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Abstract: Lotus leaf has gained growing popularity as an ingredient in herbal formulations due to
its various activities. As main functional components of lotus leaf, the difference in structure of
flavonoids affected their binding properties and activities. In this paper, the existence of 11 flavonoids
in lotus leaf extract was confirmed by High Performance Liquid Chromatography (HPLC) analysis
and 11 flavonoids showed various contents in lotus leaf. The interactions between lotus leaf extract
and two kinds of serum albumins (human serum albumin (HSA) and bovine serum albumin (BSA))
were investigated by spectroscopic methods. Based on the fluorescence quenching, the interactions
between these flavonoids and serum albumins were further checked in detail. The relationship
between the molecular properties of flavonoids and their affinities for serum albumins were analyzed
and compared. The hydroxylation on 3 and 3′ position increased the affinities for serum albumins.
Moreover, both of the methylation on 3′ position of quercetin and the C2=C3 double bond of apigenin
and quercetin decreased the affinities for HSA and BSA. The glycosylation lowered the affinities
for HSA and BSA depending on the type of sugar moiety. It revealed that the hydrogen bond force
played an important role in binding flavonoids to HSA and BSA.

Keywords: bovine serum albumin; flavonoids; fluorescence spectroscopy; human serum albumin;
interaction; lotus leaf

1. Introduction

Flavonoids are a kind of antioxidant abundant in human diet and widespread in plants.
Investigations of flavonoids from dietary have attracted great interests because of their bioactivities
such as antioxidant activity, enzyme inhibitory activity, antitumor activity, and so on [1,2]. Most of
their bioactivities are basically related to their antioxidant abilities. The structural differences of
flavonoids significantly affect their absorption, metabolism, and activity in vivo [3,4]. While, the
different structures of flavonoids come from various patterns of substitution through hydroxylation,
methoxylation, sulfonation, acylation, prenylation, or glycosylation [5,6].

Lotus (Nelumbo nucifera Gaertn.) is a perennial aquatic plant widely distributed in eastern Asia,
especially in China, India and Japan. The leaf, root, and seed of lotus were usually used as vegetables
and medicines in China [7]. In recent years, the lotus leaf was becoming more and more popular as
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a kind of drink like tea in single form or as an ingredient in herbal formulations [8,9]. The lotus leaf was
used in the treatment of sunstroke, diarrhea, and fever [10]. Modern studies also showed it possesses
many pharmacological effects like anti-hyperlipidemia, anti-obesity, antioxidant, and anti-microbial
activities [11–13]. Flavonoids are main functional components of lotus leaf and many of them were
identified, including isoquercetin, hyperin, kaempferol, astragalin, myricetin, and so on [14–17].

Nowadays, investigations on the interaction between flavonoids and proteins garner great
interest [18–20]. As one of the most abundant proteins in the circulatory system, serum albumins
are the major transport protein in blood and can reversibly bind to small molecules like fatty acids,
amino acids, drugs, and inorganic ions [21]. The bioavailability of many active compounds is related
to the interaction and successive binding with serum albumins [22]. Forming stable binding complexes
could be considered a suitable model for gaining various information of protein binding [23]. Human
serum albumin (HSA) consists of a non-glycosylated single chain containing 585 amino acids with
a molecular weight of 66,500 Da [24]. Three homologous domains (domains I–III), in turn divided into
two subdomains (A and B), with multiple ligand-binding sites localized in each of these subdomains
were described [20,25]. Many drugs bind to one of the two primary binding sites located in subdomains
IIA and IIIA (Sudlow sites I and II, respectively) [26]. As the most prominent one, the IIA subdomain
appears to be spacious. However, the IIIA site is smaller and less flexible and only structurally similar
ligands could be accommodated. Bovine serum albumin (BSA) is a globular protein like HSA and
has about 76% structural homology to HAS [27,28]. Considering the representative characteristics
and the availability, the purified HSA and BSA are usually used as modeling proteins to investigate
the interactions between small molecules and serum albumins. Binding of flavonoids to HSA was
extensively studied using different fluorescence spectroscopy techniques [29–33]. The observed change
in fluorescence enables the calculation of HSA-ligand complexes stability constants and also the
distance between the ligand and Trp 214 [26]. Many studies reported the binding between flavonoids
and serum albumins [34]. The structure–affinity relationship of flavonoids with serum albumins was
studied as well. However, few reports have focused on the binding to the two kinds of serum albumins
(HSA and BSA). The selection of flavonoids was various. Several reports were focused on the dietary
flavonoids, while some reports selected different structures of flavonoids for comparison [35,36].

In this paper, 11 flavonoids were chosen as the investigation samples based on our previous
research, which were reported existing in lotus leaf and showed similar structures. The contents
of 11 flavonoids in lotus leaf extract were confirmed by High Performance Liquid Chromatography
(HPLC) method. Furthermore, the interactions between lotus leaf extract and two kinds of serum
albumins (human serum albumin (HSA) and bovine serum albumin (BSA)) were carried out by
spectroscopic methods and then the interactions between these 11 flavonoids and serum albumins
(HSA and BSA) were further investigated in detail. Then the relationship between the molecular
properties of flavonoids and their affinities for HSA and BSA were analyzed and compared.

2. Results and Discussion

2.1. Analysis of Flavonoids in Lotus Leaf Extracts

In order to understand the composition and content of selected flavonoids in lotus leaf extracts,
the detail contents of 11 flavonoids in lotus leaf extracts were analyzed using HPLC. Eleven
flavonoids—astragalin (1), rutin (2), hyperoside (3), isoquercitrin (4), taxifolin (5), luteolin (6), quercetin
(7), apigenin (8), naringenin (9), kaempferol (10), and isorhamnetin (11)—were quantified with the
standards in this study. The HPLC analysis provided a reproducible, well separated and detected
method for the 11 flavonoid compounds [37]. The representative chromatograms of the standard
mixture solution and lotus leaf extracts are illustrated in Figure 1.
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Figure 1. The chromatograms of standard mixture solution and lotus leaf extracts. The marked 11 
flavonoids were astragalin (1), rutin (2), hyperoside (3), isoquercitrin (4), taxifolin (5), luteolin (6), 
quercetin (7), apigenin (8), naringenin (9), kaempferol (10), and isorhamnetin (11). 

It could be observed that 11 flavonoids were well separated at a retention time ranging from 
12.86 min to 40.90 min. The quantitative analysis of each compound was accomplished by analyzing 
each standard compound with various concentrations. Based on the comparison of retention time, 
the contents of 11 flavonoids in lotus leaf extract were presented in Table 1. According to the HPLC 
results, astragalin, taxifolin, and isoquercitrin were abundant in lotus leaf extract (the contents of 
astragalin, taxifolin, and isoquercitrin were 13.347 ± 0.150, 10.597 ± 0.240, and 29.778 ± 0.180 mg/g of 
lotus leaf sample, respectively). However, apigenin, luteolin, kaempferol and isorhamnetin showed 
relatively low content in lotus leaf extract (less than 1.0 mg/g). Considering the selected flavonoids 
were reported by different literatures, the extraction using different solvents or different varieties and 
parts of lotus could result in the difference of contents of these flavonoids [38–41]. 

Table 1. Chemical structures of investigated flavonoids and their contents in lotus leaf extract. 

 

Flavonoids 
Substitutions

Retention Time (min) Content (mg/g) 
OH OCH3 Others

Apigenin 5,7,4′   38.84 0.216 ± 0.022 
Naringenin 5,7,4′  Flavanone 39.46 1.446 ± 0.012 

Luteolin 5,7,3′,4′   33.36 0.491 ± 0.039 
Kaempferol 3,5,7,4′   40.27 0.063 ± 0.009 
Astragalin 5,7,4′  3-O-glucoside 12.86 13.347 ± 0.150 
Quercetin 3,5,7,3′,4′   33.77 2.628 ± 0.058 
Taxifolin 3,5,7,3′,4′  Flavanone 20.41 10.597 ± 0.240 

Isorhamnetin 3,5,7,4′ 3′  40.92 0.390 ± 0.043 
Isoquercitrin 5,7,3′,4′  3-O-glucoside 19.29 29.778 ± 0.180 
Hyperoside 5,7,3′,4′  3-O-galactoside 18.58 3.292 ± 0.055 

Rutin 5,7,3′,4′  3-O-rutinoside 17.25 1.588 ± 0.045 

  

Figure 1. The chromatograms of standard mixture solution and lotus leaf extracts. The marked 11
flavonoids were astragalin (1), rutin (2), hyperoside (3), isoquercitrin (4), taxifolin (5), luteolin (6),
quercetin (7), apigenin (8), naringenin (9), kaempferol (10), and isorhamnetin (11).

