
Citation: Battineni, G.; Hossain,

M.A.; Chintalapudi, N.; Amenta, F.

A Survey on the Role of Artificial

Intelligence in Biobanking Studies: A

Systematic Review. Diagnostics 2022,

12, 1179. https://doi.org/10.3390/

diagnostics12051179

Academic Editor: Sameer Antani

Received: 5 April 2022

Accepted: 6 May 2022

Published: 9 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

diagnostics

Systematic Review

A Survey on the Role of Artificial Intelligence in
Biobanking Studies: A Systematic Review
Gopi Battineni * , Mohmmad Amran Hossain , Nalini Chintalapudi and Francesco Amenta

Clinical Research Centre, School of Medicinal and Health Products Sciences, University of Camerino,
62032 Camerino, Italy; mohammad.hossain@unicam.it (M.A.H.); nalini.chintalapudi@unicam.it (N.C.);
francesco.amenta@unicam.it (F.A.)
* Correspondence: gopi.battineni@unicam.it; Tel.: +39-333-172-8206

Abstract: Introduction: In biobanks, participants’ biological samples are stored for future research.
The application of artificial intelligence (AI) involves the analysis of data and the prediction of any
pathological outcomes. In AI, models are used to diagnose diseases as well as classify and predict
disease risks. Our research analyzed AI’s role in the development of biobanks in the healthcare
industry, systematically. Methods: The literature search was conducted using three digital reference
databases, namely PubMed, CINAHL, and WoS. Guidelines for preferred reporting elements for
systematic reviews and meta-analyses (PRISMA)-2020 in conducting the systematic review were
followed. The search terms included “biobanks”, “AI”, “machine learning”, and “deep learning”,
as well as combinations such as “biobanks with AI”, “deep learning in the biobanking field”, and
“recent advances in biobanking”. Only English-language papers were included in the study, and to
assess the quality of selected works, the Newcastle–Ottawa scale (NOS) was used. The good quality
range (NOS ≥ 7) is only considered for further review. Results: A literature analysis of the above
entries resulted in 239 studies. Based on their relevance to the study’s goal, research characteristics,
and NOS criteria, we included 18 articles for reviewing. In the last decade, biobanks and artificial
intelligence have had a relatively large impact on the medical system. Interestingly, UK biobanks
account for the highest percentage of high-quality works, followed by Qatar, South Korea, Singapore,
Japan, and Denmark. Conclusions: Translational bioinformatics probably represent a future leader in
precision medicine. AI and machine learning applications to biobanking research may contribute to
the development of biobanks for the utility of health services and citizens.

Keywords: biobanks; artificial intelligence; machine learning; biomarkers; precision medicine

1. Introduction

Biobanks are facilities or platforms where human biological samples are stored for
future research [1,2]. Clinical data and genetic information are made available through this
biorepository, which represents, also, a research resource. A biobank plays a relevant role in
modern-day research, providing access to a large amount of data that can be used in various
studies [2–6]. In the past, there was a great deal of difficulty in collecting samples or data
from several different locations and using them for research. Each biobank is categorized
differently. As defined by the pan-European Biobanking and Biomolecular Resources
Research Infrastructure (BBMRI), population-based and disease-oriented biobanks are
the most widely recognized types [3,7]. Examples of disease-oriented biobanks are those
that store medical data and samples of genetic material. Alternatively, population-based
biobanks are focused on the analysis and progression of acute and chronic diseases.

Computer systems that use artificial intelligence (AI) can simulate and explain hu-
man intelligence [8–10]. Meanwhile, machine learning (ML) and deep learning (DL) are
subfields of AI, which usually gain knowledge from user experiences and improve their
learning behavior over time [11–13]. As a field of engineering, ML entails the design,
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development, and evaluation of algorithmic techniques used to acquire knowledge and
learn from data [14]. AI and ML models in medicine can improve patient outcomes. A
holistic understanding of AI applications, opportunities, and challenges is, also, necessary
from a programmatic perspective, for the ethical and sustainable implementation of AI
solutions [15]. These solutions effectively address the support of decision-making, after
analyzing the given user data. DL algorithms, such as neural network-based models that
deal with image data, are being adopted for automatic classification and early detection of
severe diseases such as cancers and neurogenerative disorders [16–19]. Explainability and
causality are other AI features that contribute to more trust, fairness, and ethical respon-
sibility. As a result, “medical AI” is an excellent AI application to study how ML can be
applied for solving problems in safety and health, by using decision-making and resolving
scientific problems using ML [20].

AI can be applied to all areas of healthcare to improve clinical support, including the
diagnosis and prognosis of a disease. Many studies have already explained how Al is doing
equal to or better than humans in healthcare industries [21–24]. Analyzing medical images,
and correlating symptoms and biomarkers from electronic medical records to diagnosis
and prediction of disease, are just a few examples of AI applications in the healthcare
sector [25]. In biobanks, physicians find AI helpful for identifying patients who require
extra care and attention, as they analyze patients’ conditions and medical exams with
AI [26]. When a doctor or researcher are attempting to understand and diagnose a disease,
the previous health record can be extremely helpful [26,27]. For that reason, a biobank may
be the most suitable solution. Researchers and clinicians can access patient medical records
from biobanks and analyze them with AI to make predictions and diagnose patients. In
accessing the personal data of patients in European Union nations, the user should obey
the General Data Protection Regulation (GDPR), which is a major component of human
rights and privacy laws.

AI can also play a variety of roles to assist people working in biobanks [26]. AI-based
computers can include and understand the information on the consent form, and can
answer questions through web-based communication between Biobank members and AI.
It is also critical to understand how these techniques can assist in real-time experimental
works as well as to help predict patient conditions. In this paper, we describe the role of AI
frameworks in the new generation of biobanking. Since big data knowledge is continuously
evolving, this paper also describes how AI and ML techniques are promoting innovation
and standardization in biobanking.

The remaining parts of the paper are organized as follows: Section 2 elaborates on the
methods used to identify the literature, with a quality assessment of each included work;
Section 3 describes the search results and characteristics of the included studies; Section 4
presents a discussion on the role and importance of biobanks; and, finally, Section 5 ends
with a conclusion.

2. Methods
2.1. Search Strategy

Our literature search involved the scientific literature found in online databases such as
PubMed (Medline), Cumulative Index to Nursing and Allied Health Literature (CINAHL),
and Web of Science (WoS). The systematic review followed the preferred reporting items
for systematic reviews and meta-analyses (PRISMA) guidelines [28]. Figure 1 shows the
number of articles from selected databases. Search terms include ‘biobanks’, ‘AI or Artificial
Intelligence’, ‘machine learning’, and ‘deep learning’. These are combined in search strings
such as ‘biobanks and AI’, ‘deep learning in biobanks’, and ‘present advancements in
biobanking’, or a string of words between them. The Boolean operator “AND” is employed
in PubMed, CINAHL, and WoS to report search strings on the advances AND implications
of “AI and biobanking”.
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Figure 1. The number of papers identified is based on individual library sources.

2.2. Selection Criteria

Based on an analysis of all retrieved articles, the authors independently evaluated
the articles and drafted the list of papers considered eligible. Following this, the previ-
ously mentioned records were examined for inconsistencies, and, when one was found,
the diverse opinions were discussed to reach an agreement. While determining which
articles were to be included in the review, the authors read every article together to gather
information helpful to achieving the end goal of the research.

Original articles published in English, as well as research using biobank datasets to
identify chronic diseases, are the inclusion criteria for the study selection. Exclusion criteria
were studies with review articles, books, and documents, studies with different character-
istics other than inclusion criteria, studies published in non-peer-reviewed journals, and
studies that did not deal with specific elements of the role of biobanking in AI.

2.3. Quality Evaluation

After applying inclusion and exclusion criteria, the Newcastle–Ottawa Scale (NOS)
was adopted for quality checks of selected studies [29]. After applying inclusion and
exclusion criteria, the Newcastle–Ottawa Scale (NOS) was adopted for quality checks of
selected studies. The objective of the NOS is to assess the quality of non-randomized studies
and to integrate the quality assessments into the interpretation of meta-analytical results.
According to them, study quality can be divided into three categories: poor (0–4), moderate
(5–6), and excellent (7–9). These scores were calculated according to study outcomes,
comparability, and study groups. Different parameters that define each quality factor were
also taken into account, before inclusion in the final review. Studies that reached a NOS
score of at least seven (NOS ≥ 7) have been considered for further review.

3. Results
3.1. Search Outcomes

Our search has identified 239 items, of which 195 were retained for screening after
removing duplicates (Figure 2). The following reasons led to the elimination of 128 items
that were not relevant to our study objectives: 72 articles that discussed biobanks in the
present world and provided general information; 37 articles that discussed information
management; and 19 articles that presented book reviews. The other 16 works did not have
full texts and were eliminated in the quality evaluation stage. The remaining 51 works were
assessed for quality based on their content as well. In spreadsheets, all authors recorded
their quality scores, following a careful application of quality criteria. Finally, 33 papers
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were excluded because of their low or moderate quality score (NOS < 7), and the remaining
18 were selected for final review.
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databases (* selected libraries) [30].

3.2. Study Characteristics

The characteristics of each study are based on different parameters including study
type, country, sample size, AI model, performance metric, and type experimental setup,
which are further tabulated in Table 1.

Singapore, Japan, and Denmark are three countries that have produced studies. Two
works selected from Qatar and South Korea were included in this review. The majority of
the studies were based on the United Kingdom (UK) biobanks (16 out of 18). Moreover, six
studies used image data from biobanks, and the rest used human participants. The input
data to train the model was image type (n = 7), demographic data of participants (n = 9),
and the remaining two works are applied to both image and patient data. As mentioned,
AI models including both ML and deep learning were incorporated for training. Among
the 18 included works, 10 works have applied supervised ML models and 6 have applied
deep learning based neural network algorithms, followed by the quantification approach
and quality control pipeline, respectively. Each algorithm’s performance is analyzed in
terms of various metrics, such as accuracy, sensitivity (true positive rate), and receiver
operating characteristics (ROC), when it comes to binary classifications. ROC analysis
is widely used in medical imaging studies [31]. A ROC value of 1 indicates that a more
robust classification was carried out. Five studies with binary classification presented ROC
values between 0.77 and 0.91 [32–36]. Eight studies present their performance in terms of
accuracy, ranging from 75% to 99.7% [37–44], and two studies presented sensitivity values
of 69.9% [36] and 98.7% [45], respectively. Four works did not show any performance
metric in their experimental outcomes [46–49]. The details of each work are discussed in
the subsequent sections.
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Table 1. Summary of findings for the role of AI techniques in the management of global biobanking data.

N Study Type Country Sample Experimental Setup Findings Performance
Metric Ref

1 Experimental UK
19000 T1-weighted MRI (data spilt was

done for training 12,802 and testing
6885)

A three-dimensional CNN model was
developed for the prediction of

chronological age.

Predicted age against true age of both male
and female groups from linear and nonlinear

registered images.
- [46]

2 Experimental UK 81,830 fundus images with random
seed for training and testing

An ML model was employed for
predicting optic nerve head features.

Vertical cup-to-disc ratio (VCDR), a
diagnostic parameter and cardinal

endophenotype for glaucoma are predicted.
- [47]

3 Experimental UK 35,358 subjects with 32,215 Caucasians
ML models were developed for

age-related macular degeneration
(AMD) risk prediction.

ML models were more satisfactory than
normal controls. ROC: 0.81 [32]

4 Experimental Japan,
UK

416,846 subjects (62,387 subjects from
Japan, 354,459 from the UK)

Developed DEEP*HLA deep learning
models for human leukocyte antigen

(HLA).

DEEP*HLA applied to subjects and succeed
in linked class I and II HLA variation shared

risk from those populations.

Sensitivity:
98.7% [45]

5 Experimental UK Around 500,000 individuals in the age
range 40 to 69

Proposed pipeline to classify
Alzheimer’s disease accurately.

Modular ML models had high accuracy to
detect and classify Alzheimer’s disease

Accuracy:
82.44% [37]

6 Experimental UK, Denmark 5594 patients Developed and validated ML model and
predicted risk of COVID-19.

ML models can predict hospital and ICU
admissions risk for COVID-19 patients by
using age, gender, and BMI demographic

variables.

ROC: 0.80 [33]

7 Experimental South Korea,
Singapore, UK

216,152
retinal images

Five datasets from three different
biobanks were used to train and validate
deep learning models for coronary artery

calcium (CAC) scores.

In South Korea, 6.3% of participants had
cardiovascular events, and in Singapore and
the UK 3.6%, and 0.7% of participants had
fatal cardiovascular events, respectively.

ROC: 0.74 [34]

8 Experimental UK 11,245 participants Designed and validated ML model to
predict mortality risk of COVID-19.

ML models are highly accurate with patient
characteristics, brief medical history,

symptoms, and vital signs.
ROC: 0.91 [35]

9 RCT UK 14,503 T1-weighted structural MRI
data

Data spilt was done for training 12,949
and testing 6885. Simple Fully

Convolutional Network (FCN) to predict
brain age.

99.5% accuracy for sex classification and
brain age prediction.

Accuracy:
99.5% [39]

10 Cross-sectional Qatar 987 Qatar residents Machine learning models used to predict
Hypertension.

ML models are a rapid productive model to
predict Hypertension.

Accuracy:
82.1% [40]
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Table 1. Cont.

N Study Type Country Sample Experimental Setup Findings Performance
Metric Ref

11 Experimental UK, ATLAS

Madelon dataset (16 classes, 50
features), fashion-MINST dataset
(dimensionality: 782, sample size:

70,000), T1 brain MRI data of 10,000
participants (UKBB), 60,498 gene
expressions of 8500 participants

(TCGA)

Introduced an approach to discover
disease subtypes: Classifier trained as
healthy vs diseased to extract instance
information instead of analyzing raw

data.

Clustering is helpful in understanding and
identification of disease subtypes. - [48]

12 Experimental UK MRI data of 32,000 participants
A neural network trained to understand

various biological metrics from MRI
images.

The neural network showed sturdy results to
infer body measurement with MRI data.

Accuracy:
99.97% [41]

13 Experimental UK 20,000 subjects’ cardiac magnetic
resonance (CMR) image Fully automatic image analysis pipeline.

Experimental setup provided better
significance among automation indexes and

manual reference indexes. It produced
similar accuracy in segmentation for

humans.

Accuracy:
93% [42]

14 Experimental UK 423,604
ML model developed to predict

cardiovascular diseases (CVD) using
auto prognosis.

Auto prognosis predicted 268 more cases
than the Framingham score, and also

consider more predictors.

ROC: 0.77,
sensitivity:

69.9%
[36]

15 Statistical Qatar 1000
ML models and Panorama state of the

art statistics methods are used to
understand type 2 diabetics and obesity.

Expose the risk factor and association
between diabetics and obesity to subjects. - [49]

16 Experimental UK 96,220 participants
ML models to detect human sleep and
activity from wrist-worn accelerometer

data.

To evaluate human lifestyle and health
behaviors with machine learning. Accuracy: 87% [43]

17 Experimental UK 700 patients with cancer Systematic chart review on patients with
AI treatment with stage I-III BC.

This study is the primary link to a cluster of
specific single nucleotide polymorphisms
(SNP/gene) to aromatase inhibitor-related

arthralgia (AIA) risk independent of
candidate gene bias.

Accuracy:
75.93% [44]

18 Epidemiological UK 10,000 MRI Images An automated processing and quality
control (QC) pipeline was established.

Raw images data is converted to useful
information to further research.

Accuracy:
99.1% [38]
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Biobanking Studies Associated with Image Datasets

Data from population imaging studies are used to develop and implement personal-
ized health strategies to prevent and treat disease more effectively. The authors developed
and demonstrated how to use T1-weighted MRI images from the UK biobank to predict
chronological age, using convolutional neural networks (CNNs) [46]. Many clinical studies
are correlated with CNN model prediction errors: ∆BrainAge = Age Predicted − AgeTrue. The
connection between ∆BrainAge and image-derived phenotypes (IDPs) is also studied.

Brain images from the UK biobank are used to advance research. Automatic image
processing and quality control pipelines are in place, which explains how biobank images
are acquired and processed [38]. An artificial neural network called the Simple Fully
Convolutional Network (SFCN) has been designed in [39]. Using T1-weighted structural
MRI, they obtained very promising results, with a mean absolute error of 2.14 years and
99.5% gender classification accuracy.

Some studies proposed an automated framework by deep learning techniques for ana-
lyzing cardiac (CMR) images and determining the risk of cardiovascular disease [42], [50].
Furthermore, Alipanahi et al. [47] developed an ML model to predict vertical cup-to-disc
ratio (VCDR) from color fundus photographs stored in the UK biobank, and this model
successfully detected and replicated loci associated with recent VCDR genome-wide associ-
ation studies.

A prospective epidemiological study obtains images of pre-symptomatic popula-
tions [51–53]. Many diseases can be detected early through these studies, and at-risk indi-
viduals can be identified. However, assessing the images automatically presents new chal-
lenges [54]. A few studies gathered images from three nations at the same time [34,55,56].
In [34], based on retinal images, a deep learning model was developed and validated
using data from South Korea, Singapore, and the UK biobanks, to predict Coronary Artery
Calcium (CAC), a validated marker of cardiovascular disease risk.

3.3. Applications of AI in Disease Detection with Biobanking Datasets
3.3.1. Alzheimer’s Disease Detection

MRI information images can be used to classify dementia disorders (such as Alzheimer’s
disease) with AI technologies and frameworks. Using the framework proposed, a sample
of 500,000 AD patients’ data from the UK Biobank was successfully categorized, with an
accuracy of 82.4% [37]. By using biobank information, machine learning technologies can
also predict the risk of age-related macular degeneration (AMD) [32], and deep learning
can uncover subnetworks that partially overlap the human brain, evaluate the relationship
between social brain regions, and predict examined social traits generally, as well as predict
specific aspects of social functioning, such as social isolation [57].

3.3.2. Cardiovascular Diseases

Based on biobanking data from large datasets, advanced AI technologies are playing
an increasingly critical role in cardiovascular disease risk prediction. As a result, one
study used an auto prognosis that selects and tunes ML model features based on the auto
prognosis [36].

3.3.3. Chronic Diseases

AI is also being applied to analyze biomedical samples and predict risk factors for
chronic diseases such as diabetes, obesity, and cancer [58–60]. A study analyzed 1000 pa-
tients’ data from Qatar biobanks and applied ML models to assess the risk of chronic
diseases [49]. The number of risk factors for diabetes and obesity were then defined [37].
In [45], an ML model for imputing human leukocyte antigen (HLA) genotypes were devel-
oped. Data from Genome-wide association studies (GWAS) are presented in this model.
They used their evaluated ML model “DEEP*HLA” to identify HLA variants associated
with type 1 diabetes, independently. Another study has evaluated ML algorithms to
predict aromatase inhibitor-related arthralgia (AIA), which is used to treat breast cancer



Diagnostics 2022, 12, 1179 8 of 13

patients [44]. The accuracy of the AIA prediction was 75.93%, after analyzing 695,227 single
nucleotide polymorphisms (SNP) from UK biobanks [44].

Arterial hypertension is a worldwide-diffused disorder linked to several risk factors.
Hypertension can be predicted and diagnosed early with the help of biobanks and artificial
intelligence [40]. Adults must spend enough time walking, sleeping, and sitting to remain
healthy. Monitoring these behaviors can also be accomplished using ML techniques to
classify the individual’s sleep and activity levels [43].

3.3.4. Disease Subtype Classification

Clinical diagnosis and treatment selection can be significantly improved by the classi-
fication of disease subtypes and correlated biomarkers [61]. Both humans and machines
have difficulties in finding these subtypes in noisy, high-dimensional biomedical data. MA
Schulz et al. [48] proposed a novel ML approach to naturalize disease subtype detection
based on datasets of biobanks from the UK and Atlas. They introduced the classification of
disease subtypes. Further, a human body MRI combined with deep neural networks can be
used to provide imaged anatomy for a large-scale medical exam as well as a comprehensive
medical survey [41].

3.3.5. Pandemics

The ML models were able to accurately assess individual risk and track the progres-
sion of COVID-19 disease [33,62]. ML models can be used to predict the risk of COVID-19
at various stages. There is evidence that ML models can accurately predict death, hospital-
ization, and ICU admissions based on COVID-19 risk [33]. The authors of the study [35]
developed ML models to estimate mortality risk in confirmed cases based on the COVID-
19 cases obtained from the UK biobank. During the model development, they consider
comorbidities such as kidney failure, urinary tract infections, pneumonia cases, and other
baseline characteristics such as preexisting symptoms.

4. Discussion

The systematic review aims to provide a thorough analysis of the impact of AI knowl-
edge on the health sector and to assess, systematically, the most important global biobanks.
In this paper, we attempted to present how different AI techniques have been understood
and applied by different authors, while remaining fair towards all sorts of biobanking
datasets. ML models are viewed, based on the evidence provided, as the classification of
different diseases, biomarkers, and managing of data collected from different countries’
biobanks [37,63–66].

The general observation we made is that many ML methods have been developed and
are widely used to improve some analytics challenges across studies of complex human
diseases. For instance, normal ageing and neurodegenerative disease cause morphological
changes in the brain [46,67]. There is a subtle, non-linear, and spatially and temporally
distinct effect of ageing on the brain [68–70]. Brain changes are frequently detected using
MRI data in the clinical system. ML models can be applied to develop models that are
appropriate for capturing these patterns and are responsive to changes in interest. Image
analysis using deep learning algorithms performs better than manual methods in predicting
diseases and diagnosing them [71–73]. With the use of medical images for diagnosis and
prognosis, machine learning models are proving to be very efficient [32,38,39,42,46].

Medical reports are collected and stored in biobanks for future research, as such indi-
vidual clinical reports are generated from biomedical images of biological samples [74,75].
The researchers can collect biobank samples and use AI techniques to automatically identify,
predict, or classify risk groups in participants [76–78]. Traditional medical systems are
struggling to diagnose chronic diseases and neurological disorders. Biobanks and AI could
be supportive for clinical practice and choosing the best AI algorithms for developing
disease prognosis models [79,80]. The size of the dataset, type of data, possible outcomes,
and user access need to be considered when designing the model. Biobanking medical
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image datasets are also useful to predict and diagnose cardiovascular disease. It is reported
that ML models have the satisfactory performance to predict cardiovascular disease by
analyzing medical images from biobanks [34,36,42]. These models can predict the risk of
developing hypertension [40] and track it to identify the physical activity of patients [43].

Regarding the data in biobanks in the future, we cannot conclude how it will be used,
nor does one know what other data it can be linked to [81]. Considering that such large
datasets are not easy to be handled manually, scientists are trying to develop autonomous
tools to identify the hidden data patterns. The main task of finding these AI tools is to
handle the larger data that is generated every day, to provide better healthcare. Biobanks
are playing an important role in the transformation of personalized care, by coupling
biological data with electronic health records (EHR) [66]. Big data can drive changes
in perspective “from treatment to prevention”, which could allow distinguishing early
variables, and, consequently, develop preventive measures. Models for anticipating health
risk assessment [82], estimation of survival rates, and helpful suggestions would produce
better medical services [83].

Bioinformatics is the intersection of biomedical data and informatics. Molecular and
cellular technologies are creating large amounts of data, making it possible to detect and
translate them into biological and clinical outcomes rapidly. Therefore, incorporating
developed AI and ML technologies has the potential to provide a unique opportunity
to elevate biomedical sciences. Implementing AI in biobanks can change the traditional
medical system. Biobanks store participants’ biological samples and medical histories. The
biobank’s data are extremely useful in the diagnostic process. Specialists evaluate treatment
based on medical reports and the patient’s history.

Medical experts have classified them into high- and low-risk groups based on their
medical data, as this manual procedure always takes longer and causes the diagnosis to
be delayed [84]. AI can analyze medical samples in a short amount of time and predict or
classify patients. The data in the biobank can be a little noisy and do not follow any specific
format. The data were chosen from biobanks based on the input requirements of AI models
and the expected results of this analysis. Sometimes, dealing with data necessitates more
time and wisdom. It was never easy to collect data and choose the best AI model.

5. Conclusions

The fundamental objective of this work is to highlight the role of artificial intelligence
models, which can generate a more accurate diagnosis using different kinds of data that are
available in medical repositories called biobanks. Medical research and drug development
are facilitated by the rapid evolution of biobanks, which can collect enormous amounts of
human and non-human biological material and their related data. By developing diverse
biobanks and data-sharing capabilities, researchers may be able to conduct research into
personalized medicine, among other fields. Adding AI algorithms into these personalized
patient data can help answer questions on genetic variation impact on human health. Trans-
lational bioinformatics can shape the future of personalized medicine. As such, this study
has systematically reviewed the current trends of AI in biobanking. It is concluded that the
use of AI can develop strategies for biomedical research, by analyzing the distribution and
inventory statuses of the biobanks and research trends.
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3. Kinkorová, J.; Topolčan, O. Biobanks in Horizon 2020: Sustainability and attractive perspectives. EPMA J. 2018, 9, 345–353.
[CrossRef] [PubMed]

4. Zeng, Y.; Zhao, K.; Klein, K.O.; Shao, X.; Fritzler, M.J.; Hudson, M.; Colmegna, I.; Pastinen, T.; Bernatsky, S.; Greenwood, C.M.T.
Thousands of CpGs Show DNA Methylation Differences in ACPA-Positive Individuals. Genes 2021, 12, 1349. [CrossRef]

5. Benjamins, J.W.; Yeung, M.W.; van de Vegte, Y.J.; Said, M.A.; van der Linden, T.; Ties, D.; Juarez-Orozco, L.E.; Verweij, N.; van der
Harst, P. Genomic insights in ascending aortic size and distensibility. EBioMedicine 2022, 75, 103783. [CrossRef]

6. Leming, M.; Suckling, J. Deep learning for sex classification in resting-state and task functional brain networks from the UK
Biobank. NeuroImage 2021, 241, 118409. [CrossRef]

7. Viertler, C.; Zatloukal, K. Biobanken und Biomolekulare Ressourcen Forschungsinfrastruktur (BBMRI). Der Pathologe 2008, 29
(Suppl. 2), 210–213. [CrossRef]

8. Kulkarni, S.; Jha, S. Artificial Intelligence, Radiology, and Tuberculosis: A Review. Acad. Radiol. 2019, 27, 71–75. [CrossRef]
9. Xiang, Y.; Zhao, L.; Liu, Z.; Wu, X.; Chen, J.; Long, E.; Lin, D.; Zhu, Y.; Chen, C.; Lin, Z.; et al. Implementation of artificial

intelligence in medicine: Status analysis and development suggestions. Artif. Intell. Med. 2020, 102, 101780. [CrossRef]
10. Holmes, J.H.; Sacchi, L.; Bellazzi, R.; Peek, N. Artificial Intelligence in Medicine AIME 2015. Artif. Intell. Med. 2017, 81, 1–2.

[CrossRef]
11. Tack, C. Artificial intelligence and machine learning | applications in musculoskeletal physiotherapy. Musculoskelet. Sci. Pract.

2018, 39, 164–169. [CrossRef] [PubMed]
12. Aromolaran, O.; Aromolaran, D.; Isewon, I.; Oyelade, J. Machine learning approach to gene essentiality prediction: A review.

Brief. Bioinform. 2021, 22, bbab128. [CrossRef] [PubMed]
13. Heo, J.; Yoon, J.; Park, H.; Kim, Y.D.; Nam, H.S.; Heo, J.H. Machine Learning–Based Model for Prediction of Outcomes in Acute

Stroke. Stroke 2019, 50, 1263–1265. [CrossRef] [PubMed]
14. Bi, Q.; E Goodman, K.; Kaminsky, J.; Lessler, J. What is Machine Learning? A Primer for the Epidemiologist. Am. J. Epidemiol.

2019, 188, 2222–2239. [CrossRef]
15. Vogeley, K.; Bente, G. Artificial humans: Psychology and neuroscience perspectives on embodiment and nonverbal communica-

tion. Neural Netw. 2010, 23, 1077–1090. [CrossRef]
16. Huang, H.; Hsu, B.W.; Lee, C.; Tseng, V.S. Development of a light-weight deep learning model for cloud applications and remote

diagnosis of skin cancers. J. Dermatol. 2020, 48, 310–316. [CrossRef]
17. Noor, M.B.T.; Zenia, N.Z.; Kaiser, M.S.; Mahmud, M.; Al Mamun, S. Detecting Neurodegenerative Disease from MRI: A Brief

Review on a Deep Learning Perspective. Lect. Notes Comput. Sci. 2019, 11976, 115–125. [CrossRef]
18. Zhang, L.; Wang, M.; Liu, M.; Zhang, D. A Survey on Deep Learning for Neuroimaging-Based Brain Disorder Analysis. Front.

Neurosci. 2020, 14, 779. [CrossRef]
19. Padilla, L.M.; Creem-Regehr, S.H.; Hegarty, M.; Stefanucci, J.K. Decision making with visualizations: A cognitive framework

across disciplines. Cogn. Res. Princ. Implic. 2018, 3, 29. [CrossRef]
20. Chen, M.; Decary, M. Artificial intelligence in healthcare: An essential guide for health leaders. Health Manag. Forum 2019, 33,

10–18. [CrossRef]
21. Baskaran, L.; Ying, X.; Xu, Z.; Al’Aref, S.J.; Lee, B.C.; Lee, S.-E.; Danad, I.; Park, H.-B.; Bathina, R.; Baggiano, A.; et al. Machine

learning insight into the role of imaging and clinical variables for the prediction of obstructive coronary artery disease and
revascularization: An exploratory analysis of the CONSERVE study. PLoS ONE 2020, 15, e0233791. [CrossRef] [PubMed]

22. Vodencarevic, A.; Tascilar, K.; Hartmann, F.; Reiser, M.; Hueber, A.J.; Haschka, J.; Bayat, S.; Meinderink, T.; Knitza, J.; on behalf of
the RETRO study group; et al. Advanced machine learning for predicting individual risk of flares in rheumatoid arthritis patients
tapering biologic drugs. Arthritis Res. Ther. 2021, 23, 67. [CrossRef] [PubMed]

23. WCross, W.F.; West, J.C.; Pisani, A.R.; Crean, H.F.; Nielsen, J.L.; Kay, A.H.; Caine, E.D. A randomized controlled trial of suicide
prevention training for primary care providers: A study protocol. BMC Med. Educ. 2019, 19, 58. [CrossRef] [PubMed]

24. Wilson, F.A.; Zallman, L.; Pagán, J.A.; Ortega, A.N.; Wang, Y.; Tatar, M.; Stimpson, J.P. Comparison of Use of Health Care Services
and Spending for Unauthorized Immigrants vs Authorized Immigrants or US Citizens Using a Machine Learning Model. JAMA
Netw. Open 2020, 3, e2029230. [CrossRef] [PubMed]

www.marchebiobank.it
http://doi.org/10.23736/S0375-9393.22.16208-5
http://www.ncbi.nlm.nih.gov/pubmed/35164491
http://doi.org/10.1016/j.cca.2019.05.021
http://www.ncbi.nlm.nih.gov/pubmed/31145895
http://doi.org/10.1007/s13167-018-0153-7
http://www.ncbi.nlm.nih.gov/pubmed/30538786
http://doi.org/10.3390/genes12091349
http://doi.org/10.1016/j.ebiom.2021.103783
http://doi.org/10.1016/j.neuroimage.2021.118409
http://doi.org/10.1007/s00292-008-1048-5
http://doi.org/10.1016/j.acra.2019.10.003
http://doi.org/10.1016/j.artmed.2019.101780
http://doi.org/10.1016/j.artmed.2017.06.011
http://doi.org/10.1016/j.msksp.2018.11.012
http://www.ncbi.nlm.nih.gov/pubmed/30502096
http://doi.org/10.1093/bib/bbab128
http://www.ncbi.nlm.nih.gov/pubmed/33842944
http://doi.org/10.1161/STROKEAHA.118.024293
http://www.ncbi.nlm.nih.gov/pubmed/30890116
http://doi.org/10.1093/aje/kwz189
http://doi.org/10.1016/j.neunet.2010.06.003
http://doi.org/10.1111/1346-8138.15683
http://doi.org/10.1007/978-3-030-37078-7_12
http://doi.org/10.3389/fnins.2020.00779
http://doi.org/10.1186/s41235-018-0120-9
http://doi.org/10.1177/0840470419873123
http://doi.org/10.1371/journal.pone.0233791
http://www.ncbi.nlm.nih.gov/pubmed/32584909
http://doi.org/10.1186/s13075-021-02439-5
http://www.ncbi.nlm.nih.gov/pubmed/33640008
http://doi.org/10.1186/s12909-019-1482-5
http://www.ncbi.nlm.nih.gov/pubmed/30764814
http://doi.org/10.1001/jamanetworkopen.2020.29230
http://www.ncbi.nlm.nih.gov/pubmed/33306118


Diagnostics 2022, 12, 1179 11 of 13

25. Strang, K.D.; Sun, Z. Hidden big data analytics issues in the healthcare industry. Health Inform. J. 2019, 26, 981–998. [CrossRef]
[PubMed]

26. Narita, A.; Ueki, M.; Tamiya, G. Artificial intelligence powered statistical genetics in biobanks. J. Hum. Genet. 2020, 66, 61–65.
[CrossRef]

27. Marmor, R.A.; Clay, B.; Millen, M.; Savides, T.J.; Longhurst, C.A. The Impact of Physician EHR Usage on Patient Satisfaction.
Appl. Clin. Inform. 2018, 09, 11–14. [CrossRef] [PubMed]

28. Moher, D.; Shamseer, L.; Clarke, M.; Ghersi, D.; Liberati, A.; Petticrew, M.; Shekelle, P.; Stewart, L.A.; PRISMA-P Group. Preferred
reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst. Rev. 2015, 4, 1. [CrossRef]
[PubMed]

29. Lo, C.K.-L.; Mertz, D.; Loeb, M. Newcastle-Ottawa Scale: Comparing reviewers’ to authors’ assessments. BMC Med. Res. Methodol.
2014, 14, 45. [CrossRef]

30. Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.;
Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, 105906.
[CrossRef]

31. Alemayehu, D.; Zou, K.H. Applications of ROC Analysis in Medical Research. Acad. Radiol. 2012, 19, 1457–1464. [CrossRef]
[PubMed]

32. Yan, Q.; Jiang, Y.; Huang, H.; Swaroop, A.; Chew, E.Y.; Weeks, D.E.; Chen, W.; Ding, Y. Genome-Wide Association Studies-Based
Machine Learning for Prediction of Age-Related Macular Degeneration Risk. Transl. Vis. Sci. Technol. 2021, 10, 29. [CrossRef]
[PubMed]

33. Jimenez-Solem, E.; Petersen, T.S.; Hansen, C.; Hansen, C.; Lioma, C.; Igel, C.; Boomsma, W.; Krause, O.; Lorenzen, S.; Selvan, R.;
et al. Developing and validating COVID-19 adverse outcome risk prediction models from a bi-national European cohort of 5594
patients. Sci. Rep. 2021, 11, 3246. [CrossRef]

34. Rim, T.H.; Lee, C.J.; Tham, Y.-C.; Cheung, N.; Yu, M.; Lee, G.; Kim, Y.; Ting, D.S.W.; Chong, C.C.Y.; Choi, Y.S.; et al. Deep-learning-
based cardiovascular risk stratification using coronary artery calcium scores predicted from retinal photographs. Lancet Digit.
Health 2021, 3, e306–e316. [CrossRef]

35. MDabbah, M.A.; Reed, A.B.; Booth, A.T.C.; Yassaee, A.; Despotovic, A.; Klasmer, B.; Binning, E.; Aral, M.; Plans, D.; Morelli, D.;
et al. Machine learning approach to dynamic risk modeling of mortality in COVID-19: A UK Biobank study. Sci. Rep. 2021, 11,
16936. [CrossRef]

36. Alaa, A.M.; Bolton, T.; Di Angelantonio, E.; Rudd, J.H.F.; Van Der Schaar, M. Cardiovascular disease risk prediction using
automated machine learning: A prospective study of 423,604 UK Biobank participants. PLoS ONE 2019, 14, e0213653. [CrossRef]

37. Tian, J.; Smith, G.; Guo, H.; Liu, B.; Pan, Z.; Wang, Z.; Xiong, S.; Fang, R. Modular machine learning for Alzheimer’s disease
classification from retinal vasculature. Sci. Rep. 2021, 11, 238. [CrossRef]

38. Alfaro-Almagro, F.; Jenkinson, M.; Bangerter, N.K.; Andersson, J.L.; Griffanti, L.; Douaud, G.; Sotiropoulos, S.N.; Jbabdi, S.;
Hernandez-Fernandez, M.; Vallee, E.; et al. Image processing and Quality Control for the first 10,000 brain imaging datasets from
UK Biobank. NeuroImage 2018, 166, 400–424. [CrossRef]

39. Peng, H.; Gong, W.; Beckmann, C.F.; Vedaldi, A.; Smith, S.M. Accurate brain age prediction with lightweight deep neural
networks. Med. Image Anal. 2021, 68, 101871. [CrossRef]

40. Alkaabi, L.A.; Ahmed, L.S.; Al Attiyah, M.F.; Abdel-Rahman, M.E. Predicting hypertension using machine learning: Findings
from Qatar Biobank Study. PLoS ONE 2020, 15, e0240370. [CrossRef]

41. Langner, T.; Strand, R.; Ahlström, H.; Kullberg, J. Large-scale biometry with interpretable neural network regression on UK
Biobank body MRI. Sci. Rep. 2020, 10, 17752. [CrossRef]

42. Attar, R.; Pereañez, M.; Gooya, A.; Albà, X.; Zhang, L.; de Vila, M.H.; Lee, A.M.; Aung, N.; Lukaschuk, E.; Sanghvi, M.M.; et al.
Quantitative CMR population imaging on 20,000 subjects of the UK Biobank imaging study: LV/RV quantification pipeline and
its evaluation. Med. Image Anal. 2019, 56, 26–42. [CrossRef]

43. Willetts, M.; Hollowell, S.; Aslett, L.; Holmes, C.; Doherty, A. Statistical machine learning of sleep and physical activity phenotypes
from sensor data in 96,220 UK Biobank participants. Sci. Rep. 2018, 8, 7961. [CrossRef]

44. Reinbolt, R.E.; Sonis, S.; Timmers, C.D.; Fernandez-Martinez, J.L.; Cernea, A.; Deandrés-Galiana, E.J.; Hashemi, S.; Miller, K.;
Pilarski, R.; Lustberg, M.B. Genomic risk prediction of aromatase inhibitor-related arthralgia in patients with breast cancer using
a novel machine-learning algorithm. Cancer Med. 2017, 7, 240–253. [CrossRef]

45. Naito, T.; Suzuki, K.; Hirata, J.; Kamatani, Y.; Matsuda, K.; Toda, T.; Okada, Y. A deep learning method for HLA imputation and
trans-ethnic MHC fine-mapping of type 1 diabetes. Nat. Commun. 2021, 12, 1639. [CrossRef]

46. Dinsdale, N.K.; Bluemke, E.; Smith, S.M.; Arya, Z.; Vidaurre, D.; Jenkinson, M.; Namburete, A.I. Learning patterns of the ageing
brain in MRI using deep convolutional networks. NeuroImage 2020, 224, 117401. [CrossRef]

47. Alipanahi, B.; Hormozdiari, F.; Behsaz, B.; Cosentino, J.; McCaw, Z.R.; Schorsch, E.; Sculley, D.; Dorfman, E.H.; Foster, P.J.; Peng,
L.H.; et al. Large-scale machine-learning-based phenotyping significantly improves genomic discovery for optic nerve head
morphology. Am. J. Hum. Genet. 2021, 108, 1217–1230. [CrossRef]

48. Schulz, M.-A.; Chapman-Rounds, M.; Verma, M.; Bzdok, D.; Georgatzis, K. Inferring disease subtypes from clusters in explanation
space. Sci. Rep. 2020, 10, 12900. [CrossRef]

http://doi.org/10.1177/1460458219854603
http://www.ncbi.nlm.nih.gov/pubmed/31264509
http://doi.org/10.1038/s10038-020-0822-y
http://doi.org/10.1055/s-0037-1620263
http://www.ncbi.nlm.nih.gov/pubmed/29298451
http://doi.org/10.1186/2046-4053-4-1
http://www.ncbi.nlm.nih.gov/pubmed/25554246
http://doi.org/10.1186/1471-2288-14-45
http://doi.org/10.1136/BMJ.N71
http://doi.org/10.1016/j.acra.2012.09.006
http://www.ncbi.nlm.nih.gov/pubmed/23122565
http://doi.org/10.1167/tvst.10.2.29
http://www.ncbi.nlm.nih.gov/pubmed/34003914
http://doi.org/10.1038/s41598-021-81844-x
http://doi.org/10.1016/S2589-7500(21)00043-1
http://doi.org/10.1038/s41598-021-95136-x
http://doi.org/10.1371/journal.pone.0213653
http://doi.org/10.1038/s41598-020-80312-2
http://doi.org/10.1016/j.neuroimage.2017.10.034
http://doi.org/10.1016/j.media.2020.101871
http://doi.org/10.1371/journal.pone.0240370
http://doi.org/10.1038/s41598-020-74633-5
http://doi.org/10.1016/j.media.2019.05.006
http://doi.org/10.1038/s41598-018-26174-1
http://doi.org/10.1002/cam4.1256
http://doi.org/10.1038/s41467-021-21975-x
http://doi.org/10.1016/j.neuroimage.2020.117401
http://doi.org/10.1016/j.ajhg.2021.05.004
http://doi.org/10.1038/s41598-020-68858-7


Diagnostics 2022, 12, 1179 12 of 13

49. Ullah, E.; Mall, R.; Rawi, R.; Moustaid-Moussa, N.; Butt, A.A.; Bensmail, H. Harnessing Qatar Biobank to understand type 2
diabetes and obesity in adult Qataris from the First Qatar Biobank Project. J. Transl. Med. 2018, 16, 99. [CrossRef]

50. Vergani, V.; Razavi, R.; Puyol-Antón, E.; Ruijsink, B. Deep Learning for Classification and Selection of Cine CMR Images to
Achieve Fully Automated Quality-Controlled CMR Analysis From Scanner to Report. Front. Cardiovasc. Med. 2021, 8, 1260.
[CrossRef]

51. Benatar, M.; Wuu, J. Presymptomatic studies in ALS: Rationale, challenges, and approach. Neurology 2012, 79, 1732–1739.
[CrossRef]

52. Buitrago-Garcia, D.; Egli-Gany, D.; Counotte, M.J.; Hossmann, S.; Imeri, H.; Ipekci, A.M.; Salanti, G.; Low, N. Occurrence
and transmission potential of asymptomatic and presymptomatic SARS-CoV-2 infections: A living systematic review and
meta-analysis. PLOS Med. 2020, 17, e1003346. [CrossRef]

53. Subramanian, R.; He, Q.; Pascual, M. Quantifying asymptomatic infection and transmission of COVID-19 in New York City using
observed cases, serology, and testing capacity. Proc. Natl. Acad. Sci. USA 2021, 118, e2019716118. [CrossRef]

54. Litjens, G.; Kooi, T.; Bejnordi, B.E.; Setio, A.A.A.; Ciompi, F.; Ghafoorian, M.; van der Laak, J.A.W.M.; van Ginneken, B.; Sánchez,
C.I. A survey on deep learning in medical image analysis. Med. Image Anal. 2017, 42, 60–88. [CrossRef]

55. Van Timmeren, J.E.; Cester, D.; Tanadini-Lang, S.; Alkadhi, H.; Baessler, B. Radiomics in medical imaging-”how-to” guide and
critical reflection. Insights Imaging 2020, 11, 91. [CrossRef]

56. Budd, S.; Robinson, E.C.; Kainz, B. A survey on active learning and human-in-the-loop deep learning for medical image analysis.
Med. Image Anal. 2021, 71, 102062. [CrossRef]

57. Kiesow, H.; Spreng, R.N.; Holmes, A.J.; Chakravarty, M.M.; Marquand, A.F.; Yeo, B.T.T.; Bzdok, D. Deep learning identifies
partially overlapping subnetworks in the human social brain. Commun. Biol. 2021, 4, 65. [CrossRef]

58. Liss, D.T.; Finch, E.A.; Gregory, D.L.; Cooper, A.; Ackermann, R.T. Design and participant characteristics for a randomized
effectiveness trial of an intensive lifestyle intervention to reduce cardiovascular risk in adults with type 2 diabetes: The I-D-
HEALTH study. Contemp. Clin. Trials. 2016, 46, 114–121. [CrossRef]

59. Kim, H.; Lim, D.; Kim, Y. Classification and Prediction on the Effects of Nutritional Intake on Overweight/Obesity, Dyslipidemia,
Hypertension and Type 2 Diabetes Mellitus Using Deep Learning Model: 4–7th Korea National Health and Nutrition Examination
Survey. Int. J. Environ. Res. Public Health 2021, 18, 5597. [CrossRef]

60. Wang, X.; Zhao, Z.; Han, X.; Zhang, Y.; Li, F.; Li, H. Single-Nucleotide Polymorphisms Promote Dysregulation Activation by
Essential Gene Mediated Bio-Molecular Interaction in Breast Cancer. Front. Oncol. 2021, 11, 791943. [CrossRef]

61. Califf, R.M. Biomarker definitions and their applications. Exp. Biol. Med. 2018, 243, 213–221. [CrossRef] [PubMed]
62. Quiroz-Juárez, M.A.; Torres-Gómez, A.; Hoyo-Ulloa, I.; León-Montiel, R.D.J.; U’Ren, A.B. Identification of high-risk COVID-19

patients using machine learning. PLoS ONE 2021, 16, e0257234. [CrossRef] [PubMed]
63. Weissler, E.H.; Naumann, T.; Andersson, T.; Ranganath, R.; Elemento, O.; Luo, Y.; Ghassemi, M. The role of machine learning in

clinical research: Transforming the future of evidence generation. Trials 2021, 22, 537. [CrossRef] [PubMed]
64. Riegman, P.H.; Morente, M.M.; Betsou, F.; De Blasio, P.; Geary, P. Biobanking for better healthcare. Mol. Oncol. 2008, 2, 213–222.

