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Apolipoprotein E (apoE) is a 34.2 kDa glycosylated protein characterized by its wide tissue distribution and multiple functions.
ApoE has been widely studied in lipid metabolism, cardiocerebrovascular diseases, and neurodegenerative diseases like Alzheimer’s
disease and mild cognitive impairment, and so forth. Recently, a growing body of evidence has pointed to nonlipid related
properties of apoE, including suppression of T cell proliferation, regulation of macrophage function, facilitation of lipid antigen
presentation by CD1 molecules to natural killer T (NKT) cells, and modulation of inflammation and oxidation. By these
properties, apoE impacts physiology and pathophysiology at multiple levels. The present paper summarizes updated studies on
the immunoregulatory function of apoE, with special focus on isoform-specific effects of apoE on Guillain-Barré syndrome (GBS)
and its animal model experimental autoimmune neuritis (EAN).

1. Introduction

Apolipoprotein E (ApoE) is a 34.2 kDa glycosylated protein
with 299 amino acid residues. The APOE gene is located
on chromosome 19q13.2, consisting of four exons and three
introns and spanning 3597 nucleotides [1]. There are three
isoforms in human (apoE2, apoE3, and apoE4) due to
different amino acid residues at positions 112 and 158,
among which apoE3, with a cysteine residue at position 112
and an arginine residue at position 158, is the most common.
The other two “variants,” apoE2 and apoE4, respectively,
contain two arginines and two cysteines at positions 112
and 158 [2]. However, there is only one isoform of apoE
in rodents, which resembles human apoE3 in terms of
lipoprotein binding and metabolism, preferably associating
with high density lipoprotein (HDL), the clearance of which
is mediated principally by hepatic low density lipoprotein
receptors (LDLRs) [3, 4].

ApoE is synthesized predominantly in the liver, but also
by cells in the spleen, brain, lung, kidney, ovary, adrenal, and
muscle tissues. Hepatic parenchyma cells are the main apoE

producing cells in mammalian body, probably accounting for
two thirds to three fourths of the plasma apoE [5]. In the ner-
vous system, apoE mRNA is present in neurons, astrocytes,
ependymal cells, nonmyelinating Schwann cells, but not in
microglia, oligodendroglia, choroidal cells, or myelinating
Schwann cells [6–8]. As reported by a variety of studies,
apoE produced by mammalian cells exists in different forms,
monomers, dimers, modified, unmodified, lipid-rich, and
lipid-poor, and so forth [9–13]. It is noteworthy that there
is limited permeability of the blood brain barrier (BBB) to
apoE, and local synthesis and production by brain tissue
contribute to the homeostasis of apoE in brain tissue and
cerebrospinal fluid (CSF) [14].

ApoE has been widely studied in lipid metabolism,
cardiocerebrovascular diseases [15], multiple sclerosis (MS)
[16, 17], neurodegenerative diseases such as Alzheimer’s
disease [18, 19], and mild cognitive impairment [20, 21].
In addition, growing evidence points to nonlipid-related
properties of apoE. An immunoregulatory role of apoE has
been proposed for decades. This role was originally described
as suppression of lymphocyte activation [22–25]. Only in
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the recent years, with the development of APOE knockout
mice and APOE transgenic (Tg) mice, have the studies on
the specific mechanism of immunomodulation been greatly
deepened. In this paper, we outlined the immunoregulatory
functions of apoE, with exclusive focus on the isoform-
specific effects of apoE on Guillain-Barré syndrome (GBS)
and its animal model experimental autoimmune neuritis
(EAN).

2. The Role of ApoE in Immune Responses

To date, there has been strong evidence supporting a
role for apoE as an immunomodulatory agent in immune
responses. Effects of apoE on immune system are extensive
and some of them are dependent on different ligands of
the protein, different concentrations, and lipid-binding state.
The properties include suppression of T cell proliferation
[26], stimulation of cultured neutrophils [27], regulation of
macrophage functions [28–32], facilitation of lipid antigen
presentation by CD1 molecules to natural killer T (NKT)
cells [33, 34], and modulation of inflammation and oxida-
tion [35, 36], and so forth. By these properties, apoE impacts
physiology and pathophysiology at multiple levels.

This role of apoE was originally discovered as an
immunoinhibitory activity of plasma lipoproteins in vitro
by a variety of experiments [23, 37–44]. Succedent studies
ascribed this activity to immunoregulatory functions of
apoE. A series of studies demonstrated both apoE containing
lipoproteins and multimers of synthetic apoE peptides inhib-
ited proliferation of cultured lymphocytes by inhibiting DNA
synthesis and reducing phospholipid turnover in T cells [26,
45–48]. APOE knockout mice greatly facilitate apoE research.
ApoE-deficient mice showed abnormal humoral and cellular
immune responses. Significantly higher levels of antigen-
specific IgM and significantly decreased antigen-specific
delayed-type hypersensitivity responses were shown in apoE-
deficient mice after immunization with tetanus toxoid as
compared with control C57BL/6 mice [49]. Moreover, spleen
weights of apoE-deficient animals were greater than age-
and sex-matched C57BL/6 controls, indicating an idiopathic
immune dysfunction in apoE-deficient mice [49]. In vivo,
apoE downregulates T helper (Th) 1 immune responses,
which is postulated to be mediated by either modification
of macrophage or T cell functions [50, 51]. ApoE can also
affect innate and acquired immune responses in vitro by its
ability to suppress stimulation of cultured neutrophils [27].
Hypercholesterolaemia resulting from APOE knockout, can
facilitate Th2 immune responses in mice [52], indicating that
apoE plays a double-role in immune responses.

ApoE can bind lipopolysaccharide (LPS), attenuate the
inflammatory response, and thus reduce LPS induced lethal-
ity [53]. Injection of LPS stimulated higher expression of
inflammatory cytokines like tumor necrosis factor-α (TNF-
α), interleukin (IL)-1ß, IL-12, and interferon-γ (IFN-γ), as
well as IL-6, and so forth, in the brains of apoE-deficient mice
compared with wild type controls [49, 50, 54]. And apoE-
deficient mice have impaired immune responses to bac-
terial challenge with Listeria monocytogenes, and increased

susceptibility to endotoxemia after intravenous LPS injection
[55, 56]. Moreover, these mice are highly susceptible to
tuberculosis, which has been suggested to depend upon
the severity of hypercholesterolemia [57], and Klebsiella
pneumoniae infection [58]. The deficiency of neutralization
of Gram negative LPS seems to be one of the reasons that
may explain this susceptibility. As regards isoform-specific
effects that may exist, APOE ε2 Tg mice appear to be more
susceptible to endotoxin or bacterial infection [59]. Ophir et
al. have shown that either intraperitoneal or intraventricular
injection of LPS results in significantly higher production
of proinflammatory cytokines, defense response genes or
chemotaxis genes in APOE ε3 Tg mice than in APOE ε4 Tg
ones [60].

In the immune system, apoE is primarily produced by
macrophages, which act as principal effector cells in both
innate and adaptive immunity [61–63]. It is observed that
pretreatment with apoE reduces inflammatory signaling in
astrocytes and microglia in the brain [35, 64–67], and
classical activation of macrophages by proinflammatory
stimuli such as IFN-γ, TNF-α, IL-1β and LPS, down-
regulates apoE production [68–73]. However, transforming
growth factor-β and estrogen promote apoE synthesis and
release [73–76]. ApoE suppresses proinflammatory signaling
in macrophages, and vice versa, indicating an intricate apoE-
mediated feedback regulation of inflammation and immune
responses.

The production of nitric oxide (NO) represents one of
the principle features of activated macrophages, and NO
is considered to be a principal effector of macrophage-
mediated immune responses. In mononuclear-phagocyte
system, NO is formed enzymatically from L-arginine by
inducible NO synthase (iNOS), which yields L-citrulline as
a coproduct [77]. Treatment of microglia and peripheral
macrophages with apoE could increase NO production
stimulated by IFN-γ, and LPS, and so forth [78]. This effect
supports its potential role in innate immune responses [29,
79]. ApoE alone is unable to induce the production of either
iNOS mRNA or protein. Its action results from alteration of
arginine availability by apoE [80]. Interestingly, the effect of
apoE on NO production is not found only in macrophages.
NO production in platelets can be stimulated likewise by
apoE [81]. Further studies demonstrated that microglia and
peripheral macrophages from male APOE ε4 Tg mice could
produce significantly higher levels of NO than from APOE
ε3 Tg mice. This increase in nitrite production reflects an
increase in the innate immune response of the APOE ε4
Tg macrophages [30, 32]. Similar results were found also
in human studies [82]. The increased NO production was
shown to be coupled with an increased arginine uptake in
male APOE ε4 Tg mice and to depend on p38 mitogen
activited protein kinase (MAPK) [83, 84]; whereas it is not
the case in female mice. Macrophages from female APOE
Tg mice produced higher level of NO than male ones, and
there is no isoform-dependent difference as in male ones
[30, 85, 86].

Activation of macrophages and microglia is important
in both the innate immunity and adaptive immunity [87,
88]. ApoE can down-regulate microglial activation [89].
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Duan et al. in our group found that apoE deficiency
enhances activation of microglia in CNS and aggravates
kainic acid (KA) induced hippocampal neurodegeneration.
Increased CC chemokine receptor 3 expression on microglia
in apoE-deficient mice after KA administration appeared
to facilitate the microglial recruitment and accumulation in
the injured areas [90]. Macrophages of apoE-deficient mice
stimulated by exogenous antigen are more effective in the
upregulating of main histocompatibility complex (MHC)
class II molecules and costimulatory molecules like CD40
and CD80, with increased IFN-γ secretion in responding T
cells [91]. Furthermore, apoE suppressed the secretion of
TNF-α and IL-1β in an isoform-specific fashion (E2 > E3 >
E4) [84]. A significantly higher level of TNF-α was observed
in the supernatant of cultured macrophages derived from
adult male APOE ε4 Tg mice compared with macrophages
from APOE ε3 ones [28]. ApoE genotype significantly
affects the cellular immune response in stably transfected
murine macrophages. In apoE4 versus apoE3 macrophages,
higher levels of proinflammatory cytokines including TNF-α
appeared evident followed by LPS stimulation [92]. ApoE
displayed an isoform-specific effect on inflammation in
primary adult microglia, with apoE4 potent to stimulate
production of prostaglandin E2 and IL-1β [93]. APOE
ε4 targeted replacement (TR) mice demonstrate a proin-
flammatory phenotype including increased iNOS mRNA
synthesis and NO production, and higher proinflammatory
cytokine production (TNF-α, IL-6, IL-12p40) in glial cell
culture, compared with APOE ε3 TR mice [28]. Activation
of primary astrocytes from APOE TR mice with LPS led to
genotype-dependent differences in cytokine secretion that
were the greatest in APOE ε2 TR mice [94]. Taken together,
these findings suggest immunomodulatory dysfunction in
apoE 4 isoform. Similar to apoE-deficient mice, APOE ε4
Tg mice seem to bear an insufficiency to deal with an
inflammatory insult.

Although the antigen presenting function of antigen
presenting cells (APCs) in adaptive immunity appears to
increase in apoE-deficient mice, there still lacks direct evi-
dence that apoE functions directly on antigen presentation
process. The difference might either be due to the increased
susceptibility to proinflammatory stimulation, resulting in
the high expression of MHC class II molecules and costim-
ulatory molecules on innate immune cells like macrophages,
or be due to tendency to Th1 cytokine production in apoE-
deficient mice. However, a role of apoE in facilitating lipid
antigen presentation by CD1 molecules to NKT cells has been
presented and confirmed, which appears of great importance
in autoimmune diseases [95, 96]. Naı̈ve NKT cells express
high level surface marker NK1.1 and an invariant T cell
receptor (TCR) [34, 97–100]. Upon TCR ligation, they
respond rapidly to secrete high levels of IFN-γ and IL-
4, which has been postulated to be of great importance
in the shaping of adaptive immune responses and the
shifting between Th1 and Th2 immune responses [101–103]
(Figure 1). CD 1 molecules (CD1a-d in humans and CD1d
in mice), similar in structure to MHC molecules, resemble
MHC II molecules in function in that they present lipid
antigens to NKT cells, in which process, apoE is implicated.
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IL-4
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Schematic illustration of apoE-facilitated
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Figure 1: ApoE facilitates activation of CD1 restricted NKT cells.
Inactivated NKT cells express surface marker of NK1.1 and an
invariant TCR. ApoE facilitates lipid antigen presentation by CD1
positive APCs mainly through binding to LDLR. And then CD1
molecules present lipid antigen to NKT cells. Upon TCR ligation,
naive NKT cells respond rapidly to secrete high levels of IFN-γ and
IL-4.

