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ABSTRACT
Fruit production is negatively affected by a wide range of frugivorous insects, among
them tephritid fruit flies are one of the most important. As a replacement for pesticide-
based controls, enhancing natural fruit resistance through biotechnology approaches
is a poorly researched but promising alternative. The use of quantitative reverse
transcription PCR (RT-qPCR) is an approach to studying gene expression which
has been widely used in studying plant resistance to pathogens and non-frugivorous
insect herbivores, and offers a starting point for fruit fly studies. In this paper,
we develop a gene selection pipe-line for known induced-defense genes in tomato
fruit, Solanum lycopersicum, and putative detoxification genes in Queensland fruit
fly, Bactrocera tryoni, as a basis for future RT-qPCR research. The pipeline started
with a literature review on plant/herbivore and plant/pathogen molecular interactions.
With respect to the fly, this was then followed by the identification of gene families
known to be associated with insect resistance to toxins, and then individual genes
through reference to annotated B. tryoni transcriptomes and gene identity matching
with related species. In contrast for tomato, a much better studied species, individual
defense genes could be identified directly through literature research. For B. tryoni,
gene selection was then further refined through gene expression studies. Ultimately 28
putative detoxification genes from cytochrome P450 (P450), carboxylesterase (CarE),
glutathione S-transferases (GST), and ATP binding cassette transporters (ABC) gene
families were identified for B. tryoni, and 15 induced defense genes from receptor-
like kinase (RLK), D-mannose/L-galactose, mitogen-activated protein kinase (MAPK),
lipoxygenase (LOX), gamma-aminobutyric acid (GABA) pathways and polyphenol
oxidase (PPO), proteinase inhibitors (PI) and resistance (R) gene families were
identified from tomato fruit. The developed gene selection process for B. tryoni can
be applied to other herbivorous and frugivorous insect pests so long as the minimum
necessary genomic information, an annotated transcriptome, is available.

Subjects Agricultural Science, Ecology, Entomology, Genetics, Molecular Biology
Keywords Quantitative reverse transcription PCR, Gene expression, Fruit induced-defense,
Frugivorous insect, Detoxification genes, Tephritidae

How to cite this article Roohigohar S, Clarke AR, Prentis PJ. 2021. Gene selection for studying frugivore-plant interactions: a review and
an example using Queensland fruit fly in tomato. PeerJ 9:e11762 http://doi.org/10.7717/peerj.11762

https://peerj.com
mailto:s.roohigohar@qut.edu.au
mailto:shirinroohigohar@gmail.com
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj.11762
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://doi.org/10.7717/peerj.11762


INTRODUCTION
Tephritid fruit flies are globally significant pests of horticulture (Aluja & Mangan, 2008;
Qin et al., 2015). Frugivorous tephritids lay their eggs into fruit, where the resultant larvae
hatch and feed, causing yield loss (Hafsi et al., 2016). With a global trend in trying to
reduce the use of pesticides for insect pest control (Ricroch, 2019), alternative management
strategies for fruit flies are needed (Sarwar, 2015). Plant breeding for fruit fly resistance is
one such option, and while this might be achieved through traditional selection methods
(Choudhary et al., 2018; Medjkouh et al., 2018), it is more likely to be achieved in the
modern era through manipulation of the plant’s defense genes using biotechnological tools
(Kumar et al., 2020).

At the phenotype level, numerous studies have documented how variation between fruit,
at the species, variety and ripening-stage levels, can impact on fruit fly offspring survival
(Aluja, Díaz-Fleischer & Arredondo, 2004; Nunes et al., 2015; Roohigohar, Prentis & Clarke,
2020). Some of these studies have also correlated fruit fly offspring performance with
fruit traits such as peel toughness (Díaz-Fleischer & Aluja, 2003; Rattanapun, Amornsak &
Clarke, 2009), amount of peel oils and secondary chemicals (Papachristos, Papadopoulos
& Nanos, 2008; Papachristos et al., 2009), or forming calluses in ‘Hass’ and ‘Sharwil’
avocados around Anastrepha sp. egg clusters using a combination of chemically and
mechanically induced resistance mechanisms in fruit (Aluja et al., 2014). However, the
amount of genotypic data available to help understand fruit fly/fruit interactions to
progress biotechnology-based plant defense breeding is sparse and limited to a molecular
study of induced defenses of green olive drupes against the olive fruit fly, Bactrocera oleae
(Corrado et al., 2012; Grasso et al., 2017). This lack of genetic information is in contrast to
insect folivory research (Dugé de Bernonville et al., 2017; Gloss, Abbot & Whiteman, 2019;
Subramanyam et al., 2019), and also plant pathogen research where there is a growing body
of molecular data on fruit defense (Alkan et al., 2015; Rao & Nandineni, 2017; Baba et al.,
2019).

Different analytical techniques can be applied to the study of molecular interactions
between fruit and frugivorous insects. Corrado et al. (2012) and Grasso et al. (2017)
applied comparative transcriptomic and proteomics in their studies, which provides a
comprehensive overview of the molecular and protein responses associated with the
interaction. However, a limitation of this approach, particularly in non-model organisms
(such as crop pest species), is the inability to ascribe function to non-annotated genes
and proteins (Giron et al., 2018; Kumaran et al., 2018). A complementary approach can
be achieved through gene expression analyses to examine the expression of specific genes
already known to be associated with plant/herbivore interactions (Zheng & Dicke, 2008).
One of the most reliable techniques for gene expression studies is quantitative reverse
transcription PCR (RT-qPCR) (Prasch & Sonnewald, 2013).

The RT-qPCR approach has been used to provide insight to plant defense pathways and
insect detoxification gene expression during plant/herbivore interactions in several systems
(De Oliveira, Pallini & Janssen, 2019; Altuntaş, Duman & Kılıç, 2020; Dixit et al., 2020;
Quais et al., 2020). For example, in fruit/pathogen interaction studies, the over-expression
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Figure 1 Schematic representation of the process followed to undertake a RT-qPCR study, and the
structural outline of the following sections of this paper.

Full-size DOI: 10.7717/peerj.11762/fig-1

of 10 phenylpropanoid genes in orange fruit infested by Penicillium digitatum which led
to changes in the metabolite profile of the fruit (Ballester, Lafuente & González-Candelas,
2013) was determined using RT-qPCR; while in apples infested with Penicillium expansum
RT-qPCR was used to track upregulation of defense-related genes and reactive oxygen
species genes (Vilanova et al., 2014). Similarly, RT-qPCR has been used to document the
over-expression of stress perception genes such as Prosystemin in tomato and tobacco plants
in response to Manduca sexta larval feeding (Orozco-Cardenas, McGurl & Ryan, 1993;
Gilardoni et al., 2011); and the upregulation of direct defense genes such as CYP79B2/B3
in Arabidopsis and TD gene in tomato plant tissue against Spodoptera exigua larval feeding
(Müller et al., 2010; Gonzales-Vigil et al., 2011). In insects, RT-qPCR has also been used to
demonstrate the upregulation of known detoxification genes Slgstel, Cyp321a7, Cyp321a9
and Cyp6ab14 which increased Spodoptera litura larval resistance against plant toxic
allelochemicals (Wang et al., 2015a;Wang et al., 2015b; Zou et al., 2016;Wang et al., 2017a;
Wang et al., 2017b).

While a valuable counterpart to untargeted transcriptomic and proteomic studies,
carrying out a RT-qPCR study from the beginning is not trivial. Before initiating such a
study, it first needs to be determined if enough is already known about the system to support
such an approach, if so then what are the appropriate genes for study, PCR primers need
to be developed for those genes, the appropriate experiments and subsequent RT-qPCR
analyses have to be undertaken, and then the results analyzed (Fig. 1). In this paper we
work through the RT-qPCR developmental pipeline for a specific fruit fly/fruit system
(Queensland fruit fly in tomato fruit) focusing particularly on the selection of appropriate
herbivore-induced fruit defense genes and insect detoxification and sequestration genes.
While doing so we identify generic issues for consideration to facilitate other RT-qPCR
studies in fruit flies and their host fruit, and present a review on the metabolic pathways
and associated genes known to be linked with fruit defense and insect detoxification.

MATERIALS AND METHODS
Choosing organisms for study
The frugivore: Queensland fruit fly-Bactrocera tryoni
Selection of the study organism should be driven by research priority, but ideally also the
ability to extrapolate results across to related organisms and the availability of some existing
genomic information. In Australia, Bactrocera tryoni (Froggatt) is a highly polyphagous
horticultural pest, attacking most fleshy vegetables and fruit crops (Clarke et al., 2011),
and so there is a strong local need for research on this organism. While locally important,
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B. tryoni can also serve as a suitable model species for other tephritids as the biology of
related species is quite similar (Clarke, 2019). Published transcriptomes of B. tryoni are
available (Gilchrist et al., 2014; Kumaran et al., 2018) and there is a close similarity of the
genetics on this fly and congeneric species. For example, according to the National Centre
for Biotechnology Information (NCBI) database, putative B. tryoni detoxification pathway
genes have an above 90% identity match with Bactrocera dorsalis (Hendel), one of the
world’s most destructive agricultural pests (Qin et al., 2018).

The fruit: tomato-Solanum lycopersicum
We chose tomato, Solanum lycopersicum, as our model fruit for a number of reasons
which should be considered when thinking about what fruit type to use. Firstly, tomato
has an accessible, fully sequenced genome (Tomato-Genome-Consortium, 2012) with
numerous related genetic and genomic resources available through the National Center for
Biotechnology Information (NCBI) database. Its genome is also relatively small (950
Mb) and, conveniently for genomic research, is a diploid species (Gerszberg et al., 2015).
Tomato can be grown under many different cultivation conditions (from fully-controlled
environments to open-field) with a relatively short life-cycle and has well documented
and accessible cultivar variation. These attributes make it an already well-established
model system for the study of plant/pathogen and plant/herbivore molecular interactions
(Rodriguez-Saona et al., 2010; Kawazu et al., 2012). Finally, for our work, it was already
known that different tomato cultivars and ripening stages have significant phenotypic
effects on B. tryoni offspring performance (Balagawi et al., 2005; Roohigohar, Prentis &
Clarke, 2020), and we hypothesized that the difference in performance has a molecular
basis.

Strategy in choosing genes of interest
The process for selecting genes of interest is summarized in Fig. 2. Gene selection is a
sequential process that involves a combination of literature research, PCR primer design,
and laboratory testing. Not all candidate genes identified through literature research
may end up being selected because of bioinformatic limitations, or because the genes
themselves have very low expression in preliminary trials. The process to identify B. tryoni
detoxification genes and tomato defense genes follow.

Bactrocera tryoni detoxification genes
Larvae of tephritids such as B. tryoni, must stay in a single fruit to complete development
(Fitt, 1984); thus, they may utilise specific molecular mechanisms to detoxify fruit toxic
secondary compounds. Understanding which molecular pathways fruit fly larvae use
to survive in fruit is an essential component when studying frugivore-fruit molecular
interactions. In the absence of prior studies on B. tryoni larval detoxification genes, we
selected target genes using four steps (Fig. 2): (i) a comprehensive literature review on
insect detoxification mechanisms against plant allelochemicals and chemical pesticides;
(ii) an exhaustive review of any similar studies in other tephritids; (iii) searching for
detoxification genes in the B. tryoni functional annotation database (Kumaran et al.,
2018); and (iv) checking nucleotide and peptide sequences in NCBI-BLAST database,
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Figure 2 Schematic representation of the workflow used in the present study to choose inducible
defense-related genes in tomato fruit and detoxification-related genes in Bactrocera tryoni.

Full-size DOI: 10.7717/peerj.11762/fig-2

tblastn, blastx, blastp, smartblast, and Universal Protein Resource/Uniprot to check
for homologous proteins, protein domains and genes with >80% identity match from
species within the tribe Dacini, such as Bactrocera dorsalis. Insects mostly utilize the same
enzymes for detoxification of plant allelochemicals and insecticides (Dai et al., 2019), hence
searching for genetic information from both plant allelochemical and insecticide studies is
appropriate.

The genes identified through this process were associated with different phases of
the insect chemical-detoxification process, which occurs for both the detoxification
of plant secondary chemicals and pesticides (Heidel-Fischer & Vogel, 2015; Heckel,
2018). During Phase I, genes/enzymes such as P450 monooxygenases (P450s) and
carboxylesterases (COEs) are involved in oxidation, hydrolysis or reduction of toxic
compounds; subsequently, Phase II involves the conjugation of the modified toxins with
hydrophilic groups such as glutathiones, sulphate and sugars by glutathione S-transferases
(GSTs) and UDP-glucosyltransferase (UGT) to enhance the polarity of the molecules and
so help excretion; while finally, in Phase III, ATP-binding cassette transporters export the
conjugated toxins out of the cell (Donkor et al., 2019). Each phase of the detoxification
process is associated with major gene families (Fig. 3). The following section describes
each of selected gene families, and then provides a list of the individual selected genes
for B. tryoni larvae. Not all potential genes identified through initial literature searching
progressed to the selection stage. Listing all discarded genes is space prohibitive, but for
illustrative purposes a selection of the excluded genes, and why they were discarded, are
shown as a Data S1.

PHASE I
Cytochrome P450 (P450s). Cytochrome P450 monooxygenases (cytochrome P450s) are a
large, complex, and highly conserved gene family of heme-thiolate proteins that encode
P450 enzymes (Feyereisen, 2006). The P450s contribute to the catalysis of numerous
oxidative reactions during endogenous and exogenous metabolism (Li & Liu, 2019).
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Figure 3 The general process of chemical detoxification by insects. Phase I and Phase II involve
metabolizing enzymes altering toxic chemicals, while Phase III involves transport and export of
conjugated metabolites and elimination of toxins pre-biotransformation. The major gene families
associated with each phase are followed: CYP450, Cytochrome P450; EST, Carboxylesterase; GST,
Glutathione S-transferase; UGT, UDP-Glucosyltransferase; MDR, Multidrug Resistance Protein; MRP,
Multidrug Resistance Associated Protein; ABC, ATP Binding Cassette (Berenbaum & Johnson, 2015; Saha,
2016).

Full-size DOI: 10.7717/peerj.11762/fig-3

Numerous studies report the important role of P450 genes in themetabolism of xenobiotics
(George, Rao & Rahangadale, 2019) and plant allelochemicals (Hazzouri et al., 2020).

In Lepidoptera, the members of the P450 CYP6 subfamily play a crucial role in
detoxifying a variety of plant toxic secondary compounds (Li, Berenbaum & Schuler,
2001). In Hemiptera, over-expression of the CYP6CY3 gene in Myzus persica helped to
detoxify nicotine from the tobacco plant (Bass et al., 2013). In B. dorsalis, high expression
of CYPA41 and CYP6EK1 in the larval and adult malpighian tubules suggest their potential
role in detoxification of pesticides (Huang et al., 2012). Amongst 12 P450 genes, CYP6D9,
CYP12C2, and CYP314A1 were upregulated in B. dorsalis following insect exposure to
malathion and beta-cypermethrin; while CYP4E9 expression was upregulated in response
to abamectin and beta-cypermethrin exposure (Huang et al., 2013). Insecticide resistance
linked to higher expression of P450 genes and their related enzymes has been proposed for
both B. dorsalis (Jing et al., 2020) and B. oleae (Pavlidi et al., 2013).
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For B. tryoni larvae, 20 genes were selected from the cytochrome P450 gene family:
CP6A9, CP313, CP134, CP4D8, CP6G1, C12E1, CP6T1A, CP6T1B, C12C1, C12B1, C12B2,
CP304A, C304B, CP306, C6A14, C4AC2, CP4S3, CP132, CP316 and CP6G2.

PHASE II
Carboxylesterase (CarEs). Carboxylesterase (CarEs) are a multigene superfamily
ubiquitous in almost all organisms (Marshall et al., 2003). CarEs are involved in hydrolyzing
a broad range of ester-containing xenobiotics such as drugs, environmental toxicants, and
insecticides (Feng, Li & Liu, 2018). Studies on insect CarEs are mainly focused on their role
in metabolizing insecticides and differential expression of CarE genes has been associated
with insecticide resistance in different number of insects (Farnsworth et al., 2010; Wang et
al., 2019).

CarE genes are associated with the development of malathion resistance in B. dorsalis
(Wang et al., 2015a;Wang et al., 2015b;Wang, 2016), with the functional role of the esterase
B1 (BdB1) gene strongly confirmed (Wang et al., 2017a;Wang et al., 2017b). In B. oleae, 15
CarE genes were identified as being involved in the metabolism of plant phytotoxins and
insecticides (Pavlidi et al., 2013). Two genes from the CarEs superfamily in B. tryoni larvae
were selected: ESTF and EST1.

Glutathione S-transferase (GST). Glutathione S-transferases (GSTs) are another multigene
family, present in most organisms, which are associated with detoxification (Hayes,
Flanagan & Jowsey, 2005). In insects, GSTs have a diversity of functions such as
participation in olfaction, oxidative stress responses, and the development and bioactivation
of ecdysteroids and hormones (Enya et al., 2015; Zhao et al., 2020), but they are mainly
associated with detoxification of endogenous and xenobiotic compounds (Enayati, Ranson
& Hemingway, 2005; Che-Mendoza, Penilla & Rodríguez, 2009). The upregulation of GSTs
and insecticide resistance is well documented (Shi et al., 2012; Zhang et al., 2019), as is the
association between GSTs and insect detoxification of plant allelochemicals (Mittapalli,
Neal & Shukle, 2007; Huang et al., 2011).

In B. oleae, 33 GSTs are involved with the metabolism of xenobiotics, such as chemical
insecticides and plant phytotoxins (Pavlidi et al., 2013). GSTs activities were significantly
higher in malathion and λ-cyhalothrin treated B. zonata (Yaqoob et al., 2013); while
overexpression of the GST gene BdGSTd9 has been identified as a component of malathion
resistance in B. dorsalis (Meng et al., 2020).

Three genes from the GST superfamily identified for B. tryoni larvae were GSTD1,
GSTT1 and GSTT7.

PHASE III
ATP binding cassette (ABC) transporters. ATP binding cassette (ABC) transporters are one
of the largest transporter gene families across the metazoans (Xiao et al., 2018). ABCs are
found in almost all organisms, where they typically have a role in the ATP-dependent
transport of various substrates across biological membranes (Broehan et al., 2013). Most
ABC transporter genes encode membrane-bound proteins which transport a wide range
of molecules, such as amino acids, peptides, sugars, vitamins, sterols, lipids, hormones,
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endogenous metabolites, inorganics and xenobiotics, across membranes (Dean, Hamon &
Chimini, 2001). Studies of the physiological functions of ABC transporters in arthropods
are limited to only a few species (Xiao et al., 2018), typically the ‘‘model’’ species such as D.
melanogaster, B. mori, Anopheles gambiae, Apis mellifera, and Tribolium castaneum (Roth et
al., 2003; Liu et al., 2011; Broehan et al., 2013), but large numbers of genes are known to be
involved in ABC transporter pathway (Rösner & Merzendorfer, 2020).

The role of ABC transporters in efflux pumps, facilitating cellular excretion of insecticides
or metabolites, strengthens a hypothesis for their playing a role in insecticide resistance in
insects (Rösner & Merzendorfer, 2020). In a recent study of S. litura resistance to pyrethroid,
the ABC5 gene was significantly upregulated and showed a strong correlation with
insecticide resistance (Xu et al., 2020). In B. dorslis, ABC transporter genes might play
roles in the insecticide resistance, with several bdABC genes significantly upregulated
after treatment of B. dorsalis with malathion, abamectin, and beta-cypermethrin (Xiao et
al., 2018). In B. oleae, 18 ABC transporter genes were reported for their possible roles in
handling xenobiotics, such as plant phytotoxins and insecticides (Pavlidi et al., 2013).

Five genes from the ABC transporters family were selected from B. tryoni larvae: ABCG1,
ABCA3, SUR, L259 andMDR49.

Selection of tomato defense genes
Genes associated with induced-defense responses in tomato were mostly selected based
on previous studies of Solanaceae–insect/pathogen molecular interactions; either in plant
vegetative tissue or fruit. While defense genes in tomato are much better known than
putative detoxification genes in B. tryoni, a literature review on tomato/herbivore and
tomato/pathogenmolecular interactions was still needed to ensure an appropriate selection
of genes from across different defense pathways (Fig. 4).

Plant induced defense responses towards herbivores and pathogens first requires
recognition systems, such as receptor-like kinase (RLK) and lectin receptor-like
kinase (LecRLK), that can perceive herbivore-associated elicitors (HAEs), herbivore-
associated molecular patterns (HAMPs), damage-associated molecular patterns (DAMPs)
and pathogen-associated molecular patterns (PAMPs) (Santamaria et al., 2013). This
recognition triggers the plant’s cell defense responses which are started by ion fluctuation
across themembrane and production of reactive oxygen species (ROS), and then continued
by mitogen-activated protein kinase (MAPK) cascades phosphorylation and responses,
lipoxygenase (LOX) pathway or GABA signalling pathway stimulation (Nejat & Mantri,
2017). After specific phytohormonal crosstalk among a plant’s essential defense-related
phytohormones, which include salicylic acid (SA), jasmonic acid (JA) and ethylene (ET)
as the core components of plant immune system (Tsuda & Katagiri, 2010), plant defense
genes and enzymes such as polyphenol oxidase (PPOs), and protease inhibitors (PIs) are
expressed and accumulate in damaged and undamaged plant tissue (Liu, 2018). In the
next section, a brief description of each defense pathway and the related gene families are
provided before the introduction of individual genes.

Roohigohar et al. (2021), PeerJ, DOI 10.7717/peerj.11762 8/36

https://peerj.com
http://dx.doi.org/10.7717/peerj.11762


Figure 4 Plant inducible defense responses against arthropod and pathogen stressors. At the stress
perception stage, DAMPs= damage-associated molecular patterns; HAEs= herbivore-associated elici-
tors; HAMPs= herbivore-associated molecular patterns; and PAMPs= pathogen-associated molecular
patterns. The major defense pathways and defense gene families are as follow: RLK, Receptor-Like Kinase;
LecRLK, Lectin Receptor-Like Kinase; ROS, Reactive Oxygen Species; MAPK, Mitogen-Activated Protein
Kinase; LOX, Lipoxygenase; GABA, Gamma-Aminobutyric Acid; PPO, Polyphenol Oxidase; R genes, Re-
sistance genes; PI, Protease Inhibitor (Santamaria et al., 2013; Santamaria et al., 2018).

Full-size DOI: 10.7717/peerj.11762/fig-4

Plant perception
Receptor-Like kinase. A plant’s perception systems allow them to detect physical injury
and pest chemical elicitors through the use of specific receptors, such as receptor-like
kinases (RLKs) (Santamaria et al., 2018). RLKs are composed of a transmembrane region,
an intracellular kinase domain, and an ectodomain that potentially contributes to ligand
binding (Macho & Zipfel, 2014). Plant perception of phytophagous arthropod attack
through RLKs has been predominantly investigated in lepidopteran and aphid attack
on vegetative tissue (Gouhier-Darimont et al., 2013; Gouhier-Darimont et al., 2019), and
pathogen attack to both vegetative (Hashemi et al., 2020) and fruit tissues (Haile et al.,
2019).

The target genes associated with RLKs in tomato were PEPR1/2 Ortholog Receptor-Like
Kinase1 (PORK1) and Lectin receptor kinase1 (LecRK1).

The PORK1 gene (also known as the Tomato Protein Kinase1b (TPK1b) interacting
protein, (Xu et al., 2018)) has biological functions in wound-systemin signalling and
systemin-mediated plant responses to both fungal infestation and insect attack (Liu et
al., 2013; Klauser et al., 2015), where systemin is a polypeptide hormone unique to, but
common within the Solanaceae (Ryan & Pearce, 2003). PORK1 is a key determinant
of systemin responses in tomato with an important role in tomato plant resistance to
B. cinerea fungi and M. sexta larvae (Xu et al., 2018). LecRK1 gene activity is important
in suppressing insect-mediated inhibition of jasmonic acid-induced defense responses
in Nicotiana attenuata during herbivory by M. sexta larvae (Gilardoni et al., 2011); while
conversely suppressing the expression of LecRK1 inN. attenuata increasedM. sexta folivory
(Bonaventure, 2012).
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Plant defense signalling transduction
D-mannose/L-galactose pathway. The imposition of excessive biotic and abiotic stress to
plants can increase the amount of Reactive Oxygen Species (ROS) and cause critical damage
to plant cells (Hasanuzzaman et al., 2020). To regulate ROS in cells, plants have developed
enzymatic and non-enzymatic antioxidative defense systems in different cell parts (Ishikawa
& Shigeoka, 2008). Among these, ascorbate (AsA) is the most abundant water-soluble
antioxidant with multiple functions in metabolism, electron transport, control of the cell
cycle, and the response of plants to pathogens and biotic stress (Davey et al., 2000; Smirnoff,
2000). Four pathways exist for AsA biosynthesis, with the D-mannose/L-galactose pathway
the dominant (Lorence et al., 2004). The L-galactose pathway is regulated by a number of
genes which express differentially during the oxidative stress response of a plant against
insects and pathogens (Urzica et al., 2012; Lianthanzauva et al., 2020).

We selected the GDP-L-galactose gene (GGP2) as our target gene for the L-galactose
pathway.

GGP2 plays an important role in tomato defense responses against abiotic stress and
pathogenic infection (Yang et al., 2017); while conversely, deficiency in levels ofGGP2 leads
to increased stress susceptibility of tomato plants (Alegre et al., 2020).

Mitogen-activated protein kinase pathway. In all eukaryotic cells, the mitogen-activated
protein kinase (MAPK) cascade is one of the major defense pathways involving the
transduction of extracellular stimuli into intracellular responses (Zhang & Klessig, 2001).
MAPK activation can facilitate signal translocation to the nucleus where, through
phosphorylation and activation of transcription factors, gene expression is modulated
(Neill et al., 2002). MAPKs are involved in plant signal transduction in response to stress
signals from pathogens, drought, cold, wounding, O3, ROS, and hormone stimuli (Moon
et al., 2003; Mittler et al., 2004). Studies have shown the role of MAPK signaling in plant
defense against herbivorous insects (Kandoth et al., 2007; Wu et al., 2007; Wu & Baldwin,
2010), and in fruit response against pathogens and other stresses (Blanco-Ulate et al., 2013;
Zhang et al., 2020a; Zhang et al., 2020b). The target genes associated withMAPKs signalling
pathway in tomato are LeMPK1, LeMPK2 and LeMPK3.

In tomato, MPK1, MPK2, and MPK3 genes have been shown to play an essential role
in the wound response signalling pathway and increased plant resistance against M. sexta
larval herbivory (Kandoth et al., 2007). Conversely, inhibition of tomato MPK1, MPK2,
and MPK3 genes suppressed tomato fruit defense signaling pathways and increased fruit
susceptibility to B. cinerea infestation (Zheng et al., 2015). In a broader study on tomato
plants, LeMPK1, LeMPK2 and LeMPK3 genes were activated in response to stress caused
by the wound-signalling peptide systemin, oligosaccharides elicitors, and fungal toxin
fusicoccin (Holley et al., 2003; Higgins et al., 2007).

Lipoxygenase (LOX). The LOX genes play important roles during seed germination, plant
growth, and in stress response (Porta & Rocha-Sosa, 2002). LOX catalyzes the initial reaction
in the biosynthesis and metabolism of jasmonic acid by inserting molecular oxygen into
position 13 of a-linolenic acid (a-LeA) (Christensen et al., 2013). Jasmonic acid (JA) itself
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plays an important role in mediating anti-herbivore defense responses in plants (Howe
& Jander, 2008). The LOX family genes have been comprehensively studied in different
plant species, including tomato (Mariutto et al., 2011), due to their functions in various
physiological and molecular events (Viswanath et al., 2020), including their key role in
plant defense response against herbivores and pathogens (Park et al., 2010; Vellosillo et al.,
2013).

The target genes associated with LOX defense pathway are LOXB and LOXD.
In tomato plant, the expression level of the chloroplast-targeted LOX gene, LOXD, is

rapidly induced by leaf wounding (Heitz, Bergey & Ryan, 1997), whereas the LOXB gene
is expressed only in seeds or fruits (Ferrie et al., 1994). Antisense suppression of tomato
LOXB caused JA production deficiency in transgenic tomato fruit (Kausch et al., 2012).
Similarly, suppression of LOXD severely compromised tomato resistance to H. armigera
and B. cinerea (Dıaz, Ten Have & Van Kan, 2002; Flors et al., 2007; Shen et al., 2014).

The GABA signalling pathway
Gamma-Aminobutyric Acid (GABA) is a non-protein, four-carbon amino-acid that
occurs naturally in microorganisms, plants, and animals which has various metabolic and
physiological functions (Ramos-Ruiz, Martinez & Knauf-Beiter, 2019). These functions
include acting as an endogenous signalling molecule in the regulation of plant growth and
development (Renault et al., 2011), and being an important component in the regulation
of carbon/nitrogen metabolism (Bouche & Fromm, 2004). One of the main roles of GABA
accumulation in plants is to increase plant resistance to insect herbivory (Bown & Shelp,
2016). GABA, synthesized from Glutamate decarboxylase (GAD) (Shelp, Mullen & Waller,
2012), is a jasmonic-independent pathway induced rapidly after the wounding of plant
tissue and cell disruption by feeding insects (Scholz et al., 2015). GAD activation and GABA
accumulation due to disruption of cell structure contribute to constitutive and induced
direct-defenses against invertebrates (Bown & Shelp, 2016).

The target gene from the GABA pathway is LeGAD2.
Overexpression of Glutamate decarboxylase 2 (LeGAD2) gene in transgenic tobacco

plants reduced feeding by tobacco budworm larvae (MacGregor et al., 2003). The same study
supported the hypothesis that mechanically-induced GABA accumulation contributes a
resistance mechanism against invertebrate pests, but this may be dependent on changes in
the level of gene expression of proteinase inhibitors or other defense products (Kessler &
Baldwin, 2002). In tomato plant, silencing of the GAD2 gene increased the susceptibility of
the plant to bacterial (Ralstonia solanacearum) infestation (Wang et al., 2019).

The phenylpropanoid pathway
Phenylpropanoids are a large class of plant secondarymetabolites that are widely distributed
in the plant kingdom (Deng & Lu, 2017). Phenylpropanoids mainly include phenolic
acids, stilbenes, coumarins, monolignols, and flavonoids (Vogt, 2010; Liu, Osbourn
& Ma, 2015). These metabolites have crucial roles in plant development by acting as
essential components of cell walls, protectants against UV radiation, phytoalexins against
herbivores and pathogens, and floral pigments to mediate plant–pollinator interactions

Roohigohar et al. (2021), PeerJ, DOI 10.7717/peerj.11762 11/36

https://peerj.com
http://dx.doi.org/10.7717/peerj.11762


(Seal et al., 2004; López-Ráez et al., 2010; Mandal, Chakraborty & Dey, 2010; De Oliveira et
al., 2015). Many phenylpropanoid compounds are induced after wounding or herbivore
feeding (Bernards & Båstrup-Spohr, 2008) and participate in the establishment of plant
resistance (Vogt, 2010).

The target gene from the phenylpropanoids pathway in tomato tissue is CCoAOMT.
The caffeoyl-CoAO methyltransferase gene, CCoAOMT, was recorded to be involved

in production of coumarin and lignin in plant tissue during plant-pathogen interactions
(Do et al., 2007; Kai et al., 2008). In tomato fruit, CCoAOMT was found to contribute in
the biosynthesis of aromatic compounds and lignin in response to pathogen attack and
wounding (Miao et al., 2008).

Plant induced defense genes (Anti-nutritional activity)
Plant Polyphenol Oxidase genes (PPOs) are distributed widely in different plant tissues
and their discoloration effects in damaged and diseased plant tissue have been known for
many years (Tran, Taylor & Constabel, 2012). There is strong evidence of constitutive and
induced expression patterns of these genes associated with plant defense against pathogens
and insects (Thipyapong et al., 2004; Bhonwong et al., 2009). In tomato plant, the PPO gene
family consists of seven members: PPO A, Á, B, C, D, E and F (Newman et al., 1993). These
PPO gene members are differentially expressed in vegetative and reproductive tissues
of tomato in response to biotic and abiotic stressors (Thipyapong, Joel & Steffens, 1997;
Thipyapong, Hunt & Steffens, 2004).

The target genes from the PPO family in tomato tissue are SlPPO1-2.
The SlPPO1-2 genes (are also known as ppo1-2, PPO1-2 and slPPO1-2) are the S.

lycopersicum polyphenol oxidase genes (Kampatsikas, Bijelic & Rompel, 2019). PPO gene
activity is associated with tomato resistance against phloem-feeding and leaf-chewing
insects and also pathogens (Ryan, Gregory & Tingey, 1982; Stout et al., 1998). PPO1 gene
overexpression increased tomato plant resistance against S. litura larvae (Thipyapong et al.,
2004; Mahanil et al., 2008). Both PPO1 and PPO2 genes were highly expressed in tomato
leaves infested by Alternaria solani fungi (Salim et al., 2011).

Proteinase inhibitor
Plant Protease Inhibitors (PIs) are small proteins that are predominantly present in plant
storage tissues, but they have been also found in aerial plant parts (Rehman et al., 2017).
Plant PIs are classified as serine proteinase inhibitors, alpha-amylase/trypsin inhibitors,
potato type I and type II proteinase inhibitors, serpins, and squash inhibitors (Birk,
2003; Damle et al., 2005). In plant vegetative tissue PIs are induced by insect wounding
of plant tissue and play a substantial role in inhibiting folivory (Telang et al., 2009; Chen
et al., 2014). Protease inhibitors I and II are also well-known markers of JA mediated
defense response in tomato plants and have an anti-nutritive role to feeding herbivores
by decreasing the digestibility of dietary protein (Farmer & Ryan, 1992; Felton, 2005). The
proteinaceous alpha-amylase inhibitors are accumulated in plant tissues in which they can
act as defensive proteins against an insect-herbivore’s digestive alpha-amylases (Franco et
al., 2002).
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The selected genes, which are responsible for the activity of proteinase inhibitor and
alpha-amylase inhibitor, are PII and CEVI57 (PI-II), and a-AIs1.

Solanum lycopersicum wound-induced serine-type proteinase inhibitor I and II (PII
and CEVI57, or PI-II), exist in many Solanaceae (Bryant et al., 1976; Pearce, Johnson &
Ryan, 1993; Fan et al., 2020). Both proteinase inhibitor I and II genes are upregulated
in response to mechanical wounding and pathogen attack in tomato plant (Xu et al.,
2001; Hamza et al., 2018; Zhang et al., 2020a; Zhang et al., 2020b). Expression of potato
inhibitor-II (Pin-II) gene in tobacco plants decreased M. sexta larval growth (Johnson et
al., 1989); while silencing the PI gene in transgenic potato plants increased Leptinotarsa
decemlineata and Spodoptera exigua larval weight (Ortego et al., 2001). The expression of
the PIN2 (proteinase inhibitor II) in both mutant and wild tomato plants was influenced
byHelicoverpa zea feeding (Tian et al., 2014). Alpha-amylase inhibitor 1 (a-AIs1) in tomato
negatively impacts a feeding herbivore’s digestive enzymes (Da Lage, 2018). The alpha-
amylase inhibitor level was significantly upregulated in damaged leaves of Amaranthus by
M. sexta larvae in comparison to control leaves (Sánchez-Hernández et al., 2004).

Plant resistance R genes
Resistance (R) genes are responsible for the plant’s innate immune system (Dangl & Jones,
2001). Most R genes encode proteins characterized by the existence of a central nucleotide-
binding site (NBS), leucine-rich repeats (LRRs), and a variable amino-terminal domain
(Takken, Albrecht & Tameling, 2006). The amino-terminal domain determines signalling
specificity, while the LRRs are mainly involved in recognition (Martin, Bogdanove & Sessa,
2003). These proteins are distributed across most plant taxa, with the main function being
to detect infection by specific pathogens and pests in plant tissue (Chisholm et al., 2006).

The selected gene from this group introduced wasMi−1.1.
The NBS-LRR gene,Mi-1, is involved in tomato plant resistance against three root-knot

nematodes species, potato aphids, tomato powdery mildew and whiteflies (Vos et al., 1998;
Nombela, Williamson & Muñiz, 2003; Seifi et al., 2011).

Primer design
The PCR primers for genes were designed using the Primer-BLAST (NCBI) online tool
which combines BLAST with global alignment algorithm to ensure full primer-target
alignment while being sensitive enough to detect targets with a noticeable number of
mismatches to primers (Ye et al., 2012). The following criteria were considered when
designing primer pairs: (i) the annealing Tm (melting temperature) should be minimum
58 ◦C and maximum 62 ◦C; (ii) the PCR product size must be between 120 to 250 bp;
(iii) maximum Poly-x should be 3. For both tomato and B. tryoni larvae, mRNA FASTA
sequences were used as a PCR template. Each designed primer was tested by inputting to
the Primer-BLAST and checking the output gene.
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RESULTS
Primer check
RNA extraction and cDNA library synthesis
Snap frozen tissue of tomato and B. tryoni larvae were homogenized by Qiagen TissueLyser
II (Retsch) in TRIzol reagent. RNAwas extracted from infested tomato and larvae separately
using the Isolate II RNA Mini Bioline Kit with a subsequent DNAse treatment using the
Turbo DNA-free kit. The quality and quantity of total RNA were checked by running
samples on 1.5% denaturing agarose gel and to ensure DNA was absent a Nanodrop was
used. The SensiFAST cDNA synthesis kit (BIO-65053) was used to synthesize a cDNA
library by adding 15 µl of extracted RNA, 4 µl of TransAmp buffer and 1 µl of reverse
transcriptase enzyme. The master mix was placed in the thermal cycler and the cycling
conditions were those provided with the kit.

Primer check by qPCR analysis
The PCR primer pairs designed for tomato and B. tryoni were also tested in qPCR reactions
with cDNA of tomato fruit and B. tryoni larvae as the experimental samples, respectively. As
negative controls, we used No Template Control (NTC) and no-primer control reactions
with two technical replicates. qPCR was performed using the SensiFast SYBR No-ROX Kit
(BIO-98020). For testing each PCR primer pair, 10 µl of SensiFast SYBR, 0.8 µl of each
forward and reverse primers, 0.5 µl cDNA and 7.9 µl H2O were used with the final volume
of 20 µl. We used LightCycler R©96 Instrument (Roche) by adjusting two steps cycling and
melting: 1 cycle (polymerase activation) in 95 ◦C for 2 min and 40 cycles in 95 ◦C in 5 s for
denaturation and 60–65 ◦C in 15–30 s for annealing/extension. The cycle quantification
of each target gene were checked (Table 1) and genes with a high cycle threshold (>34)
were removed from further analysis. Genes with high NTC cycle threshold (>33) were
acceptable for inclusion in the further study. The final PCR primer pairs that were selected
in this study are shown in Table 2.

Primer consistency in experimental samples
To demonstrate the Cq consistency of the PCR primer pairs, the qPCR results from three
replicates of our subsequent study have been presented in Table 3. The results were obtained
from phenotypic and molecular studies to identify tomato fruit induced defense responses
against B. tryoni larvae. The experiment was conducted under semi-natural conditions
(glasshouse) while tomatoes were still on the plant. Fourty fruit from each of the two
different cultivars and two different ripening stages were inoculated with 40 B. tryoni
neonate larvae. After inoculation, half of the fruit were picked immediately and kept in
the same condition as unpicked fruit. Inoculated fruit were then dissected at two different
time points (48 hr and 120 hr) to reflect the two different larval stages under normal
developmental conditions. Surviving B. tryoni larvae and infested tomato tissue from each
of the fourty replicates were transferred to 2.00 ml microtubes separately and then snap
frozen using liquid nitrogen and kept at −80 ◦C until required for RNA extraction.

Here in Table 3, the cycle threshold of three replicates from unpicked and picked
treatments (tomato tissue and surviving larvae) at 48 hr timepoint shows the primer
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Table 1 Mean qPCR primer check results of primer pairs with and without Bactrocera tryoni larval tis-
sue cDNA or tomato fruit tissue cDNA. Two technical replications were carried out and the cycle quan-
tification analysis was done in LightCycler R© 96, version 1.1.0.1320, Roche. Genes with NTC Cq mean
above 33 were acceptable for inclusion in the further study.

Gene name Experimental Sample No Template Control (NTC)

Cqmean Cq error
(SD)

Cqmean Cq error

B. tryoni
GSTD1 21.04 0.01 – –
GSTT1 18.51 0.00 – –
GSTT7 27.01 0.16 – –
ESTF 24.79 0.08 – –
EST1 29.84 0.18 – –
SUR 28.12 0.19 – –
ABCG1 25.76 0.07 – –
ABCA3 23.00 0.01 – –
L259 25.36 0.02 37.54 0.00
MDR49 24.97 0.04 – –
CP6A9 27.98 0.01 39.28 0.00
CP313 24.39 0.01 – –
CP134 24.19 0.05 – –
CP4D8 27.80 0.23 37.91 0.00
CP6G1 25.07 0.03 – –
C12E1 21.44 0.02 – –
CP6T1A 28.24 0.01 37.16 0.00
C12C1 24.28 0.01 37.00 0.23
CP6T1B 28.16 0.11 32.96 1.29
C12B2 22.29 0.03 37.78 0.98
C12B1 26.79 0.01 – –
CP306 27.16 0.02 – –
CP304A 27.74 0.11 – –
C6A14 23.34 0.05 37.83 0.91
C4AC2 27.24 0.01 30.82 0.08
CP4S3 23.99 0.05 38.13 1.02
CP132 24.01 0.02 – –
CP316 28.08 0.03 36.24 0.08
CP304B 26.93 0.02 – –
CP6G2 26.66 0.08 38.62 0.00

Tomato fruit
PORK1 25.22 0.08 37.34 0.00
SIPO1 33.57 1.10 – –
SIPO2 33.10 0.01 – –
LeRK1 21.90 0.02 – –
PIIF 33.43 0.04 – –

(continued on next page)
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Table 1 (continued)

Gene name Experimental Sample No Template Control (NTC)

Cqmean Cq error
(SD)

Cqmean Cq error

CEVI57 18.88 0.22 – –
LeMPk1 21.97 0.09 – –
LeMPK2 20.21 0.18 – –
LeMPK3 18.44 0.01 38.22 0.00
GGP2 19.37 0.20 – –
Mi_1.1 26.15 0.00 35.83 0.92
LOXB 16.23 0.06 36.95 0.00
LOXD 17.41 0.00 35.32 0.74
CCoAOMT 18.77 0.11 – –
LeGAD2 20.08 0.06 – –
a-AIs1 30.23 0.30 37.36 0.00

consistency in candidate genes under the experimental conditions. The amount of tissue in
each of the three replicates included the tissue collected in 2.00 ml microtubes for tomato
and 20–25 larvae for B. tryoni.

CONCLUSION
Through a combined worked-example and literature review, this paper has identified
genes known to be associated with induced-defense against herbivores and pathogens in
tomatoes, and genes putatively associated with detoxification in B. tryoni based on their
known action in other insect herbivore systems. Applied to B. tryoni larvae and tomato fruit
harvested under different experimental conditions, the genes selected have been shown to
respond based on the predictable patterns from the literature (S Roohigohar, AR Clarke,
PJ Prentis, 2021, unpublished data). Of 30 selected genes for B. tryoni larvae, two genes
(C4AC2 and C12C1) were excluded from our study due to PCR primer failure (Table 1) or
high Cq in most of replicates. In tomato, one gene (CEVI57) from 16 selected genes was
excluded due to no Cq in most of replicates. The PCR primers designed are specific for
B. tryoni and tomato, but the approach followed is directly transferable to other systems
so long as there is already at least some genomic resources, at a minimum an annotated
transcriptome.

The gene selection process for B. tryoni larvae developed here is novel in insect frugivory
research. In contrast, the much more straight-forward gene selection process for tomato
fruit (Fig. 2) shows the advantage of having expanded functional genomic studies which are
now common in plant pathology. Plant protection entomologists are clearly still lagging
with respect to their plant pathology colleagues in this field.

Untargeted molecular approaches, such as comparative transcriptomics, provide
important insights into the overall changes in gene expression associated with two or
more states, such as larvae growing in different fruit types (Corrado et al., 2012). However,
more quantitative candidate gene studies, such as RT-qPCR approaches, are also needed if
the intent of the research is to create resistant fruit genotypes. For a fruit fly/fruit system,
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Table 2 A list of genes and their PCR primers developed for studying the fruit induced-defense/frugivorous insect-detoxification interactions
occurring between Bactrocera tryoni larvae feeding in tomato fruit.

Bactrocera tryoni detoxification pathways genes and primers

Gene
symbol

Forward sequence 5′–3′ Reverse sequence 5′–3′

GSTD1 GCCGATTTCACCACGTATGC GCGTGTATCGCTGAAACGTC
GSTT1 TTAGCACCATAGACGTGGCG TGG GCAATACTGCGGAACTT
GSTT7 TGGCCGGTGATCAGTTGAAA GCTGATCGACCATAGCACGA
ESTF AGCTAAACCTTCCACCACGG CACCCATTGCAAAGCCAGAC
EST1 CGCTGTTTACGCATTCCTCG AGCGGACGCATACTCATAGC
SUR TTGCTCAAGGCAAAGCGAAC CATCGTCATCCGTCTGCTCA
ABCG1 TTCTTTGTCGGTGCTACGCT ATGGGCGTTCCAAGCCATAA
ABCA3 GGGAATAGCGATTGCGGGTA CGCTTCTTCCATGTGATGCG
L259 CAGGAGCCAGCACGTAAAGA GGTCCAATGACGGCCACTAA
MDR49 TGAGGCAACCTCGGCTTTAG CCGAGCGCATAAGTTCAACG
CP6A9 GTATCGCTTGCAACTCGCTG CGCACGATGCGCATAAAGAA
CP313 AACACTTCAAACCGGAGGCA CTCCAGCTGACACAACGGAT
CP134 AGGGCATTTCGATTGGCAGA TCACCCGCATCGTTTCGTTA
CP4D8 ATTTACTCGCACGCCATCCA CGGCACACTGGGATAGAGAC
CP6G1 TGGACGAAGTGTTGCGCTTA GGATCGAAAGTGTCCGGGTT
C12E1 ATGTGGACTTGGAGAACGCA TCCATTTCCCGAATGGCAGT
CP6T1A TGCATAATCATGCGCTGCTG GTCTCCAGCTTACCGCCAAT
CP6T1B CGCGCACATCTTTACTCAGC GCCAGTAACAAGAAