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The exploration of DNA-binding proteins (DBPs) is an important aspect of studying
biological life activities. Research on life activities requires the support of scientific
research results on DBPs. The decline in many life activities is closely related to DBPs.
Generally, the detection method for identifying DBPs is achieved through biochemical
experiments. This method is inefficient and requires considerable manpower, material
resources and time. At present, several computational approaches have been developed
to detect DBPs, among which machine learning (ML) algorithm-based computational
techniques have shown excellent performance. In our experiments, our method uses fewer
features and simpler recognition methods than other methods and simultaneously obtains
satisfactory results. First, we use six feature extraction methods to extract sequence
features from the same group of DBPs. Then, this feature information is spliced together,
and the data are standardized. Finally, the extreme gradient boosting (XGBoost) model is
used to construct an effective predictive model. Compared with other excellent methods,
our proposed method has achieved better results. The accuracy achieved by our method
is 78.26% for PDB2272 and 85.48% for PDB186. The accuracy of the experimental results
achieved by our strategy is similar to that of previous detection methods.
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INTRODUCTION

Organisms contain many macromolecular substances, such as DNA and proteins, which contain the
genetic information of organisms and are important components of all cells and tissues that make up an
organism. To study the life activities of cells, it is necessary to study DNA and proteins and the interaction
between them. Research onDBPs has an extremely important status and significance in related life sciences
and plays an important role in DNA replication and recombination, virus infection and proliferation. It is
necessary to study the combination of DNA and protein to study the gene expression of organisms at the
molecular level. Researchers are paying increasing attention toDBP studies. DBPs are a kind of protein that
binds to DNA, and it is critical to determine which of the numerous proteins can attach to DNA (Liu et al.,
2019a; Li et al., 2019; Li et al., 2020) However, the traditional use of biochemical methods to find DBP
consumes considerable time and money. Based on the above requirements and the development of
computer science and ML(Zheng et al., 2019; Zheng et al., 2020; Wang et al., 2021a), relevant researchers
have developed many detection methods based on ML algorithms in the hopes of improving the
efficiency of detecting DBP and saving manpower and material resources.
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ML is frequently utilized in the fields of computational biology
(Jiang et al., 2013a; Cheng et al., 2019a; Liu et al., 2019b; Wang
et al., 2019; Liu et al., 2020a; Tao et al., 2020a; Wang et al., 2020a;
Zhang et al., 2020a; Zhao et al., 2020a; Zhu et al., 2020; Wang
et al., 2021b;Wang et al., 2021c; Dao et al., 2021; Yu et al., 2021) to
analyze brain disease (Liu et al., 2018a; Cheng et al., 2019b; Bi
et al., 2020; Iqubal et al., 2020; Zhang et al., 2021a), lncRNA-
miRNA interactions (Cheng et al., 2016; Liu et al., 2020b; Han
et al., 2021), protein remote homology (Hong et al., 2020), protein
functions (Wei et al., 2018a; Shen et al., 2019a; Shen et al., 2019b;
Ding et al., 2019; Wang et al., 2020b; Shen et al., 2020; Tang et al.,
2020; Wang et al., 2021d; Shang et al., 2021; Shao and Liu, 2021;
Zhao et al., 2021), electron transport proteins (Ru et al., 2019),
differential expression (Yu et al., 2020a; Zhao et al., 2020b; Zhai
et al., 2020) and protein-protein interconnections (Ding et al.,
2016a; Ding et al., 2016b; Yu et al., 2020b).

The protein sequence is very sizeable, and its number far exceeds
the number of structures known to researchers (Zuo et al., 2017).
Therefore, ML is used in various computer programs that predict
DBP. The model IDNA-Prot|dis (Liu et al., 2014) was proposed by
Liu et al. and is used to detect DBP based on the pseudo amino acid
composition (PseAAC), and it can accurately extract the
characteristics of DNA binding proteins. There are two models
that use PseACC and physical-chemical distance transformation
and support vector machine (SVM) algorithms, named PseDNA-
Pro (Liu et al., 2015a) and iDNAPro-PseAAC (Liu et al., 2015b). Lin
et al. developed the IDNA-Prot (Lin et al., 2011) prediction model
based on the random forest (RF) algorithm through the PseACC
feature. Kummar et al. developed two models based on RF and SVM
classifiers called DNA-Prot (Kumar et al., 2009) and DNAbinder
(Kumar et al., 2007). Dong et al. proposed the Kmer1+ACC (Liu
et al., 2016) model based on the SVM algorithms Kmer composition
and autocross covariance transformation. The position-specific
scoring matrix (PSSM) can be obtained by calculating the protein
sequence’s position frequency matrix, which has evolutionary
information on the protein (Shao et al., 2021). The Local-DPP
(Wei et al., 2017) uses the local pseudo position-specific scoring
matrix (Pse-PSSM) and random forest algorithm to detect DBPs.
Multiple kernel SVM is a DBP predictor from heuristically kernel
alignment, and it is also named MKSVM-HKA (Ding et al., 2020a),
which includes a variety of characteristics and was developed byDing
et al. The MSFBinder (Liu et al., 2018b) model proposed by Liu et al.
is based on multiview features as well as classifiers. DPP-PseAAC
(Rahman et al., 2018) is a model based on Chou’s general PseAAC,
and it is used to detect DBPs. Methods have also been developed that
combine multiscale features and deep neural networks to predict
DBPs, such as MsDBP (Du et al., 2019).Adilina et al. (2019) analyzed
protein sequence characteristics and implemented two different
feature selection methods to build a DBP predictor.

In recent years, an increasing number of researchers have
adopted complex feature extraction methods (Fu et al., 2020; Jin
et al., 2021) and classification models to identify DBPs. It is
critical to develop a method that uses as few DBP features as
possible and includes a simple classification model while also
ensuring a good ability to detect DPB. According to previous work,
we proposed a DBP identification method based on the XGBoost
model. First, several features were extracted from the protein

sequence. Second, the features of these sequences were spliced.
Third, the dimension of the data was standardized and reduced.
Finally, the XGBoost model was used to detect DBPs. We have
evaluated the effectiveness of our method on some benchmark data
sets. Compared with some current experimental methods, our
method achieves a better Matthew’s correlation coefficient (MCC),
with a value of 0.713 for PDB186 and 0.5652 for PDB2272.

METHODS

Identifying DBPs is a common dichotomy problem. First, we used
six different feature extraction models for DBPs sequences to
extract the corresponding sequence feature information. Then,
the sequence feature information was spliced. Next,
dimensionality reduction was performed on the spliced
sequence feature information. Finally, the XGBoost model was
utilized to identify DBPs. Figure 1 depicts the flowchart of our
adopted technique.

Extracting Features
To recognize DBPs, the corresponding features must be extracted.
We adopt six feature extraction methods to obtain sequence
information: global encoding, GE (Li et al., 2009); multi-scale
continuous as well as discontinuous descriptor, MCD (You et al.,
2014); normalized Moreau-Broto auto correlation, NMBAC (Ding
et al., 2016b; Feng and Zhang, 2000); position specific scoringmatrix-
based average blocks, PSSM-AB (Jeong et al., 2011; Zhu et al., 2019);
PSSM-based discrete cosine transform, PSSM-DCT (Huang et al.,
2015); and PSSM-based discrete wavelet transform, PSSM-DWT
(Nanni et al., 2012). The abovementioned feature extraction models
are all well-known protein sequence extraction algorithm s and
commonly used, which could be described in related works (Zou
et al., 2021).Table 1 shows the feature dimensions derived by various
feature extraction methods. After completing the above work, we
used MATLAB to horizontally stitch together (Ding et al., 2020c;
Ding et al., 2020d; Yang et al., 2021a) the features extracted from the
same protein sequence using different feature extraction methods.
The spliced features are represented by Zp. After splicing, the
dimensions of PDB14189 and PDB2272 are 2692, and the
dimensions of PDB1075 and PDB186 are 3092.

Standardize the Data
To make the data more standardized and unified and to strengthen
the relationship between the characteristics of the data and the labels
of the data, we use Z-score standardization to process the data.

Z-score standardization is defined as follows:

Mp � Zp
i − �Z
σ

(1A)

�Z � ∑N
i�0Z

p
i

N
(1B)

σ �
������������∑N

i�0(Zp
i − �Z )2
N

√
(1C)

i � 1, 2, . . . ,N (1D)
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where N is the total number of samples and σ is the standard
deviation.

The DBP sequence was processed in three stages: feature
extraction, feature information splicing, and data
standardization. Following the aforementioned three stages, we
can obtain the sequence feature information Mp.

Dimensionality Reduction by
Max-Relevance-Max-Distance
Zou et al. (Quan et al., 2016; Niu et al., 2020) developed a
dimensionality reduction method in 2015 named Max-
Relevance-Max-Distance (MRMD), and the user guide and
complete runtime program can be obtained and downloaded

from the following URL: https://github.com/heshida01/MRMD3.
0. It judges data independence through a distance function and
completes the dimensionality reduction operation in three steps
(Tao et al., 2020b). It first evaluates each feature’s contribution to
the classification and then quantifies each feature’s contribution
to the classification. Second, the weights of different features are
calculated for classification and the selected features are sorted
accordingly. Third, the different numbers of features are filtered
and classified and the results are recorded. We analyze and
compare the results of the previous step to select the most
effective group and use the sequence features chosen from this
group as the result of dimensionality reduction.

