9,10	 Many	 studies	
have	confirmed	 the	 role	of	 lncRNAs	 in	LIHC;	 for	example,	YAP	and	
Rnux2	inhibit	lncRNA	MT1DP	in	LIHC	cells.11 However, the prognostic 
value	of	lncRNA	regulation	requires	further	exploration	in	LIHC.

N6- methyladenosine (m6A)	 is	 one	 of	 the	 most	 common	 RNA	
modifications. Changes in m6A levels may affect the characteristics 
of cancer, including maintaining proliferation signals, resisting cell 
death, and activating invasion and metastasis and may have car-
cinogenic or suppressive effects in malignant tumors.12,13	 In	LIHC,	
m6A genes such as N6-	adenosine-	methyltransferase	complex	cata-
lytic	subunit	(METTL3),14 vir like m6A methyltransferase- associated 
VIRMA	 (KIAA1429),15	WT1	associated	protein	 (WTAP),16	YTH	do-
main	 family	2	 (YTHDF2),17 and insulin- like growth factor 2 mRNA 
binding	protein	1	 (IGF2BP1)18	promote	the	occurrence	of	LIHC	by	
affecting	the	proliferation	and	migration	of	liver	cancer	cells.	In	ad-
dition, it has been proven that lncRNAs modified by m6A methyla-
tion could affect the function of target genes through RNA- protein 
binding, ceRNA mechanism, or RNA- RNA binding to regulate the 
biological functions of cancer cells.14,19	For	example,	m6A- mediated 
up-	regulation	of	LINC00958	increased	the	expression	of	hepatocel-
lular	 carcinoma-	derived	 growth	 factors,	 thereby	 promoting	 LIHC	
progression and adipogenesis.20,21 However, most of the current 
research on lncRNAs modified by m6A methylation is based on the 
correlation	between	the	expression	level	of	the	m6A	enzyme	genes	
and	the	expression	level	of	lncRNAs;	therefore,	the	lncRNA	obtained	
may not necessarily be targeted or functionally related to the m6A 
enzyme	 genes.	 In	 addition,	 the	 potential	 prognostic	 mechanism	
of m6A-	lncRNAs	 in	 LIHC	 remains	 unclear,	 and	 further	 research	 is	
needed.

In	this	study,	the	specific	lncRNAs	binding	to	m6A	were	obtained	
from	 the	TCGA-	LIHC	and	m6A2Target	databases.	Multiple	 sets	of	
data mining analysis methods were used for m6A-	related	LIHC	sub-
groups, and a series of in- depth analyses of immune infiltration and 
prognosis of different subgroups were performed. This research 
may contribute to improving our understanding of the molecular 
mechanisms	of	LIHC	from	the	perspective	of	m6A- related lncRNAs. 

The data analysis flowchart of the m6A-	targeted	lncRNAs	in	LIHC	in	
this	study	is	shown	in	Figure	1.

2  |  MATERIAL S AND METHODS

2.1  |  Data acquisition and preprocessing

After	downloading	transcriptome	sequencing	data	(FPKM)	and	clini-
cal	data	(phenotype)	from	the	TCGA-	LIHC	database	(website:	https://
xenab	rowser.net/),22	a	total	of	418	samples	were	obtained,	of	which	
368	 were	 tumor	 samples.	 The	 Gencode	 database	 (https://www.
genco	degen	es.org/)	was	used	for	gene	annotation	of	 the	transcrip-
tome	 (hg38,	V22),23	which	 converted	 Ensembl_ID	 to	 Symbol_ID	 (if	
multiple	Ensembl_IDs	corresponded	to	the	same	symbol	ID,	the	aver-
age	value	of	Ensembl_ID	was	defined	as	the	final	expression	value	of	
Symbol_ID).	The	annotated	"protein_coding”	was	mRNA,	and	anno-
tated	 “lincRNA”,	 “non_coding”,	 “3prime_overlapping_ncrna”,	 “sense_
intronic”,	 “processed_transcript”,	 “sense_overlapping”,	 “antisense”.	
Finally,	mRNA	and	lncRNA	expression	values	were	obtained.

2.2  |  Differential expression analysis

The t test method in the R language limma package (Version 3.10.3, 
website: http://www.bioco nduct or.org/packa ges/relea se/bioc/
html/limma.html)	was	used	to	test	the	difference	in	the	mean	value	
of	gene	expression	between	normal	and	tumor	samples.24 The dif-
ference was represented by the P	 value.	 In	 addition,	 to	make	 the	
results	 more	 reliable,	 multiple	 testing	 adjustments	 (Benjamini	 &	
Hochberg	 method)	 were	 performed	 for	 the	 P value correction. 
Differential	 expression	 analysis	 was	 performed,	 and	 RNAs	 with	
P <	 .05,	and	|logFC|	>	0.585	were	finally	regarded	as	differentially	
expressed	(DE)	mRNAs	and	lncRNAs.

