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RAS mutations are highly relevant for progression and therapy response of human tumours, but the
genetic network that ultimately executes the oncogenic effects is poorly understood. Here, we used a
reverse-engineering approach in an ovarian cancer model to reconstruct KRAS oncogene-dependent
cytoplasmic and transcriptional networks from perturbation experiments based on gene silencing
and pathway inhibitor treatments. We measured mRNA and protein levels in manipulated cells by
microarray, RT–PCR and western blot analysis, respectively. The reconstructed model revealed
complex interactions among the transcriptional and cytoplasmic components, some of which were
confirmed by double pertubation experiments. Interestingly, the transcription factors decomposed
into two hierarchically arranged groups. To validate the model predictions, we analysed growth
parameters and transcriptional deregulation in the KRAS-transformed epithelial cells. As predicted
by the model, we found two functional groups among the selected transcription factors. The
experiments thus confirmed the predicted hierarchical transcription factor regulation and showed
that the hierarchy manifests itself in downstream gene expression patterns and phenotype.
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Introduction

RAS genes are frequently mutated in human tumours and have
a crucial role in the development of cancer (Tchernitsa
et al, 2004; Karnoub and Weinberg, 2008). Although efficient
therapeutic approaches for targeting RAS proteins directly do
not exist to-date, signalling kinase pathways downstream
of RAS have been recognized as vulnerable elements to block
cellular transformation. However, the clinical benefit of
targeted therapies is limited by acquired tumour cell
resistance to signalling kinase inhibition (Corcoran et al,
2011; Fritsche-Guenther et al, 2011). To improve inhibitor
action, a better understanding of the dynamics of signalling,
pathway cross-talk, feedback regulation and of the mechan-
isms of target gene deregulation are essential. Chronically
activated RAS pathways trigger transcriptional upregulation of
genes capable of promoting growth, invasion and metastasis.
RAS pathway-related gene signatures also comprise
downregulated target genes that control anti-proliferative,
anti-invasive and anti-angiogenic processes (Zuber et al, 2000;
Brem et al, 2001; Tchernitsa et al, 2004). The deregulation of

the genetic program provides a unique opportunity to
elucidate the topology of the underlying transcription
factor network. Currently it is not known whether few
transcriptional master regulators (‘hubs’) drive the entire
genetic program mediating cellular transformation or whether
multiple transcriptional regulators act jointly in RAS pathway-
controlled gene expression. A redundant network topology is
expected to render the network robustly towards genetic or
pharmacological perturbation.

The reconstruction of complex regulatory network topolo-
gies from high-throughput data poses a major challenge in
systems biology. Genome-wide RNAi screens have been
employed to identify key regulators of biological processes
(Berns et al, 2004; Paddison et al, 2004). However, loss-of-
function approaches with a single biological read-out do not
allow detailed conclusions regarding the underlying regulatory
network structure, since the dynamics of network components
cannot be determined explicitly. Microarray analysis permits
the simultaneous assessment of many network elements.
However, the derivation of the network topology from
microarray data is not straight-forward, as direct regulatory
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interactions are not measured by them. Typically, reverse-
engineering algorithms are required to deduce the structure of
gene-regulatory networks from perturbation data. Several
different reverse-engineering approaches have been proposed
including those based on metabolic control analysis
(Kholodenko et al, 2002), Bayesian statistics, information
theory (Margolin et al, 2006), ordinary differential
equation (ODE) models (Madar et al, 2009), discovering
algebraic relations (Schmidt and Lipson, 2009) and neural
network type ODE models (Busch et al, 2009). Applications of
reverse-engineering approaches that integrate theoretical
prediction of network structures and experimental validation
comprise the SOS pathway in E. coli (Gardner et al, 2003),
nerve growth factor-induced differentiation of PC12 phaeo-
chromocytoma cells (Santos et al, 2007), hepatocyte growth
factor-induced migration (Busch et al, 2008) and the analysis
of synthetic gene-regulatory networks (Cantone et al, 2009).

Here, we set out to reverse engineer a KRAS oncoprotein-
regulated transcriptional network by systematic experimental
perturbation and by employing an algorithm that is based on the
framework called modular response analysis (MRA). This
framework involves an analysis of the steady-state response of
a dynamic system upon perturbation (Kholodenko et al, 2002).
MRA assumes that the system can sufficiently be well explained
when it is linearized. Since its introduction by Kholodenko and
co-workers, MRA has been successfully applied to uncover
the regulatory interactions in signal transduction pathways
(Kholodenko et al, 2002; Gardner et al, 2003; Santos et al, 2007).
Individual nodes in a network are treated as modules, which
activate or inhibit each other (all possible interactions are
allowed), but do not communicate by mass flow. The network
interaction strengths are determined by fitting the perturbation-
response behaviour of the model to the experimentally obtained
perturbation-response data. The perturbation-response beha-
viour of the model is determined by so-called local response
coefficients, which quantify how strongly an activity change of
one node directly influences the others. Thus, the fitted local
response coefficients represent the network topology most likely
underlying the perturbation-response data.

A gene signature related to KRAS oncogene-mediated
transformation in an ovarian carcinoma model served as the
basis for determining the perturbation response at the
experimental level. The signature was obtained by comparing
the transcriptional programs of pre-neoplastic rat ovarian
surface epithelial (ROSE) cells and a KRAS oncogene-
transformed derivative (Tchernitsa et al, 2004). The cells
exhibit enhanced activity of the Raf/Mek/Erk pathway,
epithelial–mesenchymal transition (EMT), anchorage inde-
pendence and tumorigenicity (Adams and Auersperg, 1981;
Tchernitsa et al, 2004). Of 51 transcription factors that were
upregulated upon KRAS transformation of ROSE cells, 7 were
chosen for detailed network reconstruction. Two of these
transcription factors, Fos-like antigen 1 (Fosl1, Fra-1) and high
mobility group AT hook 2 (Hmga2), are well known to
contribute to proliferation and cellular transformation (for
review, see Verde et al, 2007; Cleynen and Van de Ven, 2008).
To be able to investigate the network in further detail, we
decided to investigate the impact of four additional transcrip-
tion factors which showed strong upregulation in KRAS-
transformed cells, and met critical functional criteria such as

high expression as a consequence of reactivation during
inflammatory responses, tissue damage and tumorigenesis as
well as repression in differentiated cells. The homologue of
Drosophila orthodenticle 1 (Otx1) (Kanzler et al, 1994; de et al,
2006), Kruppel-like factor 6 (Klf6) (Narla et al, 2005; DiFeo
et al, 2006), the transcriptional repressor growth factor
independent 1 (Gfi1) (Grimes et al, 1996; Dwivedi et al,
2007) and the proto-oncogene JunB (Battista et al, 1998; van
Dam and Castellazzi, 2001) fulfilled the criteria. Additionally,
we included RelA, a component of the NF-kB transcription
factor complex, in the network analysis. The NF-kB pathway is
known to contribute to RAS oncogene-mediated transforma-
tion (Finco et al, 1997; Karin et al, 2002; Lerebours et al, 2008).
The RelA expression level is controlled by post-transcriptional
mechanisms (Madrid et al, 2000).

In this work, we characterized functional interactions
among Fosl1, Hmga2, Otx1, Klf6, Gfi1, JunB and RelA by
systematically perturbing and measuring their expression
levels. Reverse engineering by MRA provided experimentally
testable predictions concerning molecular interactions in the
network, some of which were verified by double perturbation
experiments. The hierarchical transcription factor organiza-
tion predicted by the model was reflected at the level of
phenotypic responses to transcription factor silencing, sug-
gesting that cellular decision making can be understood at the
level of transcriptional regulation.

Results

Differential expression of transcription factors
in KRAS-transformed ROSE cells

We first confirmed the overexpression of the selected
transcription factors in RAS-ROSE cells by RT–PCR and
western blotting, respectively (Figure 1). All transcription
factors, except RelA, showed a coordinated mRNA and protein
upregulation in RAS-ROSE cells. The upregulation of RelA
solely occurred at the protein level. To investigate the impact of
upstream signalling pathways on transcription factor expres-
sion, we treated RAS-ROSE cells with the Mek inhibitor U0126
and the PI3K inhibitor LY 294002, respectively. The mRNA and
protein expression levels of Fosl1, Hmga2, Otx1, Klf6, Gfi1 and
JunB were strongly dependent on Raf/Mek/Erk signalling as
suggested by the previous gene profiling analysis (Tchernitsa
et al, 2004). RelA expression was insensitive to MAPK
signalling, but the protein level was strongly downregulated
upon PI-3-K inhibition (Figure 1B). Only few other species
showed regulation by PI3K signalling, including Hmga2
protein as well as Otx1 mRNA and protein.

A complex transcriptional network revealed by
RNAi-mediated perturbations

To investigate their functional relevance and impact on the
transcriptome, we transiently silenced the selected transcrip-
tion factors by using two independent specific siRNAs
targeting each factor. The efficiency of knockdown at the
protein level ranged from 77 to 99% as calculated by
densitometric analysis and normalized to control levels of cell
transfected with scrambled siRNA (Supplementary Figure 1).
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While KRAS-transformed ROSE cells were characterized by
spindle-shaped morphology, silencing of each of the transcrip-
tion factors resulted in a partial morphological reversion, as
indicated by length reduction of lateral processes and
increased intercellular adhesion contacts (Figure 2A). A
quantitative analysis of cell lengths revealed that the effects
of each transcription factor knockdown were similar and
highly significant (Figure 2A and B; Pp0.001). In order to
analyse the involvement of selected transcription factors in the
deregulation of the genetic program in RAS-ROSE cells, we
interrogated genome-wide microarrays. KRAS oncogene-
mediated transformation of ROSE cells was associated with
the deregulation of 1826 genes represented by 7561 probe sets
on Affymetrix Rat Gene 1.0 STarrays. In all, 990 of these genes
were downregulated, while 836 genes were upregulated
relative to non-transformed control. Probe sets showed
opposing regulation for seven genes. Knockdown of each
transcription factor partially reverted target deregulation by
KRAS signalling (Figure 2C). Overall, 5971 of 7561 (80%,
corresponding to 1562 of 1826 genes) RAS-responsive probe
sets indicated regulation by any of the 7 selected transcription
factors. The number of probe sets indicating target gene
upregulation by any of the knockdowns (3247) was compar-
able to number of probe sets indicating downregulation
(3054), while only few probe sets indicated inconsistent
regulation under conditions of transcription factor silencing.
Each of the transcription factors regulated 43% of the RAS
responsive probe sets on average, ranging from 35% for Klf6 to
52% for Hmga2, while transfection with a scrambled siRNA
affected only 4%. Thus, the patterns of target regulation

overlapped substantially. Only 19% of probe sets for tran-
scription factor targets were specifically regulated by silencing
a single factor, while the remainder was controlled by at least
two of the factors (Figure 2D). Surprisingly, we observed that
1081 (18%) of the transcription factor target probe sets were
always regulated regardless of the silenced transcription factor
(Figure 2D). Notably, the mode of deregulation was coherent
over all seven knockdown experiments as indicated by the
hybridization pattern to 1077 out of 1081 probe sets. Thus, the
corresponding target genes were consistently upregulated or
downregulated by all transcription factor perturbations. We
concluded that the transcriptional alterations mediated by the
RAS pathway are controlled by a densely connected transcrip-
tion factor network with Fosl1, Hmga2, Otx1, Klf6, Gfi1, JunB
and RelA positioned at critical nodes, rather than by a single
transcriptional master regulator. As expression profiling based
on the interrogation of commercially available rat microarrays
continues to be hampered by suboptimal annotation of the rat
genome, we also hybridized customized microarrays repre-
senting 329 independently validated RAS pathway-target
genes (Tchernitsa et al, 2005). We found that 116 out of 209
knockdown-sensitive target genes were controlled by at least
two transcription factor knockdowns as well (Supplementary
Figure 2). This finding supports the notion that the transcrip-
tome of KRAS-transformed cells is controlled by a densely
connected transcription factor network.

The results of siRNA-mediated silencing (Figure 2) revealed
an important role for each of the transcription factors in
mediating downstream transcriptional responses, but did not
allow any conclusions about the topology of the regulatory
network. We sought to gain further insights into the functional
interactions between the transcription factors and to identify
direct partners of each factor. We therefore systematically
analysed how transcription factor perturbations affect the
expression and activity of other network components. After
knockdown of each single transcription factor we monitored
the resulting expression changes of all other transcription
factors by microarray, RT–PCR and western blot analysis
(Supplementary Figures 1 and 3). Each transcription factor
knockdown enhanced and/or reduced the mRNA and protein
levels of the remaining factors, as visualized in the perturba-
tion-response matrix shown in Figure 3A. This result lends
further support to our conclusion that the transcription factors
are organized in a densely connected network. We also
included the Raf/MAPK and PI3K signalling pathways in the
perturbation screen, by measuring the levels of phosphory-
lated Erk and Akt and perturbing these with Mek or PI3K
inhibitors, respectively. Surprisingly, silencing of transcription
factors profoundly affected the activity of signalling proteins
(Figure 3A; Supplementary Figure 4). This finding indicated
that upstream signalling is regulated by transcriptional feed-
back. We expected that the perturbation-response patterns of
transcription factor network should impinge on the genome-
wide gene expression profiles. The 1067 probe sets represent-
ing mRNAs coherently upregulated or downregulated by all 7
transcription factor knockdowns may, for example, be direct
transcriptional targets of Fosl1, since the protein levels of this
factor coherently respond to all knockdowns as well
(Figure 3A). By filtering genes (probe sets) using expression
cutoffs, we found that most transcription factor perturbation-
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Figure 1 Selection of the network components. (A) Non-transformed rat ovarian
surface epithelial (ROSE) cells and their KRAS-transformed derivatives (RAS-
ROSE) were subjected to gene expression analysis by interrogating Affymetrix
microarrays and customized RAS target arrays (Tchernitsa et al, 2005). Overall,
51 transcription factors were found to be upregulated in KRAS-transformed cells,
of which 7 were chosen for further analysis (see text for details). (B) Expression of
selected transcription factors in normal ROSE cells and their KRAS-transformed
derivatives was investigated by RT–PCR and western blot. Pathway-specific
expression regulation was assessed by treatment with the Mek1/2 inhibitor U0126
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RT–PCR and Histone H3 antibody for western blot. Source data is available for
this figure in the Supplementary Information.
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response patterns were preserved at the level of target gene
expression (Figure 3B and C; Supplementary Table 1). Out of
5971 probe sets that responded significantly to any of the
transcription factor perturbations, we found 947 probe sets
(corresponding to 451 genes) whose perturbation response
resembled the patterns of the transcription factor protein

measurements (Figure 3B). These corresponding genes are
likely to be directly induced or repressed by the respective
transcription factor. At the mRNA level, 532 probe sets
(corresponding to 310 genes) indicated target perturbation-
response patterns closely matching those of the mRNAs of any
of the seven transcription factors (Figure 3C). The
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Figure 2 Effects of transcription factor silencing on cell morphology and the transcriptional profile of RAS-ROSE cells. (A) Morphological characteristics of normal
ROSE versus RAS-ROSE cells 48 h after treatment with scrambled siRNA-duplex (Sc), transfection reagents only (Mock) and two independent specific siRNAs targeting
Fosl1, Hmga2, Klf6, JunB, Otx1, Gfi1 and RelA, respectively. Phase contrast, magnification: 450-fold. (B) Quantification of lateral processes of RAS-ROSE and
transfectants, in which transcription factor expression was silenced by siRNA. (C) Effects of transcription factor silencing on the transcriptome of RAS-ROSE cells. Each
transcription factor controlled expression of hundreds of regulated genes as indicated by hybridization of target RNA to probe sets on the microarray (cutoff for significant
upregulation or downregulation: ±0.7 on log2 scale). Total number of probe sets indicating expression alterations as a response to transcription factor silencing: 5971
(3247 and 3054 upregulated and downregulated by knockdown, respectively; few probe sets indicated inconsistent target regulation among knockdowns); average
number of probe sets indicating response to silencing of an individual transcription factor: 3300; number of probe sets indicating response to scrambled (sc) siRNA: 319.
(D) Specificity of transcription factor silencing as determined by profiling of target genes. Transcription factor knockdowns induced broadly overlapping gene expression
responses. Each probe set indicating expression alterations was classified according to the exact number of transcription factor knockdowns (1–7) affecting gene
expression. Cutoff used for significant deregulation as in C. In total, expression levels of genes represented by 4832 (81%) probe sets were altered by two or more
transcription factor knockdowns, while genes represented by only 1139 probe sets (19%) indicated specifically responded to one of the knockdowns. Source data is
available for this figure in the Supplementary Information.
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transcription of these genes is likely to be controlled in the
same way as the perturbed transcription factors. For the
majority of genes (58%), the perturbation-response patterns of
multiple probe sets representing the same gene were identical.
We conclude that the behaviour of many target genes is
consistent with a minimal model, in which each target gene is
controlled by a single transcription factor. The remaining
target genes did not follow transcription factor patterns, at
least according to the criteria applied here. We speculate that
these genes may be controlled in a combinatorial manner or
that they may require input from transcription factors not
considered in the perturbation-response analysis. Given that
transcription factor patterns impinge on downstream gene
expression, we sought to gain insights into how the transcription
factors are wired among each other and how they are coupled to
upstream signalling pathways. Therefore, we employed a
reverse-engineering approach to reduce the complexity of
perturbation data and to deduce functional interactions between
nuclear and cytoplasmic network components.