It could be observed that 11 flavonoids were well separated at a retention time ranging from
12.86 min to 40.90 min. The quantitative analysis of each compound was accomplished by analyzing
each standard compound with various concentrations. Based on the comparison of retention time,
the contents of 11 flavonoids in lotus leaf extract were presented in Table 1. According to the HPLC
results, astragalin, taxifolin, and isoquercitrin were abundant in lotus leaf extract (the contents of
astragalin, taxifolin, and isoquercitrin were 13.347 ± 0.150, 10.597 ± 0.240, and 29.778 ± 0.180 mg/g of
lotus leaf sample, respectively). However, apigenin, luteolin, kaempferol and isorhamnetin showed
relatively low content in lotus leaf extract (less than 1.0 mg/g). Considering the selected flavonoids
were reported by different literatures, the extraction using different solvents or different varieties and
parts of lotus could result in the difference of contents of these flavonoids [38–41].

Table 1. Chemical structures of investigated flavonoids and their contents in lotus leaf extract.
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2.2. Quenching Effects of Lotus Leaf Extract and Flavonoids on HSA and BSA Fluorescence

The fluorescence spectra of HSA and BSA with addition of lotus leaf extracts were investigated
and the results were shown in Figure 2. As shown in Figure 2a, the lotus leaf extract exhibited the
emission of fluorescence at 390 nm (Blue line in Figure 2a) and it apparently quenched the fluorescence
of HSA (Pink line in Figure 2a). According to the reduction of background fluorescence introduced by
the extract, the fluorescence quenching of HSA and BSA with addition of lotus leaf extract in different
concentrations were completed (Figure 2b,c). The Stern–Volmer plots for HSA and BSA fluorescence
quenched by lotus leaf extract were also calculated (insets in Figure 2b,c). The Stern–Volmer plots
were linear and the fitting degree (R2) was 0.976 for HSA and 0.983 for BSA. Considering the complex
compositions of lotus leaf extract, the obtained fitting degrees were acceptable and detail investigations
on 11 flavonoids were further conducted.
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Figure 2. (a) The fluorescence spectra of human serum albumin (HSA) and lotus leaf extract; the
quenching effects of lotus leaf extract on HSA fluorescence spectra and the Stern–Volmer plots for HSA
(b) at 300.15 K; the quenching effects of lotus leaf extract on bovine serum albumin (BSA) fluorescence
spectra and the Stern–Volmer plots for BSA (c) at 300.15 K. λex = 280 nm; HSA and BSA, 10 µmol/L;
the addition of sample was 4.00, 8.00, 12.00, 16.00 and 20.00 mg/L of lotus leaf extract.

The fluorescence spectra of HSA and BSA with addition of apigenin, naringenin, luteolin,
kaempferol, astragalin, quercetin, taxifolin, isorhamnetin, isoquercitrin, hyperoside, and rutin were
measured. All tested samples could apparently quench the fluorescence of HSA and BSA with
increasing concentrations. No obvious shifts of the maximum λem of HSA and BSA fluorescence
for tested samples were observed. The decreases of fluorescence intensity varied with the kinds of
samples. For instance, the addition of apigenin, kaempferol, and quercetin showed rapid quenching on
HSA. The addition of apigenin made the fluorescence intensities of BSA decreased sharply. However,
astragalin and rutin showed lower quenching rates on HSA and BSA. These results indicated that
the quenching effect of flavonoids on HSA and BSA fluorescence depended on the structures of
flavonoids [2].

In order to further investigate the difference, the Stern–Volmer plots for HSA and BSA fluorescence
quenched by flavonoids samples were studied and calculated. As shown in Figure 3, the Stern–Volmer
plots of these flavonoids were linear and the fitting degree (R2) (ranging from 0.990 to 0.999)
were satisfied, which implied that the calculations of Ksv and Kq according Equation (1) were
suitable. The quenching could be considered initiated by static quenching if Kq is much greater than
2.0 × 1010 L/mol/s [42]. As shown in Table 2, the calculated Kq values of HSA and BSA fluorescence
quenching by flavonoids were much higher than 2.0 × 1010 L/mol/s (0.827 × 1014 L/mol/s to
4.695 × 1014 L/mol/s for HSA and 0.731 × 1014 L/mol/s to 3.710 × 1014 L/mol/s for BSA). It could
be concluded that the fluorescence quenching of HSA and BSA by flavonoids was probably initiated
by static quenching [31].
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2.3. The Binding Constants and the Number of Binding Sites

The binding constant (Ka) and the number of binding sites per protein molecule (n) were calculated
according to Equation (2) and shown in Table 2. The values of log Ka was proportional to the number
of binding sites (n) for the interaction, which indicated that the Equation (2) used in this study was
suitable for the investigation of interaction between flavonoids and serum albumins. The fitting degree
(R2) (ranging from 0.993 to 0.999) of the calculated binding constant (Ka) and the number of binding
sites (n) were satisfied for this experiment. The magnitudes of apparent binding constants for HSA
and BSA were respectively in the range of 105 to 107 L/mol and 106 to 107 L/mol.

2.4. Influence of Structural Alteration of Flavonoids on Their Affinities for HSA and BSA

2.4.1. Hydroxylation and Methylation

The effects of hydroxylation and methylation of flavonoids on the affinities for HSA and BSA
were shown in Table 3. It could be concluded that the hydroxylation on position 3 and/or 3′ of
flavonoids improved the affinities for HSA and BSA. However, the methylation on the 3′ position
of quercetin decreased the affinity as well. These results indicated that the hydroxyl group was
particularly important for flavonoids in binding to HSA and BSA [3]. The result was in accordance
with the previous report that the binding constants and the number of binding sites between flavonoids
and HSA or BSA increased with the increased hydroxyl groups [43,44]. The affinities of luteolin and
quercetin for HSA were about 7.9 and 6 times higher than that of apigenin and kaempferol.

2.4.2. Glycosylation

The effect of glycosylation of flavonoids on the affinities for HSA and BSA were investigated.
As shown in Table 3, the glycosylation at the 3 position of flavonoids decreased the affinities for
HSA and BSA. The glycosylation of flavonoids decreased the affinities for serum albumins by 1 to
2 orders of magnitude, depending on the type of sugar moiety (glucoside, galactoside, and rutinoside).
For instance, quercetin showed 3.20 times higher affinity than that of isoquercitrin, 1.94 times higher
affinity than that of hyperoside and 15.60 times higher affinity than that of rutin in the interaction
with HSA. While in the interaction with BSA, quercetin showed 1.60 times higher affinity than that of
isoquercitrin, 2.56 times higher affinity than that of hyperoside, and 4.10 times higher affinity than that
of rutin. This result was similar to the previous reports that the glycosylation of dietary polyphenols
decreased the affinities for total plasma proteins [45].
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Table 2. The affinities of 11 flavonoids for human serum albumin (HSA) and bovine serum albumin (BSA).

Flavonoids
HSA Affinity BSA Affinity

Kq (1014) Ksv (106) R2 logKa n R2 Kq (1014) Ksv (106) R2 logKa n R2

Apigenin 4.695 2.911 0.999 6.655 0.962 0.998 3.710 2.300 0.998 7.086 0.870 0.999
Naringenin 3.100 1.922 0.999 6.493 0.974 0.999 1.408 0.873 0.996 6.982 0.925 0.999

Luteolin 1.781 1.104 0.995 7.064 0.904 0.999 1.285 0.797 0.994 7.110 0.923 0.998
Kaempferol 3.923 2.432 0.999 6.830 0.918 0.999 1.923 1.192 0.996 7.106 0.911 0.995
Astragalin 0.918 0.569 0.997 6.234 0.994 0.993 1.224 0.759 0.997 6.359 0.963 0.998
Quercetin 3.594 2.228 0.998 7.089 0.868 0.999 2.018 1.251 0.991 7.299 0.858 0.999
Taxifolin 1.802 1.117 0.993 6.748 0.907 0.997 1.334 0.827 0.990 7.067 0.909 0.998

Isorhamnetin 1.445 0.896 0.994 6.798 0.923 0.999 1.066 0.661 0.995 6.828 0.941 0.999
Isoquercitrin 1.423 0.882 0.995 6.584 0.936 0.997 0.919 0.570 0.993 7.095 0.938 0.999
Hyperoside 1.434 0.889 0.996 6.802 0.960 0.995 1.148 0.712 0.997 6.891 0.950 0.996

Rutin 0.827 0.513 0.999 5.896 0.992 0.999 0.731 0.453 0.995 6.686 0.962 0.998

Table 3. Effects of hydroxylation, methylation, hydrogenation, and glycosylation of flavonoids on the affinities for HSA and BSA.