2.3  |  Recognition of M6A- targeted lncRNAs

The	experimentally	verified	lncRNAs	that	had	a	target	binding	relation-
ship with m6A enzyme were obtained from the m6A WER Target Gene 
Database	 (m6A2Target,	 http://m6a2t	arget.cance	romics.org/#/).25 
Moreover,	 by	 taking	 the	 intersection	 with	 the	 above-	mentioned	
DElncRNAs, unique m6A-	targeted	lncRNAs	in	LIHC	were	obtained.

2.4  |  Screening of lncRNAs related to 
LIHC prognosis

The	clinical	information	related	to	prognosis	in	TCGA	LIHC,	includ-
ing	overall	 survival	 (OS)	and	OS	status,	was	collected.	 In	addition,	
survival (Version 3.2- 7, website: http://bioco nduct or.org/packa ges/
survi	val/)	was	used	to	sequentially	perform	univariate	Cox	regres-
sion analysis on the unique m6A-	targeted	binding	lncRNAs	in	LIHC.26 

https://xenabrowser.net/
https://xenabrowser.net/
https://www.gencodegenes.org/
https://www.gencodegenes.org/
http://www.bioconductor.org/packages/release/bioc/html/limma.html
http://www.bioconductor.org/packages/release/bioc/html/limma.html
http://m6a2target.canceromics.org/#/
http://bioconductor.org/packages/survival/
http://bioconductor.org/packages/survival/
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In	addition,	a	P < .05 was considered as the threshold for identifying 
lncRNAs	that	were	obviously	related	to	the	prognosis	of	LIHC.

2.5  |  Functional analysis of lncRNAs

To screen m6A-	targeted	 lncRNAs	 related	 to	 LIHC	 prognosis	 that	
were	 significantly	 related	 to	 DEmRNAs	 at	 the	 gene	 expression	
level, correlation analysis was performed on the DEmRNAs and 
the	above-	mentioned	LIHC	prognosis-	related	 lncRNAs	via	the	cor	
function in the R language, and the Pearson correlation coefficient 
(PCC)	 was	 calculated.	 The	 threshold	 was	 set	 to	 PCC	 > 0.6 and 
P <	.05.	In	addition,	the	enrichment	analysis	tool	clusterProfiler	was	
used	for	mRNA	analysis	of	co-	expression	relationship	pairs	(Version	
3.16.0, website: http://bioco nduct or.org/packa ges/relea se/bioc/
html/clust	erPro	filer.html).27 The number of enriched genes count 
≥2	and	the	significance	threshold	P < .05 were regarded as signifi-
cant enrichment.

2.6  |  Unsupervised clustering analysis

Based	 on	 the	 lncRNAs	 in	 the	 co-	expression	 relationship	 obtained	
above, the pheatmap28	 (Version	 1.0.8,	 website:	 ps://cran.r-	project.
org/web/packages/pheatmap/index.html)	 in	 R	was	 used	 to	 perform	
unsupervised clustering analysis for the acquisition and identification 
of	different	LIHC	subgroups.

2.7  |  Prognostic Kaplan- Meier (K- M) survival 
analysis and clinical information association analysis 
between subgroups

To	explore	the	differences	in	the	prognosis	of	LIHC	between	the	dif-
ferent	subgroups,	the	K-	M	survival	prognostic	curve	was	used.	In	ad-
dition,	the	clinical	information	in	each	subgroup,	including	sex	ratio,	
age	distribution,	TNM	classification	(TNM),	and	tumor	stage	(stage	i,	
ii,	iii,	iv),	was	statistically	collected	to	explore	the	clinical	information	

F I G U R E  1 Flow	chart	of	data	analysis	of	N6- methyladenosine (m6A)-	targeted	long	non-	coding	RNAs	(lncRNAs)	in	liver	hepatocellular	
carcinoma	(LIHC)

http://bioconductor.org/packages/release/bioc/html/clusterProfiler.html
http://bioconductor.org/packages/release/bioc/html/clusterProfiler.html
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association between the subgroups. The chi- square test was used 
to calculate the P value, which evaluated differences in the differ-
ent clinical characteristics of each subgroup. Clinical factors, with a 
P < .05, were considered to be related to the subgroup.

2.8  |  Analysis for the abundance of immune 
infiltration of subgroups

To	explore	differences	in	the	abundance	of	immune	infiltration	be-
tween	 subgroups,	 the	 tumor	 tissue	 expression	 profile	 data	 were	
used to analyze the infiltration of 22 immune cells in each subgroup 
based on the Cibersort algorithm.29,30.	The	LM22	data	set	was	used	
as	 the	 template	gene	expression	profile,	and	 the	parameters	were	
set to perm = 100 and QN =	F.

