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ABSTRACT Repurposing drugs provides a new approach to the fight against multi-
drug-resistant (MDR) bacteria. We have reported that three major tamoxifen metabo-
lites, N-desmethyltamoxifen (DTAM), 4-hydroxytamoxifen (HTAM), and endoxifen
(ENDX), presented bactericidal activity against Acinetobacter baumannii and Escherichia
coli. Here, we aimed to analyze the activity of a mixture of the three tamoxifen metab-
olites against methicillin-resistant Staphylococcus epidermidis (MRSE) and Enterococcus
species. MRSE (n = 17) and Enterococcus species (Enterococcus faecalis n = 8 and
Enterococcus faecium n = 10) strains were used. MIC of the mixture of DTAM, HTAM,
and ENDX and that of vancomycin were determined by microdilution assay. The bacte-
ricidal activity of the three metabolites together and of vancomycin against MRSE
(SE385 and SE742) and vancomycin-resistant E. faecalis (EVR1 and EVR2) strains was
determined by time-kill curve assays. Finally, changes in membrane permeability of
SE742 and EVR1 strains were analyzed using fluorescence assays. MIC90 of tamoxifen
metabolites was 1 mg/liter for MRSE strains and 2 mg/liter for E. faecalis and E. faecium
strains. In the time-killing assays, tamoxifen metabolites mixture showed bactericidal ac-
tivity at 4� MIC for MRSE (SE385 and SE742) and at 2� MIC and 4� MIC for E. faecalis
(EVR1 and EVR2) strains, respectively. SE385 and EVR2 strains treated with the tamoxi-
fen metabolites mixture presented higher membrane permeabilization. Altogether,
these results showed that tamoxifen metabolites presented antibacterial activity against
MRSE and vancomycin-resistant E. faecalis, suggesting that tamoxifen metabolites might
increase the arsenal of drug treatments against these bacterial pathogens.

IMPORTANCE The development of new antimicrobial therapeutic strategies requires im-
mediate attention to avoid the tens of millions of deaths predicted to occur by 2050 as
a result of MDR bacterial infections. In this study, we assessed the antibacterial activity
of three major tamoxifen metabolites, N-desmethyltamoxifen (DTAM), 4-hydroxytamoxi-
fen (HTAM), and endoxifen (ENDX), against methicillin-resistant Staphylococcus epidermi-
dis (MRSE) and Enterococcus spp. (E. faecalis and E. faecium). We found that the tamoxi-
fen metabolites have antibacterial activity against MRSE, E. faecalis, and E. faecium
strains by presenting MIC90 between 1 and 2 mg/liter and bactericidal activity over 24 h.
In addition, this antibacterial activity is paralleled by an increased membrane permeabil-
ity of these strains. Our results showed that tamoxifen metabolites might be potentially
used as a therapeutic alternative when treating MRSE and E. faecalis strains in an animal
model of infection.
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S taphylococcus epidermidis and Enterococcus spp. are common health care-associ-
ated pathogens in different infections, causing significant morbidity, mortality,

and/or health care costs (1–3). Glycopeptides are among the recommended treatments
for the infections caused by methicillin-resistant S. epidermidis (MRSE) and ampicillin-
resistant Enterococcus spp. (1, 4). However, the emergence of isolates with reduced sus-
ceptibility to vancomycin, teicoplanin, linezolid, and daptomycin have commonly been
reported (1, 5–7). Therefore, it is important to increase the arsenal of antimicrobial
agents and to find drugs active against MRSE and Enterococcus spp. with reduced sus-
ceptibility to glycopeptides.

Different approaches can be used to find new antibacterial agents, such as repur-
posing drugs. Anticancer drugs, such as tamoxifen, have demonstrated antibacterial
activity against Acinetobacter baumannii, Escherichia coli, and Staphylococcus aureus (8–
10). This antimicrobial activity might result from cytochrome P450-mediated tamoxifen
metabolism releasing three major metabolites, N-desmethyltamoxifen (DTAM), 4-
hydroxytamoxifen (HTAM), and endoxifen (ENDX) (11).