Mathematical modelling reveals hierarchical
regulation in the transcription factor network

Although the perturbation-response matrix in Figure 3A
contains important information about the molecular interac-

tions between transcription factor mRNAs/proteins and

signalling proteins, it is not possible to distinguish direct and

indirect regulatory effects. For example, the activation of Gfi1

expression by RAS (see top left data point in Figure 3A) might

be achieved directly through signalling intermediates not

measured within the perturbation screen. Alternatively, Gfi1

expression and activity might be mediated indirectly via one of

the other RAS pathway-induced transcription factors, which in

turn regulate Gfi1 (e.g., RAS-Otx1-Gfi1). Hence, many

different network topologies might underlie the perturbation-

response data, and it is difficult to select the most plausible

topology by intuitive reasoning. One strategy to derive

experimentally testable predictions from the data set in

Figure 3A is to apply reverse-engineering algorithms, which
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Figure 3 Perturbation experiments. (A) Summary of the perturbation-response data of the signalling and gene-regulatory networks as determined by microarray,
RT–PCR and western blot analysis. Rows in graph correspond to mRNAs and proteins analysed, columns correspond to experimental perturbations (overexpression of
mutant RAS, inhibition of signalling kinases by small molecules and siRNA-mediated silencing of indicated transcription factors, respectively). Each square represents
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Source data is available for this figure in the Supplementary Information.
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determine the most likely network topology from perturba-
tion-response data. We chose the framework of MRA to model
the network response. Existing algorithms to determine the
connectivity of the network using MRA require that all nodes
in the network are perturbed independently. This requirement
is not fulfilled in our case, as protein levels could not be
perturbed independently from mRNA levels. Accordingly, the
perturbation-response matrix in Figure 3A does not follow a
square arrangement (10 perturbations; 16 responses), render-
ing the reverse-engineering problem with 16 nodes under-
determined. Therefore, we applied a modified MRA algorithm
suited for incomplete perturbation data (see Materials and
methods for details). In brief, we assumed that the underlying
network was likely to be sparse (e.g., not every node was
connected to all other nodes), and that certain interactions
were improbable. We excluded a priori the following improb-
able regulatory interactions (Figure 4A): (i) direct regulation of
other nodes in the network without translation of mRNAs into
proteins (panels 2, 6 and 8), (ii) post-transcriptional interac-
tions between transcription factor protein species (panel 6)
and (iii) feedback regulation of exogenously overexpressed
RAS proteins by other nodes in the network. The latter
assumption is based on our experimental observation that
RAS-GTP levels in RAS-ROSE cells are not affected by
transcription factor knockdowns or signalling perturbations.

To keep the MRA model as simple as possible, we applied an
incremental model selection strategy. The number of allowed
regulatory interactions was iteratively increased until the fit to
the data did not improve significantly. We note that such a
greedy hill-climbing algorithm is not necessarily converging to
a global optimum, which may become problematic especially
for larger network sizes. We benchmarked our approach using
simulated data of a similar size, and find that typically the
precision is larger than 80% (Supplementary Figure 9;
Supplementary information).

The interaction matrix of the final model is shown in
Figure 4A and a graphical representation in Figure 4C (see
Supplementary Table S3 for quantification of the network).
The model comprises 32 regulatory interactions as opposed to
160 perturbation-response measurements (Figure 3A), thus
representing a strongly overdetermined problem that is robust
to experimental measurement noise. The best model fit
agreed well with the measured perturbation-response data
(w2¼182.19; N¼ 160), and most data points lay within one
standard deviation (Figure 4B). The reverse-engineering
strategy helped to decompose the complex perturbation-
response matrix into a relatively simple series of direct
regulatory interactions. For example, the transcriptional
regulatory network deduced by MRA comprises only 10 links
(Figure 4A, panel 3), while each transcription factor
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knockdown had an effect on the expression of nearly every
other transcription factor in the original perturbation-response
data (Figure 3A). The model correctly inferred the topology
of the signal transduction pathways (i.e., RAS activates Erk
and Akt, cf. Figure 4A, panel 7) as well as the translation of
transcription factor mRNAs (panel 5). Interesting interactions
between signalling pathways and the transcription factors
were unveiled: Transcriptional induction of Gfi1, Otx1, Fosl1
and Hmga2 was attributed to the Mapk pathway (panel 1).
The model also suggested that Mapk signalling directly
reduced the protein level of Hmga2 and that the RelA protein
was stabilized by the PI3K/Akt pathway (panel 4). The model
also uncovered transcriptional feedback regulation of signal
transduction (panel 9): Otx1, RelA and Klf6 were predicted to
inhibit the phosphorylation of Erk. Otx1 and Fosl1 were
inferred to reduce phosphorylation of Akt, while JunB was
predicted to increase Akt phosphorylation. We also quantified
the evidence for each link by removing each link separately
and refitting the model. By comparing the resulting w2-value to
the full model, we can rank our predictions. Interestingly, the
strongest predictions relate to edges from mRNA to protein,
which represents translation, and removal of any of the
transcriptional regulatory interactions are associated with an
increase of the w2-value by 410, corresponding to P-values
o0.005 (Likelihood-ratio test). To validate the uncovered
network topology, we collected experimental evidence from
published studies. We marked each of the predicted inter-
actions with a box whenever supporting evidence was
retrieved (Figure 4A). In all, 22 of the 32 interactions have
been previously described (cf. Supplementary Table 2;
Supplementary References). Notably, at least one of the
predicted interactions was contradictory to a current publica-
tion: It has been reported that Fosl1 is stabilized by Erk
signalling (Casalino et al, 2003). In contrast, our model
predicts that Erk activity reduces Fosl1 protein levels
(Figure 4A, panel 4). We therefore decided to investigate and
refine this interaction further.

The protein level of Fosl1 is influenced by Otx1

We investigated the interaction between Erk activity and Fosl1
further by double perturbation experiments. Fosl1 was
expressed ectopically in RAS-ROSE cells, rendering Fosl1
mRNA expression virtually independent of endogenous Erk
activity (Figure 5A). Ectopic Fosl1 expression of Fosl1 resulted
in an B15-fold overexpression of the protein (Figure 5B, left
bar). Treatment of Fosl1 transfectants with the Mek inhibitor
U0126 did not affect Fosl1 mRNA levels (Supplementary
Figure 5), confirming that ectopic expression eliminates
endogenous transcriptional regulation. At the protein level,
U0126 treatment induced pronounced Fosl1 downregulation,
well in line with previous reports on Fosl1 protein stabilization
by Erk signalling (Figure 5B). We conclude that the Fosl1
overexpression experiments do not support the model predic-
tion concerning Erk-mediated downregulation of Fosl1 pro-
tein; this suggests that other post-transcriptional mechanisms
underlie the opposite regulation of Fosl1 mRNA and protein
under various experimental conditions (cf. Figure 3A). Thus,
our model assumption that transcription factor protein pools

are controlled by signalling pathways only (cf. Figure 4A,
panel 6) led to false predictions not verifiably by experiments.

