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ABSTRACT
Meiosis is a specialized two-step cell division responsible for genome haploidization and the generation
of genetic diversity during gametogenesis. An integral and distinctive feature of the meiotic program is
the evolutionarily conserved initiation of homologous recombination (HR) by the developmentally
programmed induction of DNA double-strand breaks (DSBs). The inherently dangerous but essential act of
DSB formation is subject to multiple forms of stringent and self-corrective regulation that collectively
ensure fruitful and appropriate levels of genetic exchange without risk to cellular survival. Within this
article we focus upon an emerging element of this control—spatial regulation—detailing recent advances
made in understanding how DSBs are evenly distributed across the genome, and present a unified view of
the underlying patterning mechanisms employed.
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Introduction

A unique feature of the meiotic cell cycle is the generation of
programmed DNA double-strand breaks (DSBs) during early
prophase I by the evolutionarily conserved topoisomerase-
like enzyme, Spo11.1 DSBs initiate the process of homolo-
gous recombination (HR)—a fundamental DNA repair pro-
cess integral to the exchange of genetic information and the
segregation of homologous chromosomes during the first
meiotic nuclear division.2 Remarkably, the distribution of
meiotic DSBs across the genome is not random and is,
instead, subject to control at multiple levels. At fine scale,
DSBs are concentrated within discrete, scattered and non-
randomly distributed regions of permissiveness described as
DSB hotspots—of which there are over »3600 within the S.
cerevisiae genome and »10,000-40,000 within mammals.3–7

In recent years, an ever-growing collection of factors have
been shown to influence the designation of a hotspot
through various means—including recruitment of Spo11 and
the promotion of cleavage susceptibility (Section on Hotspot
designation).8 Beyond this, multiple layers of active regula-
tion appear to exist that not only quantitatively constrain the
number of DSBs forming per cell (~150-200 in S. cerevisiae;
for a review see Ref. 2 and Ref. 9), but also ensure that those
DSBs that do occur are distributed more evenly across all
chromatids—a process referred to here as spatial regulation
(Sections on Reactive regulation and Proactive regulation).9

These mechanisms do not operate in isolation but rather
coalesce into a multifaceted system, progressively layering
over one another to guide the DSB distribution both

proactively and reactively in DSB-independent and -depen-
dent manners respectively (Fig. 1).

Understanding how cells utilize this hierarchy of processes
to spatially guide DSB formation is of critical importance: not
only can this “DSB patterning” system potentially protect the
genomic integrity of the germline by suppressing aberrant or
excessive DSB formation, but it also constructs a foundation—
the genome-wide DSB distribution—upon which all down-
stream processes build, thereby influencing not just the identity
of recombinant chromosomes arising from a given individual,
but also the rates and distribution of genetic change arising
long-term within a population. Within this article we seek to
place recent work revealing a role for Tel1ATM in the spatial
regulation of DSB formation into this wider context, and con-
struct a generalized framework for how and why this emerging
“patterning” system shapes the meiotic recombination land-
scape throughout prophase I.

Hotspot designation

Spo11 itself possesses only moderate ability to discriminate
between DNA sequences,4,10,11 and yet, preferential formation
of DSBs within discrete windows of opportunity4 (DSB hot-
spots) distributed non-randomly across the genome, while
not universally conserved, is a distinctive feature of meiosis in
many organisms.2,8 The historical analysis of recombination
and advent of high-resolution mapping technology has
revealed a wealth of information in answer to this apparent
contradiction.12 Remarkably, a molecular system to explicitly
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govern and direct hotspot designation does not appear to be
essential, but rather meiotic recombination is able to “piggy-
back” upon factors embedded within the organizational code
of chromosomes—whose primary functions are to orchestrate
unrelated cellular processes including gene regulation, tran-
scription and DNA replication.4,8 Within many species, no
single factor is key and instead it is the co-occurrence of cer-
tain “gatekeeper” factors in a specific fashion that seemingly
unlocks the potential for a region to accommodate DSB for-
mation. The dependency of DSB formation upon factors not
specifically designed to guide recombination may also go
some way toward explaining a certain peculiarity of meiosis:
while a handful of common principles exist, no universal,
cross-species mechanism underpins hotspot designation and
distinctions in strategy are observed between species as well
as across evolutionary classes (for an extensive review see Ref.
8) (Fig. 2 – Left).1,8,13

Many of the concepts surrounding hotspot designation (out-
lined above) are particularly well illustrated within the yeast, S.
cerevisiae, which relies upon a hierarchical collection of low-
impact factors (Fig. 2 – Right).1,4,8 Of particular prominence is
the striking correlation of yeast hotspots with regions of nucle-
osomal depletion (NDRs), a genomic feature primarily associ-
ated with promoter regions.4,14,15 However, a significant
proportion of detectable NDRs are not associated with robust
DSB activity, revealing an insufficiency of chromatin accessibil-
ity as an isolated gatekeeper.4 Furthermore, incomplete

correlations are observed between Spo11 binding sites and sub-
sequent DSB positions within S. cerevisiae (50-55% overlap),16

Spo11-fusion constructs are incapable of inducing DSB-forma-
tion at all targeted loci17,18 and the localization of Spo11 to mei-
otic chromosomes appears to be a distinct process from that of
Spo11 activation,11 collectively suggesting that gatekeeper fac-
tors not only facilitate simplistic substrate-enzyme interaction
but also create an environment favorable for catalysis.

The influence of gatekeeper factors may also extend beyond
that of local effects. At low resolution, S. cerevisiae hotspots them-
selves cluster, organizing each chromatid into periodic trough
and peak sub-domains of recombination potential4,19,20 (see
Fig. 2 – Right Top)—an observation that may reflect a non-uni-
formity in gene density and the impact gene organization seem-
ingly exerts over both hotspot position and chromatin structure
(see below). An influence over the latter could be of particular
importance: meiotic chromosomes display a unique and func-
tional architecture; self-organizing into linear arrays of protrud-
ing chromatin loops, each basally attached to a proteinaceous axis
via AT-rich association sites (see Fig. 2 - Right).21–23 Within this
structural arrangement, hotspots predominantly reside within
loop regions while, rather counterintuitively, the machinery
essential for the regulation and enzymatic induction of DSBs is
bound to the axis.21,24-26 To explain this discrepancy, the teth-
ered-loop axis model proposes that Spp1, a PHD finger domain
protein that interacts with both H3K4me3—enriched at S. cerevi-
siae hotspots—and axial factors, bridges the two entities together
and effectively “tethers” the loop to the axis for DSB forma-
tion.27–30 The observation that axis proteins are enriched at
the 30 end of S. cerevisiae genes, while strong hotspots prefer-
entially populate transcriptionally divergent intergenic regions
at the 50 end of genes, suggests that the anti-correlation
between axis site and hotspot is, in part, driven by the under-
lying organization of genes and the associated distribution of
markers.4,31,32 In addition, components of the axis may serve
as active repressors of, or steric occluders to, DSB formation.
Indeed, induction of DSBs proximal to Rec8 binding sites—an
axial protein thought to demarcate loop boundaries33,34—is
notably inefficient,35 and removal of Rec8 profoundly alters
both Spo11 binding patterns and DSB distribution.16,21,31,36 In
this manner, the placement of genes may not only constitute a
gross organizer of meiotic hotspot position, but also a regula-
tor of hotspot usage.

In striking contrast to S. cerevisiae, hotspot designation
within mammals (H. sapiens and M. musculus) relies heavily
upon a single protein: the rapidly evolving histone trimethyl-
transferase and C2H2 zinc finger domain factor, PRDM9.5,8,37–39

PRDM9 has emerged as a “swiss army knife” of mammalian
hotspot designation, and may be more appropriately thought of
as a gatekeeper-organizer. PRDM9 directs hotspot designation
by depositing H3K4me3 markers6,40,41 and potentially recruit-
ing Spo11 machinery,8 both of which promote the required co-
occurrence of factors around a consensus DNA sequence speci-
fied by the PRDM9 zinc finger motif. The identities of these
PRDM9 consensus sequences are predominantly dictated by
the allelic variant of its repetitive zinc finger array, of which
»30 have been identified within H. sapiens,42 allowing differing
allelic combinations to produce unique DSB distribu-
tions.5,38,40,43,44 Interestingly, analysis of hotspot locations

Figure 1. Hierarchical DSB patterning. Regulation of DSB position during prophase
I is achieved by means of a hierarchical collection of processes operating via three
major nodes: hotspot designation, proactive regulation, and reactive regulation.
Rather than acting in isolation, these processes interconnect — sculpting the final
DSB distribution with a high degree of complexity (see text for further details). Fur-
ther to those spatial mechanisms outlined in this review, meiotic recombination is
additionally subject to temporal regulation (reviewed in Ref. 2 and Ref. 9), ensur-
ing, for example, that DSB formation occurs post-replication and that the process
is ultimately shutdown by homologous chromosome synapsis. Differences in the
usage and timing of replication origin activity, and in the relative efficiency of
homolog engagement, may therefore permit such processes to contribute, in a
generalized manner, to spatial regulation.
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within M. musculus PRDM9¡/¡ mutants uncovered a reversion
toward S. cerevisiae-like mechanics, with events instead concen-
trating within H3K4me3-laden promoter regions.43 Such an
observation reveals the yeast system to be an ancestral means
of determining recombination position (overwritten by the
development of PRDM9) as well as a passive system that has
persisted despite the evolution of an alternative, dominant
method.

Despite the ability of hotspot designation to guide meiotic
recombination toward certain sites, the process forms only one
part of the patterning system under consideration (see Fig. 1).
Within any given meiotic cell DSBs form in only a subset of
hotspots, and as inferred by post-meiotic analysis of recombi-
nation, wild-type DSB distributions within individual S. cerevi-
siae cells do not follow models describing their random,
independent placement45 (M. Crawford, T. J. Cooper, and M. J.
Neale unpub. obs.). Thus, while it is clear that a great many fac-
tors collectively influence the spatial patterning of DSBs as
assayed within a population of cells, further layers of regulation
exist to control DSB formation on a per-cell basis. Any such
additional regulation could conceivably function in one of two
distinct ways: (i) reactively — directly activated by or in
response to DSBs forming or (ii) proactively — activated inde-
pendently of DSB formation. A potentially distinguishing fea-
ture of reactive regulation over that of proactive is an inability
to grossly impact upon population average data due to the low
frequencies at which even the strongest hotspots are cleaved
(»10-15%). Interestingly, recent work suggests both forms of
regulation function in parallel during meiosis, and within the
following sections we aim to use these concepts to explore the
constituents and evolution of these extra regulatory layers.

Reactive regulation

Cis and trans interference

Throughout prophase I, a number of spatial surveillance
mechanisms appear to sense the position of DSBs, relaying
this information along and between chromatids (in-cis/trans
respectively) to reactively sculpt the DSB distribution in a
DSB-dependent manner. Central to the cis branch of spatial
regulation within S. cerevisiae is the recently discovered phe-
nomenon of DSB interference: a localized, suppressive effect
dependent upon the DNA damage response (DDR) kinase,
Tel1ATM, which operates over »70-100kb, reducing the fre-
quency of coincident DSB formation below that expected by
chance (Fig. 3).46 While not explicitly investigated, the inabil-
ity of Tel1ATM-dependent DSB interference to strongly mani-
fest within the population average (R. J. Carpenter, V. Garcia
and M. J. Neale unpub. obs.) suggests it is a reactive, DSB-
dependent process—a hypothesis in line with known models
of Tel1ATM-activation.47 Abrogation of this effect by the inac-
tivation of Tel1ATM unexpectedly results in two distinct out-
comes: (i) over most distances (§20-100kb) DSBs are no
longer subject to interference—forming independently of one
another, with coincident DSB formation arising at frequencies
similar to those expected by chance (ii) by contrast, at short
range (§»7.5kb) DSBs exhibit concerted activity—arising
coincidentally at frequencies significantly greater than
expected from independent behavior. Remarkably, this latter
phenomenon—which results in calculated DSB interference
values that are negative—is only witnessed between DSB hot-
spots residing within the same chromosomal loop domain
(see Section on Hotspot designation and Fig. 3 - Bottom).46

Figure 2. Meiotic hotspot designation. Left - Gatekeeper factors - predictors of recombination. Hotspot designation differs significantly between species. While lower
eukaryotes (S. pombe and S. cerevisiae) rely upon a set of passive, low-impact factors, higher eukaryotes (H. sapiens and M. musculus) utilize the multi-functional histone-
trimethyltransferase, PRDM9, to guide recombination through the binding of PRDM9 consensus sequences [see text for further details]. Outside of these well-character-
ized systems, several further organisms display a number of unique properties. Within the canine lineage (C. familiaris), PRDM9 is unexpectedly non-functional—having
inactivated between »7-9Mya—with GC-richness instead serving as a robust predictor of Spo11-activity.77–79 In contrast to the majority of model organisms, insects (D.
melanogaster) and worms (C. elegans) appear devoid of traditional hotspots—consistent with the co-localization of short, repeating sequences with sites of recombina-
tion.80–82 A role for non-PRDM9 sequence motifs within recombination, however, does not preclude the existence of hotspots, as noted within A. thaliana and S.
pombe.7,83-86 Right - Layers of hotspot designation within S. cerevisiae. Canonical hotspot designation, as seen within S. cerevisiae, requires the co-occurrence of several
factors in a specific fashion in order to unlock the potential for a region to initiate recombination [see text for further details].
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Confinement of concerted activity to within the boundaries of
a loop could conceivably arise if a process upstream of DSB
formation “activates” the contained hotspots and where the
activation of any given loop region occurs in only a subset of
the population. The identity and mechanics of this hypothe-
sized activation process remain largely unknown, however, it
is pertinent, given the nature of DSB formation, to consider a
state of “pre-tethering”—that is, the intimate and stable asso-
ciation of a loop with axial elements, prior to the induction of
DSBs, which may serve to “prime” hotspots for use. The gen-
eration of localized zones of negative DSB interference may

thus be a simple manifestation of a previously unconsidered
and proactive consequence of the tethered-loop-axis model—
one otherwise masked by Tel1, whose repressive activity
ensures that only one of the primed hotspots (in any given
loop) undergoes DSB formation (see Fig. 3).

Interestingly, Tel1 and its partner DDR kinase, Mec1ATR,
have also been implicated in the parallel trans-branch of spatial
regulation. Trans-interference describes the ability of a DSB on
one chromatid to suppress formation at the corresponding
locus on its sister, homolog or—in many instances—both
(one-per-pair or one-per-quartet respectively).45 Much less is
known about the mechanics of how trans-interference is
accomplished. Inactivation of Mec1 or Tel1 abolishes the
occurrence of one-per-quartet constraints, indicating a loss of
one specific form of trans-interference; however, whether or
not the same form (inter-homolog or inter-sister) is abrogated
in each mutant is not yet clear (discussed in Ref. 9). Unlike cis-
interference, whose primary function may be the suppression
of coincident DSBs within the same activated loop domain (see
Section on DSB interference–evolution and cellular role),
trans-interference likely ensures the availability of an intact
repair substrate while simultaneously suppressing the potential
for complex double recombination events to arise from DSB
formation at the same genetic locus on both homologues. Thus,
by acting in concert, cis and trans interference are likely to pro-
mote the equal spacing of recombination events across the
genome—constituting a critical part of spatial regulation.