[CrossRef] [PubMed]
65. Coppola, L.; Cianflone, A.; Grimaldi, A.M.; Incoronato, M.; Bevilacqua, P.; Messina, F.; Baselice, S.; Soricelli, A.; Mirabelli, P.;

Salvatore, M. Biobanking in health care: Evolution and future directions. J. Transl. Med. 2019, 17, 172. [CrossRef]
66. Malsagova, K.; Kopylov, A.; Stepanov, A.; Butkova, T.; Sinitsyna, A.; Izotov, A.; Kaysheva, A. Biobanks—A Platform for Scientific

and Biomedical Research. Diagnostics 2020, 10, 485. [CrossRef]
67. De Ture, M.A.; Dickson, D.W. The neuropathological diagnosis of Alzheimer’s disease. Mol. Neurodegener. 2019, 14, 32. [CrossRef]
68. Oschwald, J.; Guye, S.; Liem, F.; Rast, P.; Willis, S.; Röcke, C.; Jäncke, L.; Martin, M.; Mérillat, S. Brain structure and cognitive

ability in healthy aging: A review on longitudinal correlated change. Rev. Neurosci. 2019, 31, 1–57. [CrossRef]
69. Mu, S.H.; Xu, M.; Duan, J.X.; Zhang, J.; Tan, L.H. Localizing Age-Related Changes in Brain Structure Using Voxel-Based

Morphometry. Neural Plast. 2017, 2017, 6303512. [CrossRef]
70. Ramanoël, S.; York, E.; Le Petit, M.; Lagrené, K.; Habas, C.; Arleo, A. Age-Related Differences in Functional and Structural

Connectivity in the Spatial Navigation Brain Network. Front. Neural Circuits 2019, 13, 69. [CrossRef]
71. Aggarwal, R.; Sounderajah, V.; Martin, G.; Ting, D.S.W.; Karthikesalingam, A.; King, D.; Ashrafian, H.; Darzi, A. Diagnostic

accuracy of deep learning in medical imaging: A systematic review and meta-analysis. NPJ Digit. Med. 2021, 4, 65. [CrossRef]
72. Liu, X.; Faes, L.; Kale, A.U.; Wagner, S.K.; Fu, D.J.; Bruynseels, A.; Mahendiran, T.; Moraes, G.; Shamdas, M.; Kern, C.; et al.

A comparison of deep learning performance against health-care professionals in detecting diseases from medical imaging: A
systematic review and meta-analysis. Lancet Digit. Health 2019, 1, e271–e297. [CrossRef]

73. Lundervold, A.; Lundervold, A. An overview of deep learning in medical imaging focusing on MRI. Z. Med. Phys. 2018, 29,
102–127. [CrossRef]

74. Rodrigue, A.L.; Mastrovito, D.; Esteban, O.; Durnez, J.; Koenis, M.M.; Janssen, R.; Alexander-Bloch, A.; Knowles, E.M.; Mathias,
S.R.; Mollon, J.; et al. Searching for Imaging Biomarkers of Psychotic Dysconnectivity. Biol. Psychiatry Cogn. Neurosci. Neuroimaging
2021, 6, 1135–1144. [CrossRef]

75. Cuellar, L.K.; Friedrich, A.; Gabernet, G.; de la Garza, L.; Fillinger, S.; Seyboldt, A.; Koch, T.; Oven-Krockhaus, S.Z.; Wanke, F.;
Richter, S.; et al. A data management infrastructure for the integration of imaging and omics data in life sciences. BMC Bioinform.
2022, 23, 61. [CrossRef]

http://doi.org/10.1186/s12967-018-1472-0
http://doi.org/10.3389/fcvm.2021.742640
http://doi.org/10.1212/WNL.0b013e31826e9b1d
http://doi.org/10.1371/journal.pmed.1003346
http://doi.org/10.1073/pnas.2019716118
http://doi.org/10.1016/j.media.2017.07.005
http://doi.org/10.1186/s13244-020-00887-2
http://doi.org/10.1016/j.media.2021.102062
http://doi.org/10.1038/s42003-020-01559-z
http://doi.org/10.1016/j.cct.2015.11.016
http://doi.org/10.3390/ijerph18115597
http://doi.org/10.3389/fonc.2021.791943
http://doi.org/10.1177/1535370217750088
http://www.ncbi.nlm.nih.gov/pubmed/29405771
http://doi.org/10.1371/journal.pone.0257234
http://www.ncbi.nlm.nih.gov/pubmed/34543294
http://doi.org/10.1186/s13063-021-05489-x
http://www.ncbi.nlm.nih.gov/pubmed/34399832
http://doi.org/10.1016/j.molonc.2008.07.004
http://www.ncbi.nlm.nih.gov/pubmed/19383342
http://doi.org/10.1186/s12967-019-1922-3
http://doi.org/10.3390/diagnostics10070485
http://doi.org/10.1186/s13024-019-0333-5
http://doi.org/10.1515/revneuro-2018-0096
http://doi.org/10.1155/2017/6303512
http://doi.org/10.3389/fncir.2019.00069
http://doi.org/10.1038/s41746-021-00438-z
http://doi.org/10.1016/S2589-7500(19)30123-2
http://doi.org/10.1016/j.zemedi.2018.11.002
http://doi.org/10.1016/j.bpsc.2020.12.002
http://doi.org/10.1186/s12859-022-04584-3


Diagnostics 2022, 12, 1179 13 of 13

76. Krittanawong, C.; Johnson, K.W.; Choi, E.; Kaplin, S.; Venner, E.; Murugan, M.; Wang, Z.; Glicksberg, B.S.; Amos, C.I.; Schatz,
M.C.; et al. Artificial Intelligence and Cardiovascular Genetics. Life 2022, 12, 279. [CrossRef]

77. Annaratone, L.; De Palma, G.; Bonizzi, G.; Sapino, A.; Botti, G.; Berrino, E.; Mannelli, C.; Arcella, P.; Di Martino, S.; Steffan, A.;
et al. Basic principles of biobanking: From biological samples to precision medicine for patients. Virchows Arch. 2021, 479, 233–246.
[CrossRef]

78. Bard, A.; Raisi-Estabragh, Z.; Ardissino, M.; Lee, A.M.; Pugliese, F.; Dey, D.; Sarkar, S.; Munroe, P.B.; Neubauer, S.; Harvey, N.C.;
et al. Automated Quality-Controlled Cardiovascular Magnetic Resonance Pericardial Fat Quantification Using a Convolutional
Neural Network in the UK Biobank. Front. Cardiovasc. Med. 2021, 8, 677574. [CrossRef]

79. Samuel, G.; Lucivero, F.; Lucassen, A.M. Sustainable biobanks: A case study for a green global bioethics. Glob. Bioeth. 2022, 33, 50.
[CrossRef]
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