ApoE, the major serum factor that binds lipids, could
efficiently bind lipid antigens and dramatically facilitate
their presentation by CD1b, CD1c and CD1d molecules
via the binding to LDLR [33, 104]. More recently, human
B cells have been demonstrated to utilize apoE-mediated
pathways of lipid antigen presentation more efficiently
than dendritic cells [105]. In terms of CD1-mediated self-
lipid presentation, apoE might be involved in autoimmune
diseases due to facilitation of self-lipid antigen presentation
by CD1 molecules to NKT cells. ApoE might provide a
pathway for the delivery of self-antigens and subsequently
contribute to inflammatory diseases like MS [31, 106–109].
Kattan et al. suggested that apoE treatment also promoted a
Th1 cytokine response in a rat model of sepsis. Whether this
is partly due to facilitation of CD1 restricted lipid antigen
presented by apoE remains to be clarified [110], and whether
this effect of apoE is isotype-dependent is not yet known.

In vitro, apoE can inhibit proliferation of antigen and
mitogen stimulated CD4+ and CD8+ T cells, which although
not precisely known, has been suggested to be mediated by
modification of IL-2 receptor or modification of intracellular
signaling pathways perhaps involving calcium and phos-
phatidylinositol [111–113], while there seems no isoform-
dependent suppression on T cell proliferation stimulated
by phytohemagglutinin, or anti-CD3, as revealed by an in
vitro human study [49]. Of note is that apoE is naturally
presented by murine MHC II molecules. In a pathophysi-
ological state this might be of immunological significance
[114, 115]. And a naturally processed self-peptide from
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apolipoprotein E, Ep1.B, is capable of inducing dendritic cell
differentiation. Nuclear factor κB (NFκB), a transcription
factor essential for DC differentiation, is fundamental in
mediating the effects. [116]. A peptide containing the
receptor binding region (residues 133–149), other than apoE
holoprotein, is enough to suppress inflammation [117]. This
peptide is almost the same as the one proposed by Pham
et al. to be responsible for antioxidant properties [118]. In
addition, apoE deficiency results in elevated autoimmune
activity in mice, which can be detected as early as 7 weeks
of age, and might explain the susceptibility of deficient mice
to either EAN or EAE [119]. Moreover, apoE deficiency in
mice leads to impaired clearance of apoptotic cells and a
systemic proinflammatory condition, independent of its role
in lipoprotein metabolism [120], providing another possible
mechanism by which apoE may influence immune responses
and autoimmune diseases.

The exact molecular mechanisms by which apoE iso-
forms alter the immune responses still remain undefined.
However they have been postulated to influence different
signaling pathways. ApoE isoforms might be in part respon-
sible for the differential modulation of the redox sensitive
transcription pathways such as NFκB and MAPK [36, 86,
94]. Alternatively, apoE can act by binding to cell surface
receptors. LDLR-related protein (LRP) is postulated to be
implicated to mediate the immunomodulatory effects of
apoE, albeit there is no difference in the binding affinity of
apoE isotypes with LRP [121, 122].

3. The Role of ApoE in GBS and EAN

GBS is presently defined as an organ specific immune medi-
ated disorder resulting from a synergistic interaction between
cellular and humoral immune responses to incompletely
characterized antigens in the peripheral nervous system
(PNS) [123, 124]. As yet, there has been no evidence that
APOE genotype may influence susceptibility to GBS or its
clinical course [125]. It might be either due to the small
sample size of the experiment or due to the difference of
APOE allele distribution and GBS clinical features among
populations.

In several studies attempting to find specific biomarker
of GBS in the serum and CSF, apoE was shown to decrease in
CSF in GBS patients. Our group used comparative proteomic
methods to show a decreased level of apoE in CSF, which
was later confirmed by other researchers [126, 127]. This
was further confirmed by enzyme-linked immunosorbent
assay in our group (unpublished data). As there is limited
permeability of the BBB to lipoproteins [14, 128, 129], this
change might be due to a decrease of local apoE synthesis
and secretion by brain tissue, as part of systemic decrease of
apoE synthesis in acute phage reaction [4].