The maximum correlation and the maximum distance are the
main bases for the MRMD algorithm to judge the weight of each
feature to the prediction result. The Pearson correlation
coefficient can be used to quantify the degree of correlation
between features and cases, and it can be calculated by the
maximum relevance (MR).

The Pearson correlation coefficient is defined as follows:

ρX,Y � cov(X,Y)
σXσY

(2)

The ith characteristic from the sequence and the category label
to which those sequences belong make up the vectors X and Y.

FIGURE 1 | Process of predicting DBPs.

TABLE 1 | Dimensional information about the features.

Model Dimensionality

GE 150
MCD 882
MNBAC 200
PSSM-AB 200
PSSM-DCT 399
PSSM-DWT 1,040
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The maximum distance (MD) is used to assess feature
redundancy. We calculate the three indices between
characteristics in total.

ED(X,Y) �

�����������∑N
i�0
(xi − yi)2√√

(i � 1, 2, . . . ,N) (3A)

cos(X,Y) � X · Y
‖X‖‖Y‖ (3B)

TC(X,Y) � X · Y
‖X‖2 + ‖Y‖2 −X · Y (3C)

Equations 3A, E3B, E3C represent Euclidean distance, cosine
similarity and Tanimoto coefficient, respectively. We can obtain
the MD value by calculating the three indicators. Finally, the
classification contribution value of each feature is calculated by
combining MR and MD in a specific ratio.

After dimensionality reduction, the dimensions of PDB14189
and PDB2272 are 379, and the dimensions of PDB1075 and
PDB186 are 1460.

Based on the three steps of feature extraction and splicing, data
standardization and dimensionality reduction operations, we
obtain the final sequence features.

Extreme Gradient Boosting Algorithm
In 2011, Tianqi Chen and Carlos Guestrin (Chen and
Guestrin, 2016) first proposed the XGBoost algorithm, or
the extreme gradient boosting algorithm. It is a machine
learning model that achieves a stronger learning effect by
integrating multiple weak learners. The XGBoost model has
many advantages, such as strong flexibility and scalability
(Yang et al., 2021b; Zhang et al., 2021b).

Generally, most boosting tree models have difficulty
implementing distributed training because when training nth
trees, they will be affected by the residuals of the first n-1 trees
and only use first-order derivative information. The XGBoost
model is different. It performs a second-order Taylor expansion
of the loss function and uses a variety of methods to prevent
overfitting as much as possible. XGBoost can also automatically
use the CPU’s multithreaded parallel computing to speed up the
running speed. This feature represents a great advantage of
XGBoost over other methods. XGBoost has improved
significantly in terms of effect and performance.

The XGBoost algorithm is described in detail as follows:

ŷi � ∑M
m�1

fm(xi), fm ∈ F (4)

whereM is the number of trees and F represents the basic model
of the trees.

The objective function is defined as follows:

L � ∑
i

l(ŷi, yi) +∑
m

Ω(fm) (5)

The error between the predicted value and the true value is
represented by the loss function l, and the regularized function Ω
to prevent overfitting is defined as follows:

Ω(f) � γT + 1
2
λ‖w‖2 (6)

where the weight and number of leaves of each tree are
represented by w and T, respectively.

After performing the quadratic Taylor expansion on the
objective function, the information gain generated after each
split of the objective function can be expressed as follows:

Gain � 1
2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
( ∑

i ∈ IL

gi)2

∑
i∈IL

hi + λ
+
( ∑

i ∈ IR

gi)2

∑
i∈IR

hi + λ
+
( ∑

i ∈ I
gi)2

∑
i∈I
hi + λ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ − c (7)

We can see that the split threshold c is added to Eq. 7 to prevent
overfitting and inhibit the overgrowth of the tree. Only when the
information gain is greater than c is the leaf node allowed to split. It
can optimize the objective function at the same time because the tree
is prepriced.

XGBoost also has the following two features:

1. Splitting stops when the threshold is greater than the weight of
all samples on the leaf node too prevent the model from
learning special training samples.

2. The features are randomly sampled when constructing
each tree.

These features can prevent the XGBoost model from
overfitting during the experiment.

EXPERIMENTAL RESULTS

In this chapter, we obtain experimental results through experiments
on four benchmark data sets, evaluate our methods of identifying
DBP and compare our experimental results with that of other
methods.

Data Sets
The four benchmark data sets are PDB1075, PDB186, PDB14189,
and PDB2272. Liu et al. (2015a) and Lou et al. (2014) provided
PDB1075 (training set) and PDB186 (independent testing set),
respectively, and Du et al. (2019) provided PDB14189 (training
set) and PDB2272 (independent testing set). These data sets are
from the Protein Data Bank (PDB), and Table 2 shows the results of
their detailed information.