2.9  |  Analysis of immune checkpoints and M6A 
enzyme gene expression levels between subgroups

To	detect	 the	 immune	 checkpoint	 (ICS)	 and	M6A	gene	expression	
levels	 in	 different	 subgroups,	 information	 about	 the	 expression	
levels	of	13	ICs	and	21	M6A	enzyme	genes	was	extracted	from	the	
tumor samples in the TCGA data set.

2.10  |  Construction of prognostic risk 
prediction model

The samples were randomly divided into two sets at a ratio of 1:1, 
namely	the	training	set	(125	cases)	and	the	validation	set	(125	cases).	
First,	 based	 on	 the	 lncRNAs	 in	 the	 co-	expression	 network,	 10-	fold	
cross-	validation	was	performed	on	the	training	set	using	the	LASSO	
Cox	regression	model	of	the	R	package	glmnet	(Version	4.0-	2,	website:	
https://cran.r-	proje	ct.org/web/packa	ges/glmne	t/index.html)	to	obtain	
the	best	lambda	value.	In	addition,	lncRNAs	with	a	regression	coeffi-
cient of non- zero (ie, the optimal combination of characteristic lncRNA 
markers)	 were	 obtained.	 In	 addition,	 the	 prognostic	 coefficients	 of	
each	element	in	the	lncRNA	combination	and	their	expression	levels	
in	samples	from	the	training	set	obtained	by	the	multi-	factor	Cox	re-
gression analysis of the survival package were applied to construct the 
following prognostic risk model. The calculation formula is as follows:

2.11  |  Prognostic risk model validation

To verify that the risk score model constructed by the lncRNAs could 
separate the samples into high-  and low- risk groups with significant 

differences in survival rates, the training set was used to calculate 
the β coefficients of the above model, and the validation set was 
used to reconstruct the model using the β coefficients calculated by 
the	training	set.	Finally,	the	corresponding	K-	M	survival	curve	was	
drawn to observe whether the prognoses of the high- risk and low- 
risk groups were significantly different.

2.11.1  |  Independence	analysis	of	prognosis	
model and Nomogram chart establishment

Univariate	 and	 multivariate	 Cox	 analyses	 were	 used	 to	 evaluate	
whether the prognostic model was an independent prognostic fac-
tor. A log- rank P < .05 was chosen as the threshold for screening 
significant	correlation.	In	addition,	a	normality	chart	was	drawn,	and	
the	 index	 of	 concordance	 (C-	index)	 was	 obtained	 to	 evaluate	 the	
predictive ability of the nomogram chart according to independent 
prognostic factors.

3  |  RESULTS

3.1  |  Analysis of differential expression of mRNAs 
and lncRNAs

After	 re-	annotation,	 a	 total	 of	 19712	 mRNAs	 and	 3873	 lncRNAs	
were obtained. A total of 5031 significantly DEmRNAs and 292 
significantly	DElncRNAs	were	screened	after	taking	|logFC|	>0.585	
and P < .05 as the significance threshold. The volcano plot of DE 
mRNAs	and	lncRNAs	are	shown	in	Figure	2A,B.

3.2  |  M6A- targeted lncRNAs related to the 
prognosis of LIHC

The 2625 m6A enzyme- targeted lncRNAs were intersected with 
the	DElncRNAs,	and	a	total	of	72	LIHC-	specific	m6A- targeted bind-
ing	 lncRNAs	were	subjected	to	single-	factor	Cox	regression	analysis	
(Figure	2C).	Furthermore,	29	lncRNAs	that	were	significantly	associ-
ated	with	LIHC	prognosis	were	identified	(Table	1).

3.3  |  Enrichment analysis

By	calculating	the	correlation	between	the	expression	levels	of	lncR-
NAs and mRNAs that were significantly related to the prognosis of 

Risk score =

�
Coef gene × Exp gene

⎛
⎜⎜⎜⎜⎝

(Coef gene represented the prognostic coefficient of multivariate Cox regression analysis,

and Exp gene represented the gene expression level in the TCGA data set

⎞
⎟⎟⎟⎟⎠

https://cran.r-project.org/web/packages/glmnet/index.html
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LIHC,	a	 total	of	522	pairs	of	co-	expression	 relationships	were	ob-
tained,	involving	408	DEmRNAs	and	20	DElncRNAs.	In	addition,	the	
possible pathways and functions of lncRNAs can be predicted based 
on	 the	co-	expression	 relationship.	Finally,	19	KEGG	pathways	and	
18	GO	terms	were	enriched	(Figure	3).	According	to	the	P value and 

gene	ratio,	the	top	three	enriched	KEGG	pathways	were	as	follows:	
(1).	spliceosome;	(2)	cell	cycle;	and	(3)	Salmonella	infection.	The	top	
three	enriched	GO	terms	were	as	follows:	(1)	RNA	splicing;	(2)	RNA	
splicing via transesterification reactions with bulged adenosine as a 
nucleophile;	and	(3)	mRNA	splicing	via	the	spliceosome.