The blood nerve barrier (BNB) breakdown and autore-
active T cell penetrating BNB are crucial in the initiation
of GBS [130, 131]. Data from animal experiments suggested
that BNB dysfunction resulting from apoE deficiency might
lead to more susceptibility to GBS, and exacerbate clinical
GBS [132, 133]. Although there still lacks evidence that

apoE isoforms contribute differently in maintaining BNB or
BBB integrity, considering the preference of apoE isoforms
binding to different lipoprotein and apoE receptors, it
might be presumed that apoE isoforms might influence the
recovery of GBS due to cholesterol transport difference in
regeneration and remyelination [134, 135].

EAN, first described in rabbits in 1955 by Waksman
and Adams [136], is a CD4+ T cell mediated autoimmune
disease of PNS, characterized by perivascular infiltration
of T cells and macrophages, and demyelination in the
peripheral nerves in pathological feature, which can be
induced in susceptible animal strains including mouse, rat,
sheep, chicken, and monkey by active immunization with
peripheral nerve myelin [136] or its component P0 or P2
proteins or their neuritogenic peptides [137, 138] together
with complete Freud’s adjuvant. EAN shares many of clini-
cal, immunological, electrophysiological, and morphological
characteristics with GBS, thus serves as a useful model for
exploring the pathogenesis and immunotherapy of GBS.
ApoE can modulate immune responses in EAN through
modification of functions of macrophages, T cells, and
BNB, shifting Th1/Th2 balance, as well as other effects
(Figure 2). Autoreactive T cells penetrating the broken-down
BNB to accumulate in peripheral nervous tissue gives rise to
the effector phase of the immune response in EAN [139].
A number of observations support the role of apoE in
maintaining the integrity of the BNB or BBB. And apoE-
deficient mice were shown to suffer impaired BNB and BBB,
which might be one of the reasons why apoE-deficient mice
underwent more severe EAN [132, 133]. ApoE may inhibit
the migration of blood derived inflammatory cells across
the BNB or the transduction of chemotactic signals for
migration. This is a critical step in the migratory process of
inflammatory cells across tight endothelial junctions [140,
141].

Previously, we explored the role of apoE in P0 peptide
180–199 induced EAN. Our data, in accordance with data
from other studies, showed that apoE deficiency increased
antigen presentation capacity of macrophages, which can
explain the elevated susceptibility to EAN in apoE-deficient
mice [91, 133]. We further revealed an increased suscep-
tibility to EAN after upregulation of the autoreactive T
cell response to peripheral nerve components in APOE
knockout mice. The results provided strong evidence that
apoE might act as an inhibitor for EAN by inhibiting
the Th1 response and P0-specific antibody production.
Shifting the Th1/Th2 to the Th1 direction is one mecha-
nism underlying increased susceptibility to EAN in apoE-
deficient mice. Th cells can differentiate to Th1 and Th2
subpopulations with cross-regulating cytokine profiles that
may play a decisive role in the initiation and termination
of an autoimmune process [142]. Dysregulation of the
Th1/Th2 balance can result in autoimmune diseases [143].
In EAN, Th1 cytokines predominate and mediate inflam-
matory damage, whereas Th2 cytokines are associated with
recovery from the disease [144–147]. ApoE-deficient mice
were shown to produce higher levels of IFN-γ, IL-12, and
TNF-α and lower levels of IL-10 than C57BL/6 mice in
EAN.
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Figure 2: Schematic illustration of the potential role of apoE in the pathogenesis of EAN. ApoE can modulate immune responses in EAN
through modification of functions of macrophages, T cells, and BNB, and through shifting Th1/Th2 balance. (−) suppressive function; (+)
supportive function.