To refine the model, we altered our restrictions on the model
by removing the negative effect of pErk on the Fosl1 protein,
and allowed other transcription factors to regulate Fosl1 post-
transcriptionally. Afterwards, we repeated the MRA model
selection procedure. Our algorithm selected interactions from
the transcription factors Gfi1, Otx1, Klf6 and Hmga2 on Fosl1
protein (Figure 5C). While Gfi1 was predicted to negatively
regulate Fosl1 protein, the others were predicted to stabilize
Fosl1. The interaction of Otx1 and Fosl1 had the largest local
response coefficient (0.67), and Otx1 knockdown regulated
Fosl1 mRNA and protein in opposite directions (Figure 3A).
Thus, Otx1 was the most likely candidate for post-transcrip-
tional regulation of Fosl1. Simulations confirmed that our
refined model recapitulates incoherent regulation of Fosl1
mRNA and protein by Otx1 knockdown (Figure 5D, left two
bars), and the effect was further supported by an independent
set of experiments (Figure 5D, right bars). To assess post-
transcriptional regulation more directly, we analysed a double
perturbation combining Otx1 knockdown and Fosl1 over-
expression in silico. The model predicted that Otx1 knock-
down should reduce Fosl1 protein even if endogenous
transcriptional regulation was eliminated by ectopic Fosl1
overexpression (Figure 5E, left bar). In line with model
predictions, our experiments revealed that Fosl1 protein levels
were strongly reduced upon Otx1 knockdown (Figure 5E, right
bars), while the Fosl1 mRNA pool remained unchanged
(Supplementary Figure 5). Thus, the double perturbation
experiment confirmed the positive interaction between Otx1
and Fosl1 protein at the post-transcriptional level. Whether the
interaction between Otx1 and Fosl1 is direct or indirect
involving Otx1 targets remains to be determined. Interestingly,
we found that Erk phosphorylation is slightly elevated upon
Otx1 knockdown in Fosl1 overexpressing cells (Supplemen-
tary Figure 5). This suggests that pErk-mediated stabilization
of the Fosl1 protein does not contribute to post-transcriptional
Fosl1 regulation by Otx1 knockdown. Taken together, our
systematic perturbation-response analyses indicate that tran-
scription factors communicate through strong post-transcrip-
tional regulation, possibly without feedback to the signalling
network. Thus, the gene-regulatory network downstream of
Ras shows multiple layers of regulation in addition to
transcriptional control.

Hierarchy of the regulatory network

The transcriptional network in mammalian cells is still
incompletely characterized. Hence, it is not surprising that
only 4 of 10 gene-regulatory interactions between transcription
factors were reported previously (Figure 4A, panel 3) and that
the network predictions were mostly unknown. Interestingly,
the transcription factors showed hierarchical regulation: Otx1,
Gfi1 and RelA regulated each other and also controlled the
downstream factors Hmga2, Fosl1, Klf6 and JunB in multiple
ways. The downstream factors were also interconnected, but
did not have a direct impact on the upstream factors. More
specifically, Hmga2 did not control the upstream network at
all. JunB, Fosl1 and Klf6 exhibited only a minor impact on the
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upstream factors via pErk- or pAkt-dependent pathways.
Transcription factor hierarchy was also reflected in the
perturbation-response matrix (Figure 3A). The upstream
factors Otx1, Gfi1 and RelA tended to be less affected by
transcription factor knockdown than the downstream factors
Hmga2, Fosl1, Klf6 and JunB. We employed the Fosl1
overexpression system to independently confirm our model
prediction that positions Fosl1 upstream of Hmga2 (cf. Vallone
et al, 1997). The model predicted that pErk controls Hmga2
transcription at least in part via Fosl1. Hmga2 downregulation
by U0126 should therefore be alleviated by simultaneously
blocking the endogenous transcriptional regulation of Fosl1 by
overexpression of the gene (Figure 5F, left bars). The
validation experiments confirmed that Fosl1 overexpression
alone does not significantly affect Hmga2 mRNA expression,
while it has a strong compensatory effect in combination with
U0126 (Figure 5F, right bars). These data support the
conclusion that pErk controls Hmga2 transcription at least in
part via Fosl1.

The hierarchical transcription factor organization predicted
by the model should impinge on phenotypic responses to
transcription factor knockdowns. Perturbations of Otx1, Gfi1
and RelA were expected to affect target genes which are
regulated by Hmga2, Fosl1, Klf6 and JunB, but not vice versa.

Specifically, phenotypic effects mediated by Hmga2, Fosl1,
Klf6 and JunB should also be modulated by perturbations of
Otx1, Gfi1 and RelA. In contrast, phenotypes mediated by
Otx1, Gfi1 and RelA might be independent of Hmga2, Fosl1,
Klf6 and JunB. Taken together, the model predicted that the
phenotypic responses mediated by downstream factors
Hmga2, Fosl1, Klf6 and JunB might be a subset of those
mediated by upstream factors Otx1, Gfi1 and RelA. Conse-
quently, such phenotypic traits had to be scrutinized by an
appropriate functional read-out.

Phenotypic analysis supports the existence of
transcription factor hierarchy predicted by the
model

To provide experimental evidence for the model prediction, we
systematically measured anchorage-dependent growth on a
solid substratum in monolayer culture (‘two dimensional, 2D
growth’) and anchorage-independent growth on poly-heme-
coated substratum in media containing semi-solid agar (‘three
dimensional, 3D growth’) by XTT-based colorimetric assays.
Silencing of each of the seven transcription factors signifi-
cantly reduced 3D growth of RAS-ROSE cells to a similar extent
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(Figure 6A). In contrast, we observed a strong difference in the
effects on 2D growth. Depletion of Otx1, Gfi1 and RelA reduced
anchorage-dependent growth in monolayer cultures, while
perturbations of the downstream transcription factors Hmga2,
Fosl1, Klf6 and JunB were had no significant effect (Figure 6B).
Effects on anchorage-dependent and -independent growth
were confirmed in two independent growth assays
(Supplementary Figures 6 and 7). Since the reduced prolifera-
tion of the cell populations could be due to enhanced apoptosis
or cell-cycle arrest, we employed flow cytometry to analyse the
cell-cycle distribution of cells in which the selected transcrip-
tion factors were transiently silenced (Figure 6C;
Supplementary Figure 8). Cultures transfected with siRNAs
against Otx1, Gfi1 and RelA exhibited G1-phase arrest
compared with control cells (Figure 6C). In contrast, there
was no significant difference in cell-cycle distribution after
silencing of Fosl1, Hmga2, JunB and Klf6 in RAS-ROSE cells
compared with control cells (Figure 6C). We did not find any
evidence for enhanced apoptosis, as the sub-G1 peaks
characteristic for apoptotic cells were insignificant in all

flow-cytometric measurements (Supplementary Figure 8).
The cell-cycle analysis supported the model prediction that
the upstream transcription factors Otx1, Gfi1 and RelA are
functionally distinct from and independent of the downstream
factors Hmga2, Fosl1, Klf6 and JunB. The fact that all seven
transcription factors were involved in anchorage-independent
growth supported the notion that the upstream factors
regulated the downstream factors which in turn impinged on
the transcriptional program to mediate anchorage-indepen-
dent growth (hierarchical model). However, the ability of cells
to traverse the cell cycle is a prerequisite for anchorage-
independent growth. Thus, the effect of the upstream factors
on 3D growth is likely to be non-specific in the sense that it was
solely due to a general cell-cycle block.

In addition, we performed scratch assays to monitor cell
migration in monolayer cultures. Cells were transiently
transfected with siRNAs targeting the transcription factors,
replated to achieve confluent monolayers and deprived of
serum growth factors before inserting wounds by scratching
the surface of the dishes with a micropipet tip. We determined
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the migratory activity by quantifying the wounded areas over
time (see Figure 6D for an example). Silencing of Hmga2, Fosl1
and JunB generated no significant change in migration
potential compared with cells treated with scrambled siRNA
(Figure 6E). However, knockdown of the upstream transcrip-
tion factors Otx1, Gfi1 and RelA impaired migration strongly.
In addition, silencing of Klf6, a component of the downstream
module, reduced wound closure. Migration was thus primarily
controlled by transcription factors of the upstream layer in the
network, and perturbation of the downstream factors (except
Klf6) did not impair migration. Our observation that Klf6 was
also involved in regulating migration did not contradict
hierarchical regulation predicted by the model: Klf6 is the
uppermost member of the Klf6-Fosl1-JunB-Hmga2 cas-
cade in the downstream module, and the directionality of this
cascade was only disturbed by moderate transcriptional
regulation of Klf6 by JunB. Thus, it is expected that the
upstream cascade member Klf6 elicited phenotypic responses
not mediated by downstream factors in the cascade (Fosl1,
JunB and Hmga2). Taken together, the migration data further
supported the notion that the upstream elements of the
network were not influenced by the downstream factors.