Toward the end of meiotic prophase, in order for DSB for-
mation to be constitutively suppressed throughout the genome
once sufficient inter-homolog interactions have been produced,
reactive regulation must hand over to a more permanent mode
of inhibition (reviewed in Ref. 2 and Ref. 9). While part of this
persistent inhibitory signal may arise from global alterations in
the expression and/or activity of factors required for DSB for-
mation,48,49 distinct spatial processes—such as the localized
suppression of DSB formation in response to homolog synapsis
(a DSB-dependent process in S. cerevisiae)50–52—also appear to
contribute. The multitude of reactive pathways and activities
induced by DSB formation thus allow for self-regulation
through multiple avenues.

DSB interference – evolution and cellular role

Substantial alterations to the DSB distribution, in the man-
ner observed within tel1D backgrounds, might be expected
to significantly perturb recombination and thereby reinforce
a presumed importance for DSB interference within the mei-
otic program; yet, tel1D mutants display no gross, meiotic
defects and exhibit only small reductions in spore viability
(»5%).46,53 Thus whether it is strictly necessary for DSB
interference to operate during meiosis is unclear, opening
the door to an intriguing possibility: DSB interference may
have emerged as an unintended byproduct of another pro-
cess—persisting in meiosis by means of indirect selection for
an indispensable cellular role or target of Tel1ATM. In-line
with the hijacking of transcriptional markers by meiosis for
hotspot designation (see Section on Hotspot designation),
any process or factor altering the accessibility, presence or
identity of these markers has the potential to disrupt DSB

Figure 3. DSB interference within S. cerevisiae. Top - Meiotic chromosomes orga-
nize into linear arrays of chromatin loops bound by a proteinaceous axis. Prior to
DSB formation, we propose that a sub-population of chromatin loops in any given
cell exist in a pre-activated state, “priming” hotspots for usage. An attractive candi-
date for pre-activation may be the tethering of loop sequences to the chromosome
axis as proposed within the tethered loop-axis model.25–29 While pre-activation
may be an unavoidable byproduct of the way in which DSB formation is setup, it
may exist to actively underscore hotspot selection—the process by which the cell
determines which of the available hotspots to utilize in any given round of meiosis.
Middle - Within wild-type cells, a DSB at any given primed hotspot triggers a
Tel1ATM- and distance-dependent suppressive effect (DSB interference), repressing
DSB formation at adjacent intra-loop hotspots and within neighboring regions
across »70-100kb in a reactive, DSB-dependent manner.46 Bottom — In the
absence of Tel1, DSB interference is abrogated, enabling adjacent DSBs to arise
independently over mid-long range distances (>20-100kb). Over short distances
(<20kb), loss of Tel1 activity unmasks the effects of pre-activation within singular
loop-domains—manifesting as patches of “negative interference” (as calculated by
the standard interference formula: 1-OBS/EXP) due to the concerted formation of
adjacent DSBs at frequencies greater than expected from the population average
[see text for further details].
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formation. Interestingly, in mitotic and vegetative states,
Tel1ATM has extensive links to transcriptional regulation via
the underlying epigenetic code, notably mediating the in-cis
silencing of transcription in proximity to non-programmed
DSBs within humans,54 modulation of nucleosomal dynam-
ics and the extensive deposition of DSB-induced histone
modifications potentially spanning hundreds of kilobases55–
58—a distance in S. cerevisiae similar to that of meiotic DSB
interference. The availability of shared, universal substrates
(e.g. histones) may thus provide a platform for the unavoid-
able, inadvertent acquisition—or intentional adaptation—of
such Tel1ATM-dependent mitotic processes whether they are
explicitly required in meiosis or not, leading to the genera-
tion of novel but potentially non-essential mechanisms (i.e.
DSB interference).

While the above presents an attractive model to explain
the origins of DSB interference, an ability for interference to
fulfil a beneficial role is not precluded. Indeed, several impor-
tant considerations remain: (i) While the impact of losing
DSB interference on S. cerevisiae spore viability is relatively
subtle, it may prove cumulative across generations—manifest-
ing after successive interference-deficient meioses as a signifi-
cant alteration in genetic diversity and elimination of affected
lineages from the gene pool—highlighting a putative role for
DSB interference in the long-term stability of the population
(ii) Any potential for meiotic failure to arise from the cluster-
ing of DSB events may be suppressed or compensated for,
masking an otherwise greater impact upon viability. A notable
candidate for this role is crossover interference: a distinct,
overlapping process regulating the placement of crossovers
(COs)—the products of homologous recombination most
integral to successful completion of meiosis.59,60 Specifically,
CO interference may have the ability to partially “correct” the
faults resulting from loss of DSB interference via a second
round of spatial regulation, selecting only a single DSB per
cluster to enter the CO pathway. Consistent with such a role,
crossover interference is notably absent within S. pombe,61 an
organism which, despite possessing a similar genome size,
exhibits a significantly lower DSB frequency and hotspot den-
sity than S. cerevisiae (»58 DSBs/cell and 1 hotspot/23kb vs.
»150-200 DSBs/cell and 1 hotspot/3.4kb respectively).4,7,62,63

A previously unconsidered consequence of this difference
may be a lower reliance upon downstream spatial regulation
to spread events along each chromatid. Instead, S. pombe may
exert more stringent control at the level of DSB formation
simply by placing the process in the hands of more rarely co-
occurring factors. DSB and CO-interference may thus collec-
tively guard against the risks associated with otherwise sto-
chastic DSB deposition—preventing deleterious circumstances
from arising by chance no matter how infrequently. Interest-
ingly, and in contrast to S. cerevisiae, Atm¡/¡ null mice
develop severe meiotic complications, rendering individuals
infertile,64,65 a phenotype predominantly ascribed to excessive
DSB formation66 and thus compatible with loss of a repres-
sive, interfering effect. Such safeguards may therefore become
increasingly important for the selective fitness of mammalian
organisms, which have larger chromatin loop sizes22,33,67

(potentially permitting unmanageable numbers of clustered
DSBs per loop), smaller populations, and greater time

between sequential cycles of sexual reproduction relative to
S. cerevisiae.

Proactive regulation

The introduction of a novel hotspot, either by insertion of a
strong, high frequency site (e.g. HIS4::LEU2) or the tethering of
Spo11/Spp1-fusion constructs to cold regions within the S. cere-
visiae genome, not only induces DSB formation but also a
repressive, distance-dependent effect that profoundly alters the
DSB distribution over a considerable margin.17,18,28,68,69 Despite
the prominent similarities to DSB interference (see Section on
Cis and trans interference), preliminary data from our group
suggests this effect exhibits substantial Tel1-independency
(R. J. Carpenter and M. J. Neale unpub. obs.), revealing a third,
distinct layer of spatial regulation (see Fig. 1). Furthermore,
this repressive effect appears to strongly manifest itself within
the population average,18,28 suggesting it is a perpetually pres-
ent and proactive process that does not rely upon DSB forma-
tion for activation.

This phenomenon—referred to here as “DSB competi-
tion”—may arise upstream of DSB formation out of a need
for hotspots to compete over restricted and limited pools of
pro-recombination factors.2,18,68 Rec114, Mer2, and Mei4,
which coalesce into the RMM-complex, are factors essential to

Figure 4. Prospective “loop cluster” model of DSB competition. Top - During early
prophase I, short stretches of axial element nucleate at scattered regions across
each chromosome.73,74 Upon this platform, the first meiotic loops may begin to
assemble, associating together into individually acting, isolated units. Bottom –
Building upon the tethered-loop axis model, we propose that within any such clus-
tered unit, limited availability of, or access to, essential factors such as RMM (the
Rec114-Mei4-Mer2 complex), coupled to a differential ability of each loop to estab-
lish a tether, could generate DSB competition by means of competitive tether-
ing—lowering the frequency of DSB formation within the remainder of the
associated loops in a proactive, DSB-independent manner. Under wild-type condi-
tions, DSB formation subsequently induces Tel1ATM-dependent DSB interference—
a process that may inhibit or dismantle cluster units thereby suppressing further
DSB formation in the immediate region. As illustrated here, the apparent Tel1-
independency of DSB competition suggests the strong, repressive effect observed
around strong hotspots is in fact, a composite of two distinct processes.
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Spo11-dependent DSB formation enriched on the chromatin
axis.26,70 Mer2, specifically, occupies a crucial role, docking to
Spp1 in a manner proposed to mediate the tethering of loops
for DSB formation.27,28 While population-averaged binding
profiles (ChIP-chip) reveal RMM to occupy »900 genomic
loci,26 an observation in line with the estimated »700 meiotic
loops present within S. cerevisiae (per haploid genome
copy),35 RMM foci peak as low as »40-60/nucleus within
individual cells,49,71 identifying RMM as potential players in
DSB competition. Despite this apparent limitation, S. cerevi-
siae is observed to form »150-200 DSBs/cell.4,72 One way to
reconcile these conflicting observations with the existence of
DSB competition is to consider that, in each cell, loops aggre-
gate around RMM foci into clustered super domains which,
perhaps, nucleate at or generate those chromosomal regions
that are first to assemble short, incomplete elements of the
chromosomal axis during early prophase I (Fig. 4 - Top).73,74

Within this model, we propose that DSB competition arises
through successive rounds of intra-cluster but inter-loop com-
petition for limited RMM and/or tether points, confining the
repressive effect of DSB competition to the average size of a
cluster (Fig. 4 - Bottom)—drawing considerable parallels to
models previously proposed for crossover interference.75 Fur-
thermore, differences in the density of gatekeeper factors (e.g.
H3K4me3) (see Section on Hotspot designation) may govern
the extent to which any given loop can compete, introducing
significant overlap between hotspot designation and down-
stream spatial regulation. Interestingly, a comparable disparity
exists within mice: an estimated 10,000 loops span the genome
while MEI4 foci are present at significantly lower levels
(»300/nucleus), suggesting a similar regulatory layer could
operate within other species.33,35,67,76 A mechanism of pre-
tethering may thus underpin both the negative interference
values observed within individual loops when Tel1ATM-depen-
dent DSB interference is lost and, in part, the DSB-indepen-
dent competition that arises between DSB hotspots residing in
adjacent loop domains within S. cerevisiae.

Concluding remarks

The risk-reward tradeoff inherent in meiotic recombination
places a strong demand on the cell for stringent and adaptive
control at multiple stages of the process. Spatial regulation of
DSB formation is rapidly emerging as a key part of this control.
As proposed here, the machinery and mechanisms underlying
spatial regulation within S. cerevisiae cannot be considered in
isolation but rather as branches to a larger, interconnecting
hierarchy within which extensive cross-talk and overlap is a
possibility. That such a complex network of overlaying regula-
tory mechanisms exists perhaps highlights the lengths to which
cells have needed to evolve in order to tolerate—and produc-
tively utilize—the DNA breaks that would otherwise be consid-
ered harmful to genome stability. Whether or not the specific
mechanisms characterized (DSB interference, DSB competition
and trans-interference) operate in other organisms is, however,
yet to be determined and much remains to be understood
within S. cerevisiae itself. Distinctions in meiotic strategy and
the extent to which spatial regulation is required likely reflect
far-reaching differences present in any given species at both the

macro and molecular levels, and thus precisely which rules will
prove to be universal and which unique, is difficult to predict.
Nevertheless, we suggest that the emerging and unified view of
DSB patterning presented here will help to guide future
investigations.
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