F I G U R E  2 Analysis	of	liver	hepatocellular	carcinoma	(LIHC)	prognostic-	related	m6A- targeted lncRNAs. A, Volcano plot of differentially 
expressed	mRNAs.	B,	Volcano	plot	of	differentially	expressed	lncRNAs.	The	red	squares	represented	up-	regulated	genes,	and	the	blue	
circles represented down- regulated genes. The dots showing the names of genes were the top 5 genes with up- regulated or down- regulated 
expression.	C,	Venn	diagram	of	m6A	enzyme-	targeted	lncRNAs	and	differentially	expressed	lncRNAs
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3.4  |  Prognostic K- M survival analysis and clinical 
information association analysis

The	 expression	matrix	 of	 20	 lncRNAs	 related	 to	 LIHC	prognosis	 in	
co-	expression	relationship	pairs	was	classified	through	unsupervised	
clustering	analysis,	and	two	LIHC	subgroups,	namely,	Cluster	1	and	
Cluster	2,	were	obtained	(Figure	4A).	For	the	two	subgroups,	the	sur-
vival	data	of	TCGA	LIHC	were	used	for	the	K-	M	survival	analysis.	The	
results suggested that there were significant differences in survival 
rates	between	the	two	subgroups	(Figure	4B,	P =	.0043).	Moreover,	
the results of clinical information association analysis showed signifi-
cant differences in gender and pathology_T between Clusters 1 and 2 
(Table 2. The P	values	were	.008	and	 .021,	respectively).

3.5  |  Abundance analysis for immune infiltration 
between subgroups

The 22 immune infiltration abundances between Clusters 1 and 2 
were	calculated	using	the	CIBERSORT	algorithm.	After	the	22	cells	
were	 subjected	 to	 the	Mann-	Whitney	U test, the results showed 
that there was a significant difference in the proportion of eight im-
mune	 cells	 between	 the	 two	 subgroups	 (Figure	 5A).	 For	 example,	
compared with Cluster 1, the proportion of immune cells in Cluster 
2,	such	as	follicular	helper	T	cells,	regulatory	T	cells	(Tregs),	and	delta	
gamma T cells, significantly increased. Conversely, the proportions 
of	resting	NK	cells,	M1	macrophages,	M2	macrophages,	and	resting	
mast cells were significantly reduced.