Structural Alteration Examples Effects (Times)

HSA Affinity BSA Affinity

2,3-hydrogenation Apigenin→ Naringenin 1.45↓ 1.27↓
Quercetin→ Taxifolin 2.19↓ 1.71↓

3′H→ OH
Apigenin→ Luteolin 2.56↑ 1.06↑

Kaempferol→ Quercetin 1.82↑ 1.56↑
Astragalin→ Isoquercitrin 2.24↑ 5.45↑

3H→ OH Apigenin→ Kaempferol 1.50↑ 1.05↑

3, 3′H→ OH
Apigenin→ Quercetin 2.72↑ 1.63↑
Naringenin→ Taxifolin 7.80↑ 1.22↑

3′OH→ OCH3 Quercetin→ Isorhamnetin 1.95↓ 2.96↓

3-O-glycosylation

Quercetin→ Isoquercitrin 3.20↓ 1.60↓
Quercetin→ Hyperoside 1.94↓ 2.56↓

Quercetin→ Rutin 15.60↓ 4.10↓
Kaempferol→ Astragalin 3.94↓ 5.58↓



Molecules 2017, 22, 1036 7 of 11

2.4.3. Hydrogenation of the C2=C3 Double Bond

The C2=C3 double bond in conjugation with a 4-oxo group plays an important role for the affinity
for serum albumins [46]. As shown in Table 3, the hydrogenation of the C2=C3 double bond of
flavonoids decreased the binding affinities for HSA and BSA. Both naringenin and taxifolin showed
lower affinities than that of apigenin and quercetin. As mentioned by Xiao, the planarity of the C ring
in flavonoids might be important for binding interaction with proteins. Because the molecules with
saturated C2=C3 bonds permit more twisting of the B ring, resulting the harder enter of hydrophobic
pockets in proteins [47,48].

2.5. Relationship of Topological Polar Surface Area (TPSA) and the Affinity for HSA and BSA

As the sum of surfaces of polar atoms in a molecule, TPSA was a good indicator in the
characterization of drug absorption, including intestinal absorption, bioavailability, and blood–brain
barrier penetration. A strong correlation between TPSA and transport property could be found and
the compound with high TPSA could be transported [44]. The TPSA values of tested flavonoids were
confirmed from PubChem Public Chemical Database. The relationships between TPSA and binding
affinity of flavonoids for HSA and BSA were plotted in Figure 4. As shown in Figure 4, no direct
relationship between the TPSA values and log Ka values of flavonoids for HSA and BSA was found.
However, it could be seen that the log Ka decreased with the increasing TPSA values of flavonoids for
both HSA and BSA. The flavonoids with low TPSA were bound more tightly to HSA and BSA than
those with high TPSA, which was in accordance with the reports [44,45].
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3. Materials and Methods

3.1. Chemicals and Reagents

Human serum albumin (HSA) (96–99%, fraction V) and bovine serum albumin (BSA)
(96%, fraction V) were purchased from GIBCO Co. (Shanghai, China). 3,5-dinitrosalicylic acid (DNS),
potassium sodium tartrate tetrahydrate, soluble starch and 1,1-Diphenyl-2-picrylhydrazyl (DPPH)
were acquired from Sigma-Aldrich Chemicals (St. Louis, MO, USA). Isorhamnetin (>98.0%), Apigenin
(>98.0%), Naringenin (>98.0%), Kaempferol (>98.0%), Quercetin (>98.0%), Taxifolin (>98.0%), Luteolin
(>96.0%), Isoquercitrin (>98.0%), Hyperoside (>98.0%), Astragalin (>98.0%), and Rutin (>98.0%) were
purchased from Yuanye Biotechnology Co. (Shanghai, China). Ultrapure water (18.2 MΩ cm resistivity)
was obtained from an ELGA water purification system (ELGA Berkefeld, Veolia, Germany). All of
other chemicals were analytical grade and purchased from Sinopharm Chemical Reagent Co., Ltd.
(Shanghai, China).
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3.2. Preparation of Lotus Leaf Extracts

Dried lotus leaf (30.0 g) was powdered and extracted with 300 mL of 90% ethanol solution at
90 ◦C for 3 h to yield the crude extract [49,50]. Then, the extract solution was evaporated to remove
the solvent under reduced pressure. The residue (3.18 g) was dissolved in 100 mL of methanol, filtered
by a 0.45 µm membrane and stored at 4 ◦C prior to use.