Discussion

We employed a top-down systems biological approach to
identify regulation principles in the transcription factor
network downstream of the RAS/MAPK pathway. To uncover
elements of the network, we integrated perturbation of
transcription factor expression by RNA interference, expres-
sion profiling of target genes and computational modelling. At
the phenotypic level, siRNA-mediated silencing of the tran-
scription factors generated reproducible effects on morphol-
ogy, growth and anchorage independence of ovarian epithelial
cells. Since the relationship of the different regulators could
not be interpreted intuitively, we introduced a modification of
MRA, which has been established for the construction of
genetic networks (Kholodenko et al, 2002; Santos et al, 2007).
Local response coefficients illustrating the mutual impact of
single transcription factor perturbations on other network
components were derived from the model. The simulations
predicted three central hubs (RelA, Gfi1 and Otx1), which act
upstream of the remaining factors (Fosl1, JunB, Hmga2 and
Klf6). Interestingly, hierarchical regulation among transcrip-
tion factors appeared to involve transcriptional as well as post-
transcriptional regulation. The importance of post-transcrip-
tional effects points to a central role of miRNAs in growth
control, as suggested by a recent study on EGF-induced
transcriptional networks (Avraham et al, 2010). The three
upstream factors had strong specific effects on anchorage-
dependent proliferation, cell-cycle progression and migration
activity in monolayer cultures. The four downstream factors
had an exclusive role in controlling anchorage-independent
proliferation and migration, both of which are hallmarks of
tumorigenicity. Overall, these different phenotypic read-outs
reflected the hierarchical structure of the transcription factor
network. All transcription factors partially modulated KRAS
morphological alterations, suggesting that the morphological
features cannot be clearly separated from effects on

proliferation in adherent and in semi-solid agar (anchorage-
independent) cultures.

The transcription factors involved in the network belong to
an even larger set of regulatory molecules upregulated in
conjunction with KRAS-mediated oncogenesis in the ovarian
epithelium (Tchernitsa et al, 2004). Large-scale studies
simultaneously characterizing all these factors will be required
to fully understand gene expression patterns in RAS-trans-
formed cells. In particular, it will be interesting to see whether
additional RAS pathway-regulated transcription factors
decompose into hierarchically organized upstream and down-
stream layers as well. We speculate that upstream transcrip-
tional regulators may be primary targets solely controlled by
signal transduction, while downstream effectors require dual
inputs and thus require feed-forward regulation. Such feed-
forward loops are known to promote robustness and specifi-
city in the response to MAPK pathway activation (Murphy
et al, 2002; Goentoro et al, 2009). Transcription factors
downstream of RAS may be modulated by signalling pathways
other than the Mek/Erk pathway (Tchernitsa et al, 2004). The
contribution to KRAS oncogene-mediated transformation of
RelA, which is a major component of the NF-kB transcription
regulatory complex and is activated by Akt signalling, is well
known (Madrid et al, 2000; Basseres et al, 2010). In contrast,
the roles of zinc finger transcription factor Gfi1 and the bicoid-
like homeodomain protein Otx1 in oncogenesis have not yet
been investigated. The impact of Gfi1 and Otx1 on growth and
transcriptional control in KRAS-transformed ovarian epithelial
cells suggests a function in growth control. However, further
functional studies are needed for establishing a more general
role of Gfi1 and Otx1, beyond the cellular model studied here,
as upstream regulators of the transcription factors Fosl1, JunB,
Hmga2 and Klf6, which appear to be directly involved in
cellular transformation.

The role of the downstream transcription factors Fosl1,
JunB, Hmga2 in cancer cells is well established as shown by
expression analysis and functional studies. Fosl1 (Fra-1) is a
component of the AP-1 transcription activation complex and is
frequently overexpressed in epithelial cancer (Milde-
Langosch, 2005). Enhanced AP-1 activity is driven by RAS
transformation (Mechta et al, 1997; Battista et al, 1998). Fra-1
promotes growth and survival in RAS-transformed cells
(Tchernitsa et al, 2004; Casalino et al, 2007). Enhanced AP-1
activity coincides with JunB upregulation (Mechta et al, 1997;
Battista et al, 1998). Recently, we have shown that short
hairpin RNA-mediated downregulation of Hmga2 suppressed
the growth of an ovarian cancer cell line in vitro and in vivo
(Malek et al, 2008). In addition, Hmga2 activity is required to
maintain oncogenic RAS-induced EMT in pancreatic cancer
cells (Watanabe et al, 2009). The Kruppel-like zinc finger
transcription factor Klf6 was identified as a tumour suppressor,
however, Klf6 splice variants were described that exert an
opposing oncogenic role in epithelial neoplasms including
ovarian cancer (DiFeo et al, 2006). The inactivation of the
tumour suppressor is triggered by RAS-mediated alternative
splicing (Yea et al, 2008), suggesting that Klf6 overexpressed in
KRAS-transformed ROSE cells represents the alternatively
spliced oncogenic form.

The primary aim of the study was to model the transcription
factor network downstream of the KRAS/MAPK pathway by
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integrating the results of siRNA-mediated perturbation of
transcription factor expression, the mutual effects of those
factors on network components and the downstream con-
sequences of target gene transcription. Besides these effects,
silencing of transcription factors resulted in the modification of
cytoplasmic signalling involving pErk, pMek and pAkt.
Notably, silencing of the upstream transcription factors Otx1,
Gfi1 and RelA enhanced phosphorylation of Erk, Mek and Akt,
respectively. This suggests that the downregulation of those
transcription factors is partially compensated by enhancement
of upstream signalling activity. Such transcriptional feedback
regulation appears to be common in mammalian signalling
networks (Legewie et al, 2008). The enhancement of the
signalling input may explain why proliferation of cells was
reduced only partially upon transcription factor knockdown
and the KRAS pathway-mediated phenotype was stabilized.
Possibly, the transcription factors of the entire network
contributed to this compensatory regulation as well. A recent
report described a systematic siRNA knockdown of a large
group of transcription factors involved in the differentiation of
a human monocytic cell line. Interestingly, no single transcrip-
tion factor knockdown was necessary and sufficient to
deregulate cellular differentiation (Suzuki et al, 2009).

Knockdown of the downstream transcription factors Fosl1,
JunB, Hmga2 and Klf6 did not enhance pErk and pAkt, but
even reduced pMek. We assume that the regulatory commu-
nication between cytoplasmic signalling and the downstream
elements of the network is generally restricted. Alternatively,
other regulatory mechanisms, for example, transcriptional
feedback involving phosphatases (Bhalla and Iyengar, 1999;
Bluthgen et al, 2009), may have a differential impact on
upstream and downstream elements of the network. Our study
revealed a strong phenotypic robustness of the transformed
cells, since no perturbation alone was able to fully revert a
phenotype. It remains to be elucidated which topological or
kinetic mechanisms provide robustness within this network or
similar transcriptional networks. We propose that a combina-
tion of topological properties of the transcriptional network,
that is, redundancy and high connectivity within the groups,
together with non-overlapping control of redundant target
genes may contribute to the observed robustness. Further-
more, feedbacks towards cytoplasmic signalling may further
enhance robustness. Network robustness may also explain
some aspects of resistance to therapies, which target receptor
tyrosine kinases or signalling kinases downstream of RAS in
cells expressing a mutated oncogene (Longley and Johnston,
2005; Breccia et al, 2009).

Our approach combined systematic perturbations of a
transcriptional network, network modelling and measurement
of phenotypic parameters. The transcription factors Hmga2,
Fosl1, JunB and Klf6 acted as specific regulators of anchorage-
independent growth, which is strongly correlated with
tumorigenicity. Hence, these factors may serve as promising
targets for gene silencing, as exemplified by Hmga2 (Malek
et al, 2008). Blocking anchorage independence and tumor-
igenicity without affecting cellular proliferation per se might
result in diminished therapy side effects. However, the
complexity of the network is likely to require combined
ablation of factors acting in distinct hierarchical groups.
We believe that a similar approach, on a larger scale, may

help to reveal which mechanisms render cellular decision
making robust, and will unveil which combinatorial perturba-
tions are required to successfully interfere with the oncogenic
network.