TA B L E  1 Total	29	lncRNAs	significantly	related	to	the	prognosis	of	LIHC

symbol Hazard. Ratio P value symbol Hazard. Ratio P value

LINC00152 1.360	(1.156–	1.600) 0 LINC00339 1.447	(1.075–	1.948) .015

LINC01138 1.967	(1.427–	2.712) 0 LINC01018 0.895	(0.819–	0.979) .015

RP6- 65G23.3 1.629	(1.250–	2.123) 0 RP11-	1094M14.11 1.327	(1.049–	1.680) .018

CMB9-	22P13.1 1.357	(1.154–	1.595) 0 RP11- 119D9.1 0.775	(0.628–	0.958) .018

RP11-	620J15.3 1.463	(1.162–	1.842) .001 RP11-	160O5.1 1.228	(1.036–	1.457) .018

LINC00205 1.550	(1.185–	2.026) .001 NUP50-	AS1 1.312	(1.044–	1.649) .02

RP11-	290F5.1 0.732	(0.607–	0.884) .001 PVT1 1.354	(1.044–	1.755) .022

RP11- 147L13.13 1.555	(1.172–	2.065) .002 RP11-	488L18.10 1.243	(1.029–	1.501) .024

LINC01554 0.883	(0.815–	0.956) .002 RP5- 967N21.11 1.277	(1.033–	1.577) .024

AC007405.6 1.453	(1.131–	1.869) .004 RAB30-	AS1 1.479	(1.045–	2.095) .027

RP11-	923I11.6 1.336	(1.089–	1.639) .005 RP11- 390P24.1 0.759	(0.591–	0.974) .03

AC092171.4 1.357	(1.093–	1.684) .006 RP11- 513G11.3 0.786	(0.633–	0.977) .03

KB-	1460A1.5 1.410	(1.104–	1.800) .006 LINC00261 0.852	(0.733–	0.990) .036

LINC00665 1.295	(1.068–	1.572) .009 LINC01093 0.875	(0.770–	0.994) .04

AC079466.1 1.137	(1.027–	1.257) .013

F I G U R E  3 Kyoto	Encyclopedia	of	Genes	and	Genomes	(KEGG)	and	Gene	ontology	(GO)	enrichment	analysis	of	liver	hepatocellular	
carcinoma	(LIHC)	prognosis-	related	genes.	A,	KEGG	pathways	enrichment	bubble	chart.	B,	GO	terms	enrichment	bubble	chart.	The	
horizontal	axis	represented	the	number	of	enriched	genes,	and	the	vertical	axis	represented	the	name	of	the	pathway.	The	size	of	the	dot	
was the ratio of the number of enriched genes to the total number of genes. The larger the ratio, the bigger the dot. The redder the dot color, 
the more significant the difference (indicated by P	value)
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3.6  |  Immune checkpoints and M6A gene 
expression levels in different subgroups

For	the	ICs	and	M6A	enzyme	genes,	the	expression	levels	were	de-
tected and analyzed between Clusters 1 and 2. The results indicated 
that	the	expression	levels	of	13	ICs	and	21	m6A genes were different 
between	the	two	subgroups	 (Figure	5B,C).	Compared	with	Cluster	
2,	except	that	the	expression	levels	of	CD274	molecule	(CD274)	and	
TNF	 receptor	 superfamily	 member	 9	 (TNFRSF9)	 were	 not	 signifi-
cantly	different	between	the	two	subgroups,	the	expression	levels	of	
the remaining 11 genes were significantly down- regulated in Cluster 
1 (all P <	.05).	In	addition,	compared	with	Cluster	2,	the	expression	
levels	of	key	LIHC	m6A oncogenes KIAA1429, WTAP, YTHDF2, and 
IGF2BP1. were significantly decreased in Cluster 1 (all P <	.05).

3.7  |  LIHC prognostic risk model construction and 
verification

For	prognostic	 lncRNAs	 targeted	by	m6A	 in	 the	 co-	expression	 re-
lationship, a total of 11 lncRNAs were further screened using the 
LASSO	Cox	regression	model.	The	11	lncRNAs,	namely	LINC00152,	
RP6-	65G23.3,	 RP11-	620J15.3,	 LINC00205,	 RP11-	290F5.1,	 RP11-	
147L13.13,	RP11-	923I11.6,	AC092171.4,	KB-	1460A1.5,	LINC00339,	
and RP11- 119D9.1, were used to construct an 11- lncRNA signature. 
Because	 the	 LIHC	 prognostic	 risk	 model	 was	 based	 on	 multiple	
m6A- targeted lncRNAs, it was also named the multi- m6A- targeted 
lncRNA model.

The β coefficients in the Riskscore calculation formula after 
constructing	 the	model	 using	multi-	factor	 Cox	 regression	 analysis	
are	 shown	 in	Table	3.	Furthermore,	 according	 to	whether	 the	 risk	
score was greater than the median value, the 11- lncRNA signature 
divided patients into high- risk and low- risk groups in the training 
and validation sets, respectively. Combining the overall survival time 
and survival status of the sample, the log- rank test was applied to 

F I G U R E  4 Prognostic	analysis	and	clinical	phenotype	of	subgroups.	A,	Kaplan-	Meier	survival	analysis.	B,	The	distribution	of	WHO	
classifications in different subgroups

TA B L E  2 Comparison	of	clinical	characteristics	distribution	
differences	between	different	LIHC	subgroups

Cluster 1 
(N = 199)

Cluster 2 
(N = 69) P value

Gender

Female 52.0	(26.1%) 67.0	(39.6%) .008

Male 147	(73.9%) 102	(60.4%)

Age	(years)

<60 81.0	(40.7%) 84.0	(49.7%) .104

≥60 118	(59.3%) 85.0	(50.3%)

Stage

NA 14.0	(7.0%) 10.0	(5.9%) .055

Stage	i 105	(52.8%) 67.0	(39.6%)

Stage	ii 41.0	(20.6%) 44.0	(26.0%)

Stage	iii 36.0	(18.1%) 47.0	(27.8%)

Stage	iv 3.00	(1.5%) 1.00	(0.6%)

T

T1 112	(56.3%) 70.0	(41.4%) .021

T2 43.0	(21.6%) 49.0	(29.0%)

T3 33.0	(16.6%) 45.0	(26.6%)

T4 8.00	(4.0%) 5.00	(3.0%)

TX 1.00	(0.5%) 0	(0%)

Missing 2.00	(1.0%) 0	(0%)

N

N0 130	(65.3%) 120	(71.0%) .175

N1 1.00	(0.5%) 3.00	(1.8%)