Few studies have investigated the activity of these metabolites against infectious
agents (9, 12–15). One of them, HTAM, has been reported to act as a weak base to pro-
tect cells and mice against lethal Shiga toxin 1 (STx1) or Shiga toxin 2 (STx2) toxicosis
(9) and to be active against Plasmodium falciparum and Cryptococcus neoformans var.
grubii (13, 14). HTAM has also presented activity when used in monotherapy against
Mycobacterium tuberculosis (MIC50 ;2.5 to 5 mg/liter) and in combination with rifam-
pin, isoniazid and ethambutol being the most active at 10 and 20 mg/liter of HTAM
(15). Moreover, the activity of ENDX was studied against C. neoformans var. grubii with
MIC of 4 mg/liter (14).

A previous study from our research group showed that the mixture of DTAM,
HTAM, and ENDX exhibited MIC50 values of 8 and 16 mg/liter against clinical isolates of
A. baumannii and E. coli, respectively (16), whereas their activity against Gram-positive
bacteria remains unknown. The objective of this study is to investigate the activity of
tamoxifen metabolites against MRSE and Enterococcus faecalis with reduced suscepti-
bility to vancomycin.

RESULTS
Antimicrobial activity of tamoxifen and tamoxifen metabolites. Tamoxifen, ta-

moxifen metabolites, separately and in mixture, and vancomycin were tested against
clinical strains of MRSE, E. faecalis, and Enterococcus faecium. The MIC50 and MIC90 val-
ues are detailed in Table 1. The MICs of tamoxifen, tamoxifen metabolites mixture, and
vancomycin for MRSE strains ranged from 2 to 4 mg/liter, 0.5 to 2 mg/liter, and 0.5 to
4 mg/liter, respectively, while those for E. faecalis strains ranged from 2 to .32 mg/li-
ter, 1 to 2 mg/liter, and 1 to 128 mg/liter, respectively, and those for E. faecium strains
ranged from 2 to 4 mg/liter, 1 to 2 mg/liter, and 0.5 to 1 mg/liter, respectively. The
MIC50 and MIC90 of tamoxifen were 2 and 4 mg/liter (for MRSE strains), 8 and .32 mg/
liter (for E. faecalis strains), and 4 mg/liter (for E. faecium strains). The MIC50 and MIC90

for DTAM, HTAM, and ENDX for the three pathogens ranged from 2 to 32 mg/liter.
When these three metabolites were grouped together, their MIC50 and MIC90 were 1
and 2 mg/liter, respectively, for MRSE and E. faecalis and 1 and 2 mg/liter, respectively,

TABLE 1MICs effective for$50% and$90% of isolates tested (MIC50 and MIC90) of tamoxifen, tamoxifen metabolites, and vancomycin for S.
epidermidis and Enterococcus spp.a

Pathogen n

TAM (mg/liter) DTAM (mg/liter) HTAM (mg/liter) ENDX (mg/liter) MET (mg/liter)
Vancomycin (mg/
liter)

MIC50 MIC90 MIC50 MIC90 MIC50 MIC90 MIC50 MIC90 MIC50 MIC90 MIC50 MIC90

S. epidermidis 17 2 4 2 4 8 8 4 8 1 1 2 4
E. faecalis 8 8 .32 4 4 8 32 8 16 2 2 2 128
E. faecium 10 4 4 2 4 8 8 4 8 1 2 1 1
aMET: tamoxifen metabolites, 4-hydroxytamoxifen (HTAM), N-desmethyltamoxifen (DTAM), endoxifen (ENDX) mixture. TAM, tamoxifen; VAN, vancomycin. Enterococcus spp.,
E. faecalis and E. faecium.
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for E. faecium. In the case of vancomycin, the MIC50 and MIC90 were 2 and 4 mg/liter
(for MRSE strains), 2 and 128 mg/liter (for E. faecalis strains), and 1 mg/liter (for E. fae-
cium strains). Of note, the checkerboard assay analysis showed that all different combi-
nations between two tamoxifen metabolites have a slight increase in the inhibitory ac-
tivity from the additive of both tamoxifen metabolites combined, with a fractional
inhibitory concentration index (FICI) between 0.56 and 1 (Table 2). These results
showed that the mixture of tamoxifen metabolites presented higher antibacterial activ-
ity than their prodrug tamoxifen and vancomycin against MRSE and Enterococcus spe-
cies strains.

Time-kill curves. Using time-kill assays, we examined the bactericidal activity of ta-
moxifen metabolites and vancomycin against MRSE SE385 and SE742 strains and van-
comycin-resistant E. faecalis EVR1 and EVR2 strains (Fig. 1). The MICs and MBCs of ta-
moxifen metabolites and vancomycin for these strains are summarized in Table 3.
Tamoxifen metabolites at 4� MIC showed bactericidal activity for both MRSE strains,
whereas at 1� MIC and 2� MIC they were not bactericidal (Fig. 1A). In the case of E.
faecalis EVR1 and EVR2 strains, tamoxifen metabolites at 2� MIC and 4� MIC showed
bactericidal activity for both strains (Fig. 1B). For SE385, SE742, and EVR2 strains, a
regrowth has been particularly observed at 24 h in the presence of tamoxifen

TABLE 2 Checkerboard analysis of tamoxifen metabolites combinations against S.
epidermidis SE385 and SE742 strains and E. faecalis EVR1 and EVR2 strainsa

Strain FICI (DTAM+ HTAM) FICI (DTAM+ ENDX) FICI (HTAM+ ENDX)
S. epidermidis SE385 1 0.6 1
S. epidermidis SE742 0.75 0.75 1
E. faecalis EVR1 0.75 0.75 1
E. faecalis EVR2 1 0.75 0.56
aFICI, fractional inhibitory concentration index; DTAM, N-desmethyltamoxifen; HTAM, 4-hydroxytamoxifen;
ENDX, endoxifen.

FIG 1 Antibacterial activity of tamoxifen metabolites at different concentrations against S. epidermidis and Enterococcus faecalis strains. Time-kill curves of S.
epidermidis SE385 and SE742 strains (A) and E. faecalis EVR1 and EVR2 strains (B) in the presence of 1�, 2�, and 4� MIC tamoxifen metabolites and 1�
MIC vancomycin for 24 h. MET, tamoxifen metabolites; VAN, vancomycin. Data are represented as mean from two independent experiments.
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metabolites at 4� MIC. Finally, vancomycin at 1� MIC was bactericidal against SE385
and SE742 strains but not against EVR1 and EVR2 strains.

In vitro cytotoxicity of tamoxifen metabolites. The study of the cytotoxicity of
the tamoxifen metabolites was carried out. The percentage of cell viability on the
human lung epithelial cells (A549 cells) and murine macrophages (RAW 264.7 cells)
incubated for 24 h with the mixture of DTAM, HTAM, and ENDX at decreasing concen-
trations was determined from 400 to 0 mg/liter. Only at 400 mg/liter did this mixture
show reduction in the cell viability below 50%, while the rest of the concentrations
showed higher cell viability, between 83% and 100% (Table S1).

Effect of tamoxifen metabolites on the bacterial cell membrane. In order to
determine the mode of action of tamoxifen metabolites, we examined their effect on
the membrane permeability of S. epidermidis (SE742 and SE385) and E. faecalis (EVR1
and EVR2) strains. The three tamoxifen metabolites mixture at 0.5� MIC significantly
increased the membrane permeability of these strains, by 70.22%, 54.97%, 244.61%,
and 86.6%, respectively (Fig. 2). This result suggests that tamoxifen metabolites affect
the integrity of the bacterial cell wall of MRSE and vancomycin-resistant E. faecalis.

TABLE 3MICs and minimal bactericidal concentrations of tamoxifen metabolites and
vancomycin for S. epidermidis SE385 and SE742 and E. faecalis EVR1 and EVR2 strainsa

Strain

MET (mg/liter) VAN (mg/liter)

MIC MBC MIC MBC
S. epidermidis SE385 1 2 4 4
S. epidermidis SE742 1 2 4 4
E. faecalis EVR1 2 4 128 .256
E. faecalis EVR2 1 2 128 .256
aMET: tamoxifen metabolites 4-hydroxytamoxifen (HTAM), N-desmethyltamoxifen (DTAM), endoxifen (ENDX)
mixture; MBC, minimal bactericidal concentration.

FIG 2 Tamoxifen metabolites effects on the bacterial permeability of S. epidermidis and E. faecalis
strains. The membrane permeabilization of S. epidermidis (SE742 and SE385) and E. faecalis (EVR1 and
EVR2) strains in absence and presence of tamoxifen metabolites (0.5� MIC) incubated for 10 min was
quantified by Typhon Scanner. MET, the three tamoxifen metabolites together; CTL, control. *, P , 0.05:
CTL versus MET.
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DISCUSSION

The present study provides new data highlighting the antibacterial effect of tamoxi-
fen metabolites against Gram-positive bacteria through the increase of bacterial mem-
brane permeability.