Materials and methods

Cell culture

The ROSE 199 cell line was derived from rat ovarian surface epithelium
(Adams and Auersperg, 1985). KRAS-transformed ROSE cells (desig-
nated as RAS-ROSE) were obtained by transfection of ROSE 199 cells
with the oncogenic human KRAS (V12) gene under the control of the
human elongation factor promoter cloned into the expression vector
pEF-BOS (Tchernitsa et al, 2004). Cell lines were cultured in
Dulbecco’s modified Eagle’s medium (DMEM; Invitrogen) supple-
mented with 10% fetal calf serum (FCS; Sigma-Aldrich), 2 mM
Ultraglutamine 1 (Lonza, BioWhittaker), and 100 units/ml penicil-
lin/streptomycin (Biochrom AG) (standard medium). The medium for
RAS-ROSE cells was supplemented with G418 (400 mg/ml).

siRNA, expression vectors and conditions
of transfection

SiRNA duplexes were generated with the SilencerssiRNA Construc-
tion Kit (Ambion) according to manufacturer’s protocol. The
sequences of siRNAs used for silencing of the transcription factors
were as follows:
Fosl1 (1) Sense: 50-GGACACAGGUGGUAUCAGCUU-30

Antisense: 50-GCUGGUACCACCUGUGUCCUU-30

Fosl1 (2) Sense: 50-GCUGCUAUUUAUUUUCCUAtt-30

Antisense: 50-UAGGAAAAUAAAUAGCAGCtg-30

Gfi1 (1) Sense: 50-AACAGATCTTACAGTCAAAGCCCTGTCTC-30

Antisense: 50-CAGCTTTGACTGTAAGATCTGCCTGTCTC-30

Gfi1 (2) Sense: 50-AATTTCAAAGGGATACTTTCCCCTGTCTC-30

Antisense: 50-AAGGAAAGTATCCCTTTGAAACCTGTCTC-30

Hmga2 (1) Sense: 50-AACTCCCGAGCCGTAGCGGAGCCTGTCTC-30

Antisense: 50-AACTCCGCTACGGCTCGGGAGCTTGTCTC-
30

Hmga2 (2) Sense: 50-CCAUUGGAGAAAAACGGCCtt-30

Antisense: 50-GGCCGUUUUUCUCCAAUGGtc-30

JunB (1) Sense: 50-GCGACUUCGUGUCUAAAGUtt-30

Antisense: 50-ACUUAAGACACGAAGUGCGTT-30

JunB (2) Sense: 50-CAUACGCAGCGGCAGGAUAtt-30

Antisense: 50-UAUCCUGCCGCUGCGUAUGAG-30

Klf6 (1) Sense: 50-AATTCAGGAAATGATTGGTGGCCTGTCTC-30

Antisense: 50-GACCACCAATCATTTCCTGAACCTGTCTC-30

Klf6 (2) Sense: 50-AATTATAATTAAAGCCGGAGCCCTGTCTC-30

Antisense: 50-CAGCTCCGGCTTTAATTATAACCTGTCTC-30

Otx1 (1) Sense: 50-AATAGGACATAGGGTAGGAGGCCTGTCTC-30

Antisense: 50-GACCTCCTACCCTATGTCCTACCTGTCTC-30

Otx1 (2) Sense: 50-AATGAAGATTGGCTCAGTGGGCCTGTCTC-30

Antisense: 50-CACCCACTGAGCCAATCTTCACCTGTCTC-30

RelA (1) Sense: 50-AAGTTAGGATGATGTGCGTCGCCTGTCTC-30

Antisense: 50-AACGACGCACATCATCCTAACCCTGTCTC-30

RelA (2) Sense: 50-CCGGAUUGAAGAAAAACGCtt-30

Antisense: 50-GCGUUUUUCUUCAAUCCGGTG-30

Scrambled
(Sc)

Sense: 50-AAGCGAAGCCCATTACCCCTTCCTGTCTC-30

Antisense: 50-AAAAGGGTTAATGGGCTTCGCCCTGTCTC-30

For transient transfection of siRNA, 4.5�104 RAS-ROSE cells were
seeded into six-well plates 24 h before transfection. Cells were
transfected twice with an interval of 24 h using a final siRNA
concentration of 1 nM of siRNA and Oligofectamine (Invitrogen) in
serum-free OptiMEM (Invitrogen). After 4 h of incubation, FCS was
added to the medium at a final concentration of 10%. Cells treated with
transfection reagents only (Mock) and cells transfected with scrambled
siRNA duplexes (Scr) served as controls. For overexpression of the
Fosl1 gene, the cells were transiently transfected in serum-free
OptiMEM medium (Invitrogen) with 1mg of the expression vector
NM_005438.2 (OriGene Technologies) using the Arrest-In transfection
reagent (Open Biosystems). After 4 h of incubation, FCS was added to
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the medium at a final concentration of 10%. Control cells were treated
under the same conditions. The cells were analysed after 48 h.

Inhibitor studies

The Mek1/2 inhibitor U0126 (Promega) and PI3K inhibitor LY294002
(Alexis Biochemicals) were dissolved in DMSO in a final concentration of
50mM. RAS-ROSE cells were treated 24h after seeding with a final inhibitor
concentration of 10mM for 48h. Control cells were incubated without
inhibitors, but the same amount of DMSO was added (solvent control).

RNA extraction and RT–PCR analysis

For extraction of total RNA, we used the TRIZOL reagent (Invitrogen)
or the RNeasy Mini Kit and QIAshredder (Qiagen) according to
manufacturer’s instructions. The cDNA synthesis and PCR were
performed with the C. therm. Polymerase One-Step RT–PCR System
and 100 ng of total RNA template according to manufacturer’s
instructions (Roche). The primers (Eurofins MWG) were used at a
final concentration of 10mM. The number of PCR cycles and the primer
annealing temperature were optimized for each primer set and the
specific PCR product as follows:

Target Primer sequence No. of
cycles

Temperature
(1C)

Fosl1 f: 50-TCCAGGACCCGTACTTGAAC-30 24 60
r: 50-GATGACAACGGGTAGCACCT-30

Gfi1 f: 50-CCTGGTCAAGAGCAAGAAGG-30 27 57
r: 50-CTGTCTGGAGCCTCGGTAAG-30

Hmga2 f: 50-GGGACACAGTTTAACAATGC-30 24 56
r: 50-GTGTCTACAAGATTATACGC-30

JunB f: 50-CCTGACCCGAAAAGTAGCTG-30 24 57
r: 50-ATGTGCTCGAAAATGGAACA-30

Klf6 f: 50-GAGTTCCTCGGTCATTTCCA-30 24 56
r: 50-TGCTTTCAAGTGGGAGCTTT-30

Otx1 f: 50-GTTCGCAAAGACTCGCTACC-30 27 57
r: 50-CCGGAGACGACTTCTTCTTG-30

RelA f: 50-GACCAGGAAGTCAGCGAGTC-30 27 57
r: 50-GATGTGGCAATGCATTTGAG-30

Gapdh f: 50-ACCACAGTCCATGCCATCAC-30 24 60
r: 50-TCCACCACCCTGTTGCTGTA-30

RT–PCR products were analysed on 1.5% (w/v) agarose gels
containing ethidium bromide (0.5 mg/ml). We used the SmartLadder
SF (Eurogentec) as molecular weight marker. RT–PCR products were
documented by digital imaging after visualization under ultraviolet
light. The quantification was done manually using ImageJ analytic
software (http://rsbweb.nih.gov/ij/). For normalization, the relative
density was determined as the ratio of the signal intensity of the test
sample to the corresponding Gapdh band. Densitometer read-outs
were first normalized to the values obtained for the housekeeping gene
Gapdh and finally expressed as percentage relative to the control
values obtained with cell transfectred with scrambled siRNA.

For the analysis of transgene expression, cDNA synthesis was
performed with 500 ng total RNA per sample using TaqMans Reverse
Transcription Reagents (Applied Biosystems) and Progene Thermal
Cycler (Techne) according to the manufacturer protocol. The real-time
RT–PCRs were performed by StepOnePlus Real Time PCR System
(Applied Biosystems) with 1mg total cDNA using SYBRGreen, Micro
Amp Fast Optical 96-Well Reaction Plate (Applied Biosystems) and the
following primers (Tib Molbiol) at an annealing temperature of 601C:
Fosl1 forward: 50-CAGCCTCATTTCCTGGG-30; Fosl1 reverse: 50-TCCTC
CGGGCTGATCT-30. Quantification of transcript levels was done using
the 2deltaCt method (Livak and Schmittgen, 2001).

Protein extraction and western blot analysis

Preparation of whole cell lysates
Cells were washed twice with cold PBS buffer and resuspended in lysis
buffer (10 mM Tris–HCl, 150 mM NaCl, 1% Triton X-100, 1% DOC pH

7.2, 1 mM PMSF, 50 mM NaF, 50mg/ml leupeptin, 1 mM Na-orthova-
nadate, 4mg/ml aprotinin). To remove debris, the lysates were
centrifuged at 16 000 g at 41C for 15 min. Supernatants containing
total proteins were transferred to a fresh 2 ml reaction tube, mixed with
25% v/v 4� SDS sample buffer: 0.25 M Tris–HCl, pH 6.8 (Merk), 8%
w/v SDS (Serva), 40% v/v glycerol, 20% v/v b-mercaptoethanol
(Promega), and 0.18% (w/v) bromophenol blue (Sigma-Aldrich). The
lysates were heated for 5 min at 951C and stored at � 201C.