Macrophages are the principal antigen presenting cells
and effector cells in the pathogenesis of EAN. In demyeli-
nated peripheral nerves, the MHC class II positive cells are
mainly macrophages [148]. The pivotal role of macrophages
in immune-mediated nerve damage is direct phagocytic
attack on myelin, and the release of proinflammatory
cytokines including TNF-α, IL-1; and IL-6 and other noxious
molecules [149, 150]. A variety of studies demonstrated an
isoform-specific effect of apoE on macrophage functions,
including NO production and cytokine secretion [28, 30, 79].
Considering the critical importance of NO and cytokines
in the pathogenesis of EAN, this effect might contribute to
isoform-dependent susceptibility or clinical severity of EAN
[151, 152]. Schwann cells can function as facultative antigen
presenting cells in certain conditions (see review by Meyer
zu Hörste et al.) [153]. Duan et al. in our group, further
revealed that the antigen presenting capacity of Schwann cells
in apoE-deficient mice was enhanced, which might occur via

down-regulation of intracellular IL-6 production. SCs may
actively participate in local immune resonses as a source of
IL-6 in the PNS [154]. ApoE-deficient mice were observed
to reduce the expression of intracellular IL-6 accompanied
with higher levels of MHC II and CD 40 expression on SCs.
Moreover, an enhanced antigen-presenting function of SCs
was found in apoE-deficient mice to P0 peptide 180-199
specific T cells [155].

Ongoing studies in our group have shown a preliminary
result of an isotype-specific effect of apoE in EAN, with
the most severe clinical course occurring on APOE ε4
Tg mice, while with the least severe EAN on APOE ε3
Tg mice (unpublished data). Apart from all above, strong
evidence supports a crucial role of apoE in peripheral
nerve regeneration and remyelination [156]. ApoE has been
proposed to scavenge lipid debris from the degenerating
myelin and provide it to sprouting axons via LDLR-mediated
endocytosis [157, 158]. Despite this, regenerating nerves in
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both apoE-deficient and control mice were morphologically
indistinguishable one month after sciatic nerve crush [159],
indicating a surrogate effect of other apolipoproteins in PNS
regeneration.

4. Conclusions and Prospective

The immunomodulatory functions of apoE have been
extensively studied in the past decades. Increasing studies
have focused on the ambiguous or even controversial
isotype-dependent effects. It appears difficult partly due
to the difficulty of interpretation of results from animal
experiments to a general conclusion. For example, the
difference of serum and tissue apoE concentration in APOE
ε2, ε3, and ε4 Tg mice might be a confounding factor
when comparing the isotype-dependent effects of apoE
on immune system and immune responses [28, 160–163].
Domain interaction, which distinguishes apoE4 from apoE2
and apoE3 in biological function, has been suggested to
contribute to the detrimental effects of apoE4 [163, 164].
Because of domain interaction, apoE4 bind preferentially
to very low density lipoproteins, which are more rapidly
removed from plasma than other lipoproteins such as HDL,
to which apoE3 and apoE2 binds preferentially [164–166].
Also of note is that apoE levels in the CNS vary during
the estrous cycle and estrogen could increase ApoE levels
[76, 167–169]. Moreover, the lipid-free apoE was shown only
to bind LRP [93, 170, 171]. Therefore in interpreting the
effects of apoE on immune responses, its lipidation state, its
concentration, and its location of action must be taken into
consideration. It still remains to be defined whether a crucial,
isoform-dependent activity of apoE role exists in GBS, or
MS, considering the different distribution of APOE allele in
the whole population. Anyhow, preliminary findings about
the role of apoE in immune system and immune responses
have shed light on the research of autoimmune diseases such
as GBS and MS. The elucidation of the exact mechanisms
by which apoE functions on immunity is appealing in that
it may provide new insight to preventive or therapeutic
strategies of autoimmune diseases and even other diseases
[172].
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outcome in Guillain-Barré syndrome,” Journal of Neurology
Neurosurgery and Psychiatry, vol. 74, no. 7, pp. 971–973,
2003.

[126] T. Jin, L. S. Hu, M. Chang, J. Wu, B. Winblad, and J. Zhu,
“Proteomic identification of potential protein markers in
cerebrospinal fluid of GBS patients,” European Journal of
Neurology, vol. 14, no. 5, pp. 563–568, 2007.

[127] Y. R. Yang, S. L. Liu, Z. Y. Qin, et al., “Comparative
proteomics analysis of cerebrospinal fluid of patients with
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