The MIC50 of tamoxifen metabolites was 1 and 2 mg/liter against MRSE and E. faeca-
lis, respectively. However, the MIC50 values obtained against Gram-negative bacteria A.
baumannii and E. coli were 8 and 16 mg/liter, respectively (16). Obvious reasons for this
difference could be the structural and molecular differences between the two classes
of bacteria (17). Similar differences between Gram-negative and Gram-positive bacteria
have been observed with other repurposed drugs, such as the statin (simvastatin),
anthelmintics (niclosamide, oxycloznide, and closantel), and anti-inflammatory (cele-
coxib) drugs (18–20).

The antibacterial activity of tamoxifen metabolites at 4� MIC with MRSE began ear-
lier than that of vancomycin. This result may be related to the ability of tamoxifen
metabolites to eliminate staphylococcal biofilms as observed with the tamoxifen ana-
logue, toremifene, compared with the reduced ability of vancomycin to penetrate bio-
films (21, 22). In addition to the good antibacterial activity of tamoxifen metabolites at
4� MIC, a regrowth of MRSE strains and E. faecium EVR2 strain has been observed at
24 h. The MIC of tamoxifen metabolites for SE385, SE742, and EVR strains in this time-
kill condition were 2, 2, and 1 mg/liter, respectively, MICs below the 4� MIC of tamoxi-
fen metabolites concentration. Further investigations, including the determination of
tamoxifen metabolites concentration during the time-kill assay, are necessary to better
understand the regrowth of these strains in the presence of tamoxifen metabolites.

In this study, we showed that the three tamoxifen metabolites together produced
an increase in membrane permeability of MRSE and vancomycin-resistant E. faecalis
strains. It is known that the mechanism of action of tamoxifen, the prodrug of DTAM,
HTAM, and ENDX in fungi, is related to the binding to calmodulin (23, 24). Additionally,
Scott et al. showed that HTAM might inhibit the phospholipase D in Pseudomonas aer-
uginosa (25). Future studies on the mechanism of action used by tamoxifen metabo-
lites against Gram-positive bacteria and on their therapeutic efficacy in animal experi-
mental models of infection would be of interest. In addition to being antibacterial
against Gram-positive bacteria, tamoxifen and its metabolites would have two proper-
ties that are advantageous for the treatment of bacterial infections. First, these drugs
have excellent bioavailability and, therefore, can be administered orally (26), and sec-
ond, they would induce the killing activity of macrophages and neutrophils similarly to
that observed against Gram-negative bacteria (8).

In conclusion, these results suggest that tamoxifen metabolites are potential antimi-
crobial agents for use against MRSE and vancomycin-resistant E. faecalis, respectively,
and they may, after further development, become a possible option for the treatment
of infections by MRSE and vancomycin-resistant Enterococcus spp.

MATERIAL ANDMETHODS
Bacterial strains. Seventeen MRSE and 18 Enterococcus species (E. faecalis n = 8, E. faecium n = 10)

clinical isolates from blood cultures, characterized previously (27, 28), were used in this study. MIC sus-
ceptibility breakpoint of vancomycin for both pathogens was determined according to the standard rec-
ommendations of the Clinical and Laboratory Standards Institute (CLSI) being susceptible at #4 mg/liter
and resistant at.4 mg/liter (29).

Antimicrobial agents and reagents. Standard laboratory powders of tamoxifen, HTAM, DTAM,
ENDX, and vancomycin (Sigma, Spain) were used. The mixture of HTAM, DTAM, and ENDX was dissolved
in dimethyl sulfoxide (DMSO) in equal concentrations.