Preparation of nuclear extracts
Cells were washed twice with cold PBS and treated with hypotonic
lysis buffer containing 10 mM Tris–HCl pH 8.0 and complete protease
inhibitors (Roche). Hypotonically treated cells were homogenized in a
pre-cooled cell 23-homogenizer (Kontes Glass Co., NJ, USA) and the
integrity of the nuclei was checked by microscopy. The suspension was
transferred to 13 ml tubes (Sarstedt) and centrifuged at 1089 g, at 41C
for 10 min. The pellets containing nuclear proteins were resuspended
in 50–100ml PBS and mixed with 25% v/v 4� SDS sample buffer. The
lysates were boiled for 5 min at 951C and stored at � 201C.

Determination of protein concentration, SDS–
polyacrylamide gel electrophoresis and western blotting
The protein concentration was determined by the amido black method
(Schaffner and Weissmann, 1973). In all, 30–60mg per sample of
nuclear protein lysates and 40mg of total protein lysates were then
fractionated by electrophoresis through 12% SDS–polyacrylamide gel
electrophoresis (SDS–PAGE) gels (4% stacking gel) and transferred
onto nitrocellulose membranes (Protran Whatman) with a semi-dry
blotter system (Peqlab) at 100 mA per gel. The membrans were blocked
using 10% w/v non-fat dried milk powder (AppliChem GmbH) in
TBSTat room temperature for 1 h. The following antibodies were used
at the indicated dilutions:

Primary antibodies:
Akt, 9272 1:1000 Cell Signalling, Frankfurt,

Germany
Erk1/2, 61000 30/31 1:500 BD, Heidelberg, Germany
Fosl1 (R-20), sc-605 1:1000 Santa Cruz, Heidelberg,

Germany
Gapdh (FL-335), sc-25778 1:1000 Santa Cruz, Heidelberg,

Germany
Gfi1,ARP32557 1:2000 Aviva Systems Biology,

California, USA
Histone H3, 9715 1:1000 Cell Signalling, Frankfurt,

Germany
Hmga2, ARP38356 1:500 Aviva Systems Biology,

California, USA
JunB (210), sc-73 1:1000 Santa Cruz, Heidelberg,

Germany
Klf6 (R-173), sc-7158 1:1000 Santa Cruz, Heidelberg,

Germany
Mek1/2, 9122 1:1000 Cell Signalling, Frankfurt,

Germany
Otx1, ARP39103 1:500 Aviva Systems Biology,

California, USA
pAkt (Ser473), 9271 1:1000 Cell Signalling, Frankfurt,

Germany
panRAS (v12), 0B38 1:1000 Calbiochem, Michigan, USA
pErk1/2 (Thr202/Tyr204),
9101

1:1000 Cell Signalling, Frankfurt,
Germany

pMek1/2 (Ser217/221),
9121

1:500 Cell Signalling, Frankfurt,
Germany

RelA (C-20), sc-372 1:2000 Santa Cruz, Heidelberg,
Germany

b-Tubulin, 2146 1:1000 Cell Signalling, Frankfurt,
Germany

Secondary antibodies:
Goat anti-rabbit HRP, 7074 1:2000 Cell Signalling, Frankfurt,

Germany
Goat anti-mouse HRP,
325-035-045

1:5000 Dianova, Hamburg, Germany
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Membranes were washed three times in TBST for 5 min, incubated
with the corresponding secondary antibodies for 1 h at room
temperature and washed again three times in TBST for 5 min. The
membranes were incubated with a chemoluminescence detection kit
(GE Healthcare) according to manufacturer’s specifications. Protein
bands were detected after exposure to Amersham hyperfilm ECL (GE
Healthcare) according to manufacturer’s specifications (Kodak). For
detection of several antigens on the same membrane, the blots were
stripped with the Western Blot recycling kit (Alpha Diagnostics) before
incubation with the subsequent primary antibody. To verify equal
protein loading, blots were incubated with antibodies against
b-tubulin, Gapdh or histone H3 as shown in the figures.

Cell proliferation assays

Cell proliferation was monitored semiquantitatively by sodium
30 [1-(phenyl-amino-carbonyl)-3,4-tetrazoliu]-bis(4-methoxy-6-nitro)-
benzene sulphonic acid hydrate (XTT)-based colorimetric assay
(Roche) or by alamarBlue assay (TREK Diagnostic) in 96-well plates.
In all, 500 cells were seeded into each well of the 96-well plates in a
volume of 100ml. All assays were performed in triplicate and
independently repeated at least once. To evaluate anchorage-indepen-
dent cell growth, the 96-well plates were coated with poly-2-
hydroxyethyl methacrylate (poly-HEME; Sigma-Aldrich) before cell
seeding. We added 75ml of a 5-mg/ml poly-HEME stock solution
dissolved in 95% ethanol to each well and allowed the plates to dry for
72 h at 371C. Cell growth was determined in cultures on non-coated
and coated wells after 24, 48 and 72 h. Formazane formation through
cleavage of the tetrazolium salt in metabolically active cells was
determined by measuring the optical density in a spectrophotometer at
490 nm for XTT assays. The optical density of alamarBlue assays was
determined at 600 nm. The statistical significance of measurements
was calculated using the program GraphPadPrism 5.01 (GraphPad
Software) with one-way ANOVA and Tukey tests.

Cell-cycle analysis

Trypsinized cells were denatured in cold 70% ethanol overnight,
pelleted by centrifugation and resuspended in PBS supplemented with
0.1% Triton X/0.5% BSA and incubated with 10 mg/ml RNase at 371C for
30 min. After centrifugation, the pellet was resuspended in dilution puffer
and incubated with 20mg/ml propidium iodide at room temperature in
the dark for 20 min. DNA histograms were recorded in an FACSCalibur
flow cytometer (BD Biosciences). The raw data were analysed with the
programs Cylchred and WinMDI 2.8 (Joseph Trotter, San Diego, USA).

Wound closure (scratch) assay

RAS-ROSE cells were transienly transfected with siRNA in 10 cm dishes
(BD Falcon). To obtain a confluent monolayer, 4�105 cells were replated
after 24 h into single wells of six-well plates (BD Falcon) containing
standard medium. After the cells had attached to the plates, the medium
was replaced by serum-reduced medium (1% FCS). Forty-eight hours
after the last transfection, the monolayers were wounded by scratching
cells off the dish using a 100-ml plastic pipet tip. The plates were washed
with PBS to remove non-adherent cells. Cell migration was documented
by phase-contrast microscopy at 40-fold (Keyence BZ-8000, Keycence) or
100-fold (Leica DMIL, Leica Microsystems) magnification after several
time intervals for up to 36 h after wounding the monolayer. The wound
area in pixels was determined manually using the ImageJ analytic
software (http://rsbweb.nih.gov/ij/) and with custom software that
automatically segmented the image using a texture filter (rangefilt) of
the MATLAB image processing toolbox, which gave indistinguishable
results. A migration index was calculated using the following formula:
(area of fresh wound� area after xy h)/xy h¼pixels/h.

Design and preparation of the tailored microarray
representing transcriptional targets of the RAS
signalling pathway

The RAS signalling target array comprises 329 gene probes and was
designed and produced essentially as described (Tchernitsa et al, 2005;

Tchernitsa et al, 2006). Briefly, for assembling probes on the
microarray we selected Ras pathway target genes recovered from
subtracted cDNA libraries representing differentially expressed genes
in KRAS-transformed ROSE 199 cells versus their pre-neoplastic
precursors (Tchernitsa et al, 2004) and in HRAS-transformed 208F
cells versus non-tumorigenic precursors (Zuber et al, 2000). Differ-
ential expression of all targets was independently confirmed by
conventional northern analysis. The set of validated target genes was
complemented with probes related to canonical Ras pathway targets
previously described and with 13 different housekeeping genes as
described in different tissues and cell lines.