NX 68.0	(34.2%) 45.0	(26.6%)

Missing 0	(0%) 1.00	(0.6%)

M

M0 136	(68.3%) 129	(76.3%) .231

M1 2.00	(1.0%) 1.00	(0.6%)

MX 61.0	(30.7%) 39.0	(23.1%)
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perform	 the	K-	M	survival	 analysis.	The	 survival	 curves	 are	 shown	
in	Figure	6.	The	results	showed	that	the	prognosis	of	the	high-	risk	
group was obviously worse than that of the low- risk group (P values 
in	the	training	and	validation	sets	were	both	less	than	.05).	In	addi-
tion, the clinical information, subgroups, and significant differences 
in the two different risk level groups were separately counted. The 
results	are	presented	 in	Table	4.	Except	 for	M	and	T,	 the	P values 
of other clinical characteristics between the high- risk and low- risk 
groups were greater than 0.05. Therefore, the prognostic value of 

the multi- m6A- targeted lncRNA model was significantly related to 
the	clinical	features	of	M	and	T.

3.8  |  Screening of independent prognostic 
clinical factors

After selecting a log- rank P < .05, as the threshold for screening sig-
nificant	correlation,	the	Cox	analysis	results	are	shown	in	Figure	7A.	
Univariate	 and	 multivariate	 Cox	 regression	 analyses	 showed	 that	
the independent prognostic factors might be pathological T and risk 
groups.	In	addition,	a	normality	chart	was	drawn	and	verified	as	an	
independent	prognostic	 factor	 (Figure	7B,C).	Pathology_T	and	 risk	
groups constituted a nomogram survival prediction model, which 
had good prediction ability for the survival rate of patients with 
LIHC.	Therefore,	 the	nomogram	model,	which	consisted	of	patho-
logical T and risk score evaluation models, could be used as an inde-
pendent	factor	to	predict	LIHC	prognosis.

4  |  DISCUSSION

The	 high	 morbidity	 and	 mortality	 associated	 with	 LIHC	 seriously	
endangers human health.31. An increasing number of reports have 
confirmed the pathological significance of m6A in cancers, includ-
ing	 LIHC.32. However, early research has mainly focused on the 

F I G U R E  5 Results	of	abundance	analysis	for	immune	infiltration,	immune	checkpoints	genes,	and	m6A genes between subgroups. A, 
Violin	plot	of	the	abundance	distribution	of	22	immune	infiltrating	cells.	B,	The	expression	levels	of	immune	checkpoints	genes	in	Cluster	1	
and	Cluster	2.	C,	The	expression	levels	of	m6A	genes	in	Cluster	1	and	Cluster	2.	Yellow	and	blue	graphics	represent	Cluster	1	and	Cluster	2,	
respectively

TA B L E  3 β coefficients in the Riskscore calculation formula 
corresponding to lncRNAs in the prognostic risk model

LncRNA β

LINC00152 0.121444

RP6- 65G23.3 0.262191

RP11-	620J15.3 −0.05283

LINC00205 −0.17789

RP11-	290F5.1 −0.10845

RP11- 147L13.13 0.339291

RP11-	923I11.6 0.28707

AC092171.4 −0.09625

KB−1460A1.5 0.197882

LINC00339 0.582752

RP11- 119D9.1 −0.06094

F I G U R E  6 Kaplan-	Meier	(K-	M)	survival	curve	in	the	high-		and	low-	risk	groups	of	training-	set	and	valid-	set	models.	A,	Risk	score	survival	
analysis	in	training	set.	B,	Risk	score	survival	analysis	in	valid	set
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relevance of specific m6A- related genes or their corresponding 
pathways in tumor diagnosis and treatment. Therefore, the lack of 
evidence for a comprehensive analysis of m6A- related lncRNAs in 
LIHC	should	be	resolved	immediately.	The	identification	and	analysis	
of m6A-	related	lncRNAs	in	large	LIHC	cohorts	 is	 important	for	the	
research	direction	and	objectives	of	LIHC.	In	this	study,	29	prognos-
tic m6A-	lncRNAs	were	found	to	have	different	expression	levels	in	
normal tissues and tumor tissues, and the role of m6A - lncRNAs in 
LIHC	was	further	explored.