In vitro susceptibility testing. MICs of HTAM, DTAM, and ENDX separately and in mixture, tamoxi-
fen, and vancomycin against MRSE and Enterococcus species strains were determined in two independ-
ent experiments by broth microdilution assay according to CLSI guidelines (29). The initial bacterial inoc-
ulum of 5 � 105 CFU/ml for each strain cultured in Mueller-Hinton Broth (MHB) (Sigma, Spain) was used
in a 96-well plate (Deltlab, Spain) in the presence of HTAM, DTAM, and ENDX separately and in mixture
(at same concentration), tamoxifen, and vancomycin and incubated for 24 h at 37°C. E. faecalis ATCC
29212 and S. aureus ATCC 29213 strains were used as control strains. MIC50 and MIC90, respectively, were
determined.
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Checkerboard assay. The assay was performed on a 96-well plate as described previously (30). The
tamoxifen metabolite DTAM (metabolite 1), HTAM (metabolite 2), or ENDX (metabolite 3) was 2-fold seri-
ally diluted along the x axis, whereas the corresponding combined tamoxifen metabolite was 2-fold seri-
ally diluted along the y axis to create a matrix, where each well consists of a combination of both agents
at different concentrations. Bacterial cultures grown overnight were then diluted in saline to 0.5
McFarland turbidity, followed by 1:50 further dilution Mueller-Hinton broth and inoculation on each well
to achieve a final concentration of approximately 5.5 � 105 CFU/ml. The 96-well plates were then incu-
bated at 37°C for 24 h and examined for visible turbidity. The fractional inhibitory concentration (FIC) of
metabolite 1 was calculated by dividing the MIC of metabolite 1 in the presence of metabolite 2 by the
MIC of metabolite 1 alone. Similarly, the FIC of metabolite 2 was calculated by dividing the MIC of
metabolite 2 in the presence of metabolite 1 by the MIC of metabolite 2 alone. The FIC index was the
summation of both FIC values. FIC index values of #0.5, .0.5 to 1, .1 to ,2, and $2 were interpreted
as synergistic, additive, indifference, and antagonism, respectively (31). The same experiment was per-
formed with the combination of metabolite 1 and metabolite 3 and the combination of metabolite 2
and metabolite 3.

Time-kill kinetic assays. Time-kill curves of MRSE SE385 and SE742 strains with a vancomycin MIC
of 4 mg/liter and E. faecalis EVR1 and EVR2 strains with a vancomycin MIC of 128 mg/liter were per-
formed in duplicate as described previously (29, 30). Initial inoculums of 5.5 � 105 CFU/ml were added
on 5 ml of MHB in the presence of 1�, 2�, and 4� MIC of HTAM, DTAM, and ENDX mixture and 1� MIC
of vancomycin. Drug-free broth was evaluated in parallel as a control. Tubes of each condition were
incubated at 37°C with shaking (180 rpm), and viable counts were determined by serial dilution at 0, 2,
4, 8, and 24 h. Viable counts were determined by plating 100 ml of control, test cultures, or the respec-
tive dilutions at the indicated times onto sheep blood agar plates (ThermoFisher, Spain). Plates were
incubated for 24 h at 37°C, and after colony counts, the log10 of viable cells (CFU/ml) was determined.
Bactericidal activity was defined as a reduction of $3 log10 CFU/ml at 24 h with respect to the initial
inoculum.

In vitro toxicity of the tamoxifen metabolites. Human lung epithelial A549 cells and murine mac-
rophages RAW 264.7 cells were incubated with the mixture of DTAM, HTAM, and ENDX (0, 50, 100, 200,
and 400 mg/liter) for 24 h with 5% CO2 at 37°C. Prior to the evaluation of the tamoxifen metabolites cy-
totoxicity, A549 and RAW 264.7 cells were washed three times with prewarmed phosphate-buffered sa-
line (PBS) 1�. Subsequently, quantitative cytotoxicity was evaluated by measuring the mitochondrial
reduction activity using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay as
described previously (32). The percentage of cytotoxicity was calculated from the absorbance at 570 nm
as follows: (absorbance at 570 nm of treated cells/mean absorbance at 570 nm of untreated cells) � 100.

Membrane permeability assays. Bacterial suspensions (adjusted to optical density at 600 nm of
0.2) of SE742, SE385, EVR1, and EVR2 strains were placed on a 96-well plate, incubated with 0.5� MIC of
tamoxifen metabolites mixture, and mixed in a solution of phosphate-buffered saline containing ethi-
dium homodimer-1 (EthD-1; 1:500; Invitrogen, Carlsbad, CA, USA). After 10 min of incubation, fluores-
cence was monitored during 160 min using a Typhoon FLA 9000 laser scanner (GE Healthcare Life
Sciences, Marlborough, MA, USA) and quantified with ImageQuant TL software (GE Healthcare Life
Sciences, USA). Bacterial counts were obtained at the beginning and end of the experiment to ensure
that the metabolite mixture did not present bactericidal activity against S. epidermidis and E. faecalis
strains.

Statistical analysis. Group data were presented as means 6 standard errors of means (SEM).
Difference in membrane permeability was assessed by Student’s t test. The SPSS (version 23.0; SPSS Inc.,
Armonk, NY, USA) statistical package was used.

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.
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