70-mer DNA oligonucleotides were designed as probes with open
source software (http://oligo.lnatools.com/expression/) by choosing
the following parameters: LNA frequency¼ 0, melting temperature
74–761C, GC content 45–55%, absence of strong secondary structures
and proximity to 30 end of coding sequence. Unmodified oligonucleo-
tides were synthesized at 50 nmol scale (Illumina). Before oligonu-
cleotide spotting, Super Frost glass slides (Menzel GmbH) were soaked
in 200 ml of washing solution containing 80 ml of 5 M NaOH and
120 ml of 95% ethanol for 5–6 h. Slides were washed 10 times with
200 ml of ddH2O, incubated for 30 min on a shaker with 20 ml of poly-L-
lysine (Sigma-Aldrich) solution, mixed with 160 ml of ddH2O, filtered
and washed again 10 times with 200 ml of ddH2O. Afterwards, the
remaining washing solution was removed by centrifugation of slides in
a microarray centrifuge (Telechem). The slides were dried for 2 h at
451C. The oligonucleotides were adjusted to a concentration of 20 mM
in 3� SSC/0.01% SDS buffer and spotted using a MicroGrid compact
microarrayer (Genomic Solutions) equipped with MicroSpot 2500 quill
pins. The pins had a diameter of 100mm and typically delivered spot
diameters of 180 mm. Microarrays were printed at a relative humidity of
50–60%. Pins were rinsed twice in distilled water between each probe
aspiration/dispense cycle. The fabricated microarrays contained a
total of 1300 features due to spotting each oligonucleotide at three
different positions on the slides. After printing, microarrays were
rehydrated twice by placing them over boiling water for 5 s each, snap-
dried on a hot plate (901C) for 10 s with the DNA side pointing upwards
and cross-linked with an intensity of 60 mJ (UVC-500 cross-linker;
Hoefer). Afterwards, slides were incubated in blocking solution (3.2 g
of succinic anhydride mixed with 200 ml of N-methyl-pyrolidone and
4.45 ml of 1 M sodium borate) for 20 min on an orbital shaker, rinsed
three times with ddH2O and dried by centrifugation.

RNA extraction, labelling and customized
microarray hybridization

We applied dendrimer technology for cDNA labelling using the 3DNA
Array 900 MPX Kit for Microarray (Genisphere). Two samples of cDNA
were synthesized from 4 mg of each target RNA by reverse transcription
with random primers which contained capture sequences complimen-
tary to capture reagents carrying Cy3- or Cy5-fluorescent dyes,
respectively. The cDNA samples carrying the appropriate capture
sequences were mixed in the following combinations: cDNAs from
ROSE cells with RAS-ROSE cells, RAS-ROSE treated with scrambled
siRNA/RAS-ROSE transiently transfected with siRNA targeting tran-
scription factor mRNA, respectively. For control hybridizations, we
mixed cDNAs from RAS-ROSE transfected with scrambled siRNA and
cDNAs from RAS-ROSE cells transfected with the transfection reagent
only. The second round of hybridization was performed in a reaction
mix containing equal amounts of 3DNA capture Reagent Cy3 and
3DNA Capture Reagent Cy5. The composition of the reaction mixes,
hybridization and washing conditions were as described by the kit
manufacturer.

Customized microarray evaluation

Microarray images were obtained on an Agilent G2565AA scanner at
10 mm resolution. Image analysis was performed using ImaGene
software (BioDiscovery). For each target RNA, we performed two
independent hybridizations by inverting the Cy3 and Cy5 fluorescent
dyes in the labelling reactions (dye swap). A global normalization
procedure that takes into account the entire fluorescence intensity of
each microarray was performed. Imagene software was used for
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feature extraction. The statistical significance was determined using
the SAM (Statistical Analysis of Microarrays) algorithm (Tusher et al,
2001). The complete microarray data set was converted into text files
and analysed with the hierarchical clustering explorer program
(version 3.0, University of Maryland, USA). The specific parameter
settings were row-by-row, normalization and average linkage.

Accession number, customized array data is GSE 24668.

Whole genome microarray analysis

Labelling of RNA targets, hybridization and post-hybridization
procedures for Affymetrix microarrays were essentially as previously
described (Jurchott et al, 2010). Normalization and determining the
expression values were done using Robust Multi-array Average (RMA)
available in the bioconductor R-package. We determined RAS target
genes on a genome-wide scale by measuring gene expression for ROSE
cells and RAS-ROSE cells using Affymetrix Rat 230 V2 Gene Chips. We
defined differential expression as a log2-fold change of 1 or more. To
determine the effects of knockdowns on gene expression, we
interrogated Rat Gene 1.0 SToligonucleotide microarrays (Affymetrix)
with the same RNA as used for Ras target microarray analysis. These
arrays were analysed using the bioconductor oligo package, with RMA
for normalization. To map probe sets to genes, we used the xmapcore
database available at bioconductor and used Ensembl IDs for
representing genes.

Accession numbers are GSE 38584 and 38585.

Model construction and evaluation

The global response matrix R was calculated from the experimentally
determined perturbation data (depicted in Figure 3A). R quantifies the
relative change in one node of the network in response to a change of
another node: Rij¼ xj/xi dxi/dxj, with xi and xj being the steady-state
value of the observed and perturbed node, respectively. The rows of
this matrix R were defined by the perturbation (overexpression of
mutated RAS, treatment with small-molecule inhibitors, siRNA-
mediated silencing of transcription factors). The rows denote
the mRNA and protein responses. Each response coefficient was
then approximated by: Rij¼ 2 (xj(perturbed)� xj(unperturbed))/
(xj(perturbed)þ xj(unperturbed)), with xj being the mRNA or protein
levels before and after perturbation (see Kholodenko et al, 2002). Note
that these values do not represent global response coefficients, but
only an approximation, where each row is scaled by the perturbation
strength. MRA (see Kholodenko et al, 2002) estimates the direct effects
of one node on another (i.e., the network structure) based on the
experimentally accessible global response matrix (which contains a
superposition of direct and indirect perturbation effects). The network
interactions are quantified by a so-called local response coefficients,
rij¼ xj/xi dxi/dxj (note that rij quantifies direct network interactions
only, while Rij represents a superposition of local and network
propagation effects). The matrix of local response coefficients r, which
is a square matrix and can be interpreted as an weighted adjacency
matrix of the network graph with ones in the diagonal, zeros if there is
no direct interaction, and non-zero elements when there are direct
interactions. In standard MRA, r can be determined by inverting R and
subsequent normalization (see Kholodenko et al, 2002). However, in
our case, the matrix R was not a square matrix: more nodes were
measured than perturbed, and transcription factors were perturbed by
different siRNAs each, which we did not pool but kept separate, and
consequently R could not be inverted. Thus, we used a maximum
likelihood approach that estimates the most likely values of the local
response matrix r that give rise to the observed experimental data in
the matrix R. From MRA, it follows that the scaled data matrix R can be
predicted from r by: (� r� 1)s p, where s indicates that only rows of the
inverse are taken that have been measured, and p is a matrix that
contains row-wise the strength of the perturbation that was applied.
Since the perturbation strength is also unknown, we estimated r and p
by minimizing the (weighted) squared difference between the
predicted response (� r� 1)s p and the measured response R. The
cost function R((r� 1)s�pR)ij

2 was minimized numerically using a
Levenberg-Marquardt optimization algorithm. Mathematical model-
ling often faces a trade-off between model complexity and predictive

power: large models generally provide a better fit to experimental data,
but the ability to make reliable predictions vanishes as the number of
parameters becomes too large (‘overfitting’). We therefore sought to
derive a minimal essential model of the Ras-regulated transcription
factor network. To this end, we systematically tested model variants of
different complexities (allowing different numbers of network inter-
actions rij to be non-zero), and compared their ability to fit the
experimental observations. An iterative greedy hill-climbing approach
was taken by first setting all values of r (except for the diagonal values,
which were fixed to � 1) to 0, and iteratively adding the additional
edges, which improved the model fit mostly. Thereby more links were
added to the model until no significant improvement of the model fit
was seen any more (Po0.05, using likelihood-ratio test, assuming an
error in R of 0.4 in each value of the global response matrix of R).

We observed in simulated data that this algorithm often found
‘shortcuts’, for example, if the correct network is A-B-C, the
algorithm often identified A-C first and only later it identified A-B
and B-C. In order to remove such shortcuts, links were iteratively
removed until the model fit turned significantly worse (Po0.05,
likelihood-ratio test). At the end, all values in r that were o0.2 were
discarded as they result in effects below the noise level, and would be
biologically not important. The entire algorithm was written in the
Cþþ programming language. Matrix inversion was performed by
calculating the pseudo-inverse using singular value decomposition
(function gesdd from blas library, http://www.netlib.org/blas/).
Minimization was done using a Levenberg-Marquardt optimization
algorithm (LEVMAR library version 2.3, Manolis Lourakis, http://
www.netlib.org/blas/). Simulations were performed by inverting the
resulting matrix r and multiplying it with a perturbation vector p using
the packages R (http://www.r-project.org/) and matlab (Mathworks).
Ectopic overexpression had two effects: the mRNA level was elevated
and the promoter became independent of the levels of other nodes in
the network. We simulated this using a positive entry in the
perturbation vector p and removed all entries in the local response
matrix r in the respective column. Perturbation strength for simulation
was � 2 for Otx knockdown, 5 for overexpression of Fosl1 and � 3 for
U0126 treatment.

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (www.nature.com/msb).
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