Measurement Standard
In this research, the following coefficients are used to evaluate
our method: specificity (SP), sensitivity (SN), Matthew
correlation coefficient (MCC), accuracy (ACC) and area
under the ROC curve (AUC) (Jiang et al., 2013b; Wei
et al., 2014; Wei et al., 2018a; Wei et al., 2018b; Cheng
et al., 2018; Jin et al., 2019; Zhang et al., 2020b; Cheng
et al., 2020; Liu et al., 2020c; Wang et al., 2020c; Guo et al.,
2020; Huang et al., 2020; Wei et al., 2020; Zeng et al., 2020;
Zhai et al., 2020). The calculation formulas for these
coefficients are as follows:
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Spec � TN

TN + FP
(8A)

SN � TP

TP + FN
(8B)

MCC � TP × TN − FP × FN�������������������������������������������(TP + FN) × (TN + FP) × (TP + FP) × (TN + FN)√
(8C)

ACC � TP + TN

TP + TN + FP + FN
(8D)

Among them, TN, TP, FP and FN reflect the values of true
negatives, true positives, false positives, and false negatives,
respectively.

Performance Analysis
On the PDB 1075 data set, the performance of the spliced
sequence features and single sequence features is evaluated by
randomly extracting 30% of the data as a test set. Figure 2;
Table 3 depict the experimental outcomes. PSSM-DWT (MCC:
0.4981) achieved better performance than other single sequence
features. The spliced sequence features perform better than the
single sequence feature on all parameters. The spliced sequence
feature (ROC: 0.81) also gained the best ROC performance.

Independent Data Set of PDB186
In this experiment, different sequence features have different
prediction performances. We use PDB1075 as the training set and
PDB186 as the test set to evaluate our experimental method and

compared the experimental findings of our approach to those of
13 other methods. Table 4 clearly shows the complete
experimental outcomes.

The MCC values of the five methods are all above 0.6 for
MSDBP, MSFBinder, Local-DPP MKSVM-HKA, and Adilina’s
work (0.606, 0.616, 0.625, 0.648 and 0.670, respectively). Thus,
these methods have excellent performance. Although Adilina’s
work (SN: 95.0%) performs best in terms of the value of SN, the
results of XGBoost achieve optimal ACC (85.48%), MCC (0.713)
and Spec (80.6%). On PDB1075 and PDB186, XGBoost
outperforms the other methods.

Independent Data Set of PDB2272
Du et al. (2019) removed proteins in PDB2272 that shared more
than 40% of their sequence with PDB14189 to avoid homology
bias between the two data sets. We conducted experiments on
Du’s data set to verify the performance of the XGBoost model.
PDB14189 is the training set, and PDB2272 is the test set. We
independently tested XGBoost on PDB2272, used PDB14189 as
the training set and compared it with five other classification
methods. The detailed experimental results can be seen in
Table 5. The results clearly show that XGBoost achieves the
best ACC, MCC and Spec values of 78.26%, 0.5652 and 76.05%,
respectively, compared with the other methods. For PDB2272,
XGBoost presents a superior performance relative to the other
classification methods.

Experimental Results With PDB2272 and
PDB186 as Test Set
We combined PDB14189 and PDB1075 as the training set,
and combined PDB2272 and PDB186 as the test set. After
normalization and dimensionality reduction operations, we
got an accuracy of 79.09% and the MCC value was 0.5818. It
can be seen that this result is between the previous two
experimental results.

DISCUSSION AND CONCLUSION

This paper proposes a method of predicting DBPs using the
XGBoost algorithm and by splicing sequence feature
information. The final sequence feature is built from
multiple sequence features and spliced by MATLAB. To
make the data more standardized and strengthen the
relationship between data characteristics and data tags, the
data are processed using Z-Score standardization. During the
experiment, we used MRMD to reduce the dimensionality of
the data and thus reduce the characteristics of the data. We

TABLE 2 | Basic information about four standard data sets.

Data sets The number of negative The number of positive The total numbers

PDB14189 7,060 7,129 14,189
PDB1075 550 525 1,075
PDB2272 1,119 1,153 2,272
PDB186 93 93 186

FIGURE 2 | ROC curves of different feature extraction methods on
PDB1075 data.
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performed experiments and compared the performance of
XGBoost in terms of single sequence feature information

and spliced sequence feature information. On the PDB 1075
data set, performance of the spliced sequence feature (MCC:
0.7272) is obviously better than that of the single sequence
feature. To further assess our method, we applied the XGBoost
model to the PDB186 and PDB2272 data sets. XGBoost
produced superior results for PDB186 (MCC: 0.713) and
PDB2272 (MCC: 0.5652) compared to available methods.
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