3.3. Analysis of Flavonoids in Lotus Leaf Extracts

The analysis of 11 flavonoids in lotus leaf extract was conducted through HPLC analysis using
an Agilent 1260 Infinity system (Agilent Technologies Inc., Santa Clara, CA, USA). A Waters Xbridge™
C18 reverse phase column (250 mm × 4.6 mm i.d., 5 µm) was used as the separation column
(Waters, Milford, MA, USA). The column temperature was maintained at 25 ◦C and the flow rate was
controlled at 0.8 mL/min. The mobile phase consisted of solvent A (water containing 0.1% v/v acetic
acid) and solvent B (acetonitrile containing 0.1% v/v acetic acid) with gradient elution mode: 0–10 min,
15% B and 10–45 min, 15–45% B. The scan wavelength of diode array detector was set from 190–400 nm
and the detection wavelength of chromatogram was set at 254 nm.

3.4. Protein Fluorescence Quenching Study

The fluorescence spectra were recorded on a Hitachi F-7000 fluorometer (Tokyo, Japan).
The fluorescence quenching method was utilized to determine the binding constants between flavonoid
and protein according to previous reports [6]. 20 µL of HSA or BSA solution (1.0 × 10−5 mol/L) in
phosphate buffered saline (PBS, pH 7.4) was added into a 1.0 cm quartz cell and then flavonoids
sample or lotus leaf extract (1.0 mmol/L or 4.0 mg/mL in methanol solution) was successively added
manually with trace syringes. The intrinsic fluorescence emission spectra of HSA and BSA were
recorded from 300 to 450 nm under an excitation wavelength of 280 nm. The fluorescence intensities
were monitored at 336 nm for HSA and 341 nm for BSA and each test was performed in triplicate.

The fluorescence quenching of HSA and BSA by flavonoids was described by the Stern–Volmer
equation shown as

F0/F = 1 + Kqτ0[Q] = 1 + Ksv[Q] (1)

where F0 is the fluorescence intensity of protein, F is the fluorescence intensity in the presence
of flavonoids with different concentrations, [Q] is the corresponding concentration of flavonoids,
Kq is the quenching rate constant, τ0 is the average lifetime (6.2 ns), and Ksv is the Stern–Volmer
quenching constant.

For static quenching, after the fluorescence quenching intensities at 336 nm for HSA and 341 nm for
BSA were measured, the relationship between fluorescence quenching intensity and the concentration
of flavonoids could be described by the binding constant formula

log (F0 − F)/F = log Ka + nlog[Q] (2)

where F0 is the fluorescence intensity of protein, F is the fluorescence intensity in the presence of
flavonoids with different concentrations, [Q] is the corresponding concentration of flavonoids, Ka is
the binding constant, and n is the number of binding sites per protein molecule. All the flavonoid
samples showed no emission spectra in the scanned range under excitation.

4. Conclusions

The existence of 11 flavonoids in lotus leaf extract was confirmed in this study and 11 flavonoids
showed various contents ranging from 0.063 ± 0.009 to 29.778 ± 0.180 mg/g in lotus leaf.
The interactions between lotus leaf extract and serum albumins completed by spectroscopic methods
showed apparent quenching effect on serum albumins. Then, the structure–affinity relationships of
flavonoids on binding to serum albumins were further investigated. The hydroxylation on 3 and 3′
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position improved the affinities for serum albumins. The methylation on 3′ position of quercetin, the
C2=C3 double bonds of apigenin and quercetin and the glycosylations of quercetin and kaempferol all
decreased the affinities for serum albumins. The results demonstrated that the hydrogen bond force
played an important role in binding flavonoids to serum albumins.
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