It	 can	be	seen	 from	the	 functional	analysis	of	LIHC	prognosis-	
related m6A- targeted lncRNAs that the number of lncRNAs involved 
in cytoskeleton regulation, spliceosome, and cell cycle pathways was 
the largest. Correspondingly, the lncRNAs related to prognosis in-
volving	the	above	pathways	were	LINC00152,	RP11-	620J15.3,	and	
RP6- 65G23.3, respectively, which were also identified and used to 
construct	the	LIHC	prognostic	risk	model.	LINC00152	is	a	cytoskele-
ton regulator RNA and has been identified as an effective oncogene 
in various cancer types, participating in cancer cell proliferation and 
invasion by combining tumor suppressor microRNAs as competitive 
endogenous RNA with gene promoters.33,34.	Although	LINC00152	
can be used for prognosis and potential biomarker therapy,35, its 

molecular	regulation	mechanism	for	the	prognosis	of	LIHC	has	not	
yet	been	reported.	The	GO	terms	enrichment	results	showed	that	
LINC00152	was	mainly	enriched	in	actin	cytoskeleton	organization,	
actin filament- based process, and actin polymerization or depolym-
erization	 regulatory	 pathways.	 Moreover,	 LINC00152	 expression	
was modified by m6A methylation and participated in the progno-
sis	of	LIHC	patients	 through	 the	cytoskeleton	 regulation	pathway.	
Therefore,	LINC00152	can	be	used	as	a	novel	potential	LIHC	prog-
nostic	marker.	As	for	RP11-	620J15.3,	it	was	the	former	transcript	of	
hepatocarcinogenesis	 (GIHCG),	and	 its	overexpression	was	related	
to poor prognosis and immune infiltration of hepatocellular carci-
noma	(HCC).36,37. However, the molecular regulatory mechanism of 
RP11-	620J15.3	on	the	prognosis	of	LIHC	remains	unclear.	Through	
the	 enrichment	 analysis	 of	KEGG	pathways	 and	GO	 terms,	 RP11-	
620J15.3	was	confirmed	to	be	enriched	in	the	spliceosome	and	RNA	
splicing pathways, which were linked to the occurrence and prog-
nosis	 of	many	 cancers,	 including	 LIHC.38-	41.	 For	 example,	 a	meta-	
analysis	of	gene	expression	profiles	conducted	by	Xu	et	al.	showed	
that genes in the spliceosome pathway (including HSPA1A, SNRPE, 
SF3B2, SF3B4, and TRA2A	 genes)	 were	 up-	regulated	 in	 LIHC.42. 
Therefore, it was speculated that the m6A methylation target gene 
RP11-	620J15.3	 directly	 or	 indirectly	 participated	 in	 the	 splicing,	
RNA splicing, and mRNA splicing pathways and affected the prog-
nosis	of	patients	with	LIHC.	As	for	the	cell	cycle	pathway,	a	variety	
of	lncRNAs,	including	CDKN2B-	AS1	and	HOTAIR,	are	considered	to	
be	 involved	 in	 promoting	 LIHC	 cell	 proliferation	 and	 growth.43,44. 
However,	 the	 role	of	 these	 lncRNAs	 in	 the	prognosis	of	 LIHC	has	
not	 been	 studied	 clearly.	 In	 this	 study,	 RP6-	65G23.3,	 a	 promising	
biomarker	 for	 the	 prognosis	 of	 LIHC,	was	 identified	 as	 the	 target	
gene of the m6A	enzyme	gene.	In	summary,	the	LINC00152,	RP11-	
620J15.3,	and	RP6-	65G23.3	 identified	 in	this	study	were	not	only	
the target genes of the m6A enzyme gene, but also novel prognostic 
predictors	of	LIHC.

In	addition	to	obtaining	promising	novel	predictors	of	LIHC	prog-
nosis, through a comprehensive analysis of m6A-  targeted lncRNAs, 
the correlation between these lncRNAs and the prognosis as well as 
immune	microenvironment	of	TCGA	patients	was	also	explored	and	
analyzed.	After	obtaining	two	LIHC	subgroups	that	were	highly	cor-
related with the clinical characteristics and performing the analysis 
of immune infiltration, it was speculated that the good prognosis of 
Cluster 1 was due to the highest proportion of immune cells such as 
follicular	helper	T	cells,	regulatory	T	cells	(Tregs),	and	delta	gamma	T	
cells. These T cells not only participate in fibrotic diseases by regulat-
ing fibrosis,45	but	are	also	related	to	the	prognosis	of	LIHC.	Previous	
studies have shown that the low number of delta gamma T cells in 
the liver tissue around the tumor was related to the higher recur-
rence	rate	of	LIHC,	which	could	predict	postoperative	 recurrence,	
especially	 in	patients	with	early	LIHC.46,47	 In	addition,	the	analysis	
results	 of	 the	 expression	 levels	 of	 ICs	 and	M6A enzyme genes in 
Cluster 1 and Cluster 2 showed that the good prognosis of Cluster 
1	was	also	related	to	the	down-	regulation	of	most	ICs	and	M6A en-
zyme	genes.	It	can	be	seen	that	the	LIHC	subgroups	obtained	based	
on the clustering analysis of m6A- targeted lncRNAs were effective.

TA B L E  4 Statistics	of	clinical	characteristics	of	high-	risk	and	
low- risk groups

High risk 
(N = 184)

Low risk 
(N = 184) P value

Gender

Female 58.0	(31.5%) 61.0	(33.2%) .824

Male 126	(68.5%) 123	(66.8%)

Age	(years)

<60 84.0	(45.7%) 81.0	(44.0%) .834

≥60 100	(54.3%) 103	(56.0%)

T

T1 74.0	(40.2%) 108	(58.7%) <.001

T2 57.0	(31.0%) 35.0	(19.0%)

T3 48.0	(26.1%) 30.0	(16.3%)

T4 4.00	(2.2%) 9.00	(4.9%)

TX 0	(0%) 1.00	(0.5%)

Missing 1.00	(0.5%) 1.00	(0.5%)

N

N0 130	(70.7%) 120	(65.2%) .48

N1 2.00	(1.1%) 2.00	(1.1%)

NX 51.0	(27.7%) 62.0	(33.7%)

Missing 1.00	(0.5%) 0	(0%)

M

M0 141	(76.6%) 124	(67.4%) .049

M1 0	(0%) 3.00	(1.6%)

MX 43.0	(23.4%) 57.0	(31.0%)

Subset

Cluster 1 71.0	(38.6%) 128	(69.6%) <.001

Cluster 2 113	(61.4%) 56.0	(30.4%)
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F I G U R E  7 Analysis	of	the	liver	
hepatocellular	carcinoma	(LIHC)	
prognostic risk model. A, Univariate 
and	multivariate	Cox	analysis	of	
prognostic	model.	B,	Nomogram	chart	of	
independent prognostic clinical factors. 
C, Nomogram verification chart for 
independent prognostic clinical factors. 
The abscissa represents the survival rate 
of patients predicted by the model, and 
the ordinate represents the survival rate 
of patients actually observed
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In	previous	studies,	m6A- lncRNA might affect the migration and 
proliferation	of	LIHC	cells	through	the	regulation	of	the	Notch	sig-
naling pathway.48	Furthermore,	 the	m6A- lncRNA- related prognosis 
model	developed	by	LASSO	regression	was	used	to	determine	the	
survival	 rate	of	 patients	with	 LIHC.49	 In	 our	 current	 research,	 the	
m6A- lncRNA- related prognosis model was constructed according to 
the	11-	lncRNA.	In	addition,	both	univariate	Cox	analysis	and	multi-
variate	Cox	analysis	 indicated	 that	pathological	_T	and	risk	groups	
could be independent prognostic factors. The nomogram model, 
which consisted of pathological T and risk score evaluation model, 
could be used as an independent factor to predict the prognosis of 
LIHC.	Therefore,	the	LIHC	prognostic	prediction	model	established	
based on m6A- targeted lncRNAs has been well verified, which once 
again showed the important role of these lncRNAs in the prognosis 
of	LIHC.

The	types	of	LIHC	samples	in	this	study	were	incomplete,	which	
had	certain	 limitations	on	the	results	of	the	study.	 In	addition,	the	
research on lncRNAs that had predictive significance for the prog-
nosis	of	LIHC	was	not	very	 in-	depth.	Therefore,	the	next	research	
plan	 is	 to	 expand	 the	number	 of	 samples	 and	 enrich	 the	 types	of	
samples	 (including	LIHC	 samples	of	different	nationalities,	 etc.)	 to	
further confirm the role of data mining analysis and clustering anal-
ysis of m6A-	targeted	 lncRNAs	in	predicting	the	prognosis	of	LIHC.	
Moreover,	 the	 target	 genes	 of	 lncRNAs	 related	 to	 the	 11-	lncRNA	
signature should be further screened, which is conducive to a better 
understanding	of	the	molecular	mechanism	of	LIHC	prognosis	regu-
lation.	In	addition,	relevant	experiments	are	needed	to	validate	the	
lncRNAs identified from the bioinformatics analysis.

5  |  CONCLUSION

In	conclusion,	 the	11-	lncRNA	prognostic	prediction	signature	con-
structed in this study could help to evaluate the prognosis of patients 
with	LIHC.	Besides,	the	key	immune	cells	(macrophages,	resting	NK	
cells,	follicular	helper	T	cells,	etc.)	play	an	important	role	in	the	pro-
gression	of	LIHC.	This	research	has	strengthened	the	understanding	
of m6A-	related	lncRNAs	and	immune	infiltration	in	LIHC,	which	may	
provide	new	 targets	 for	 LIHC	 therapy	 and	prognostic-	related	bio-
markers for further research and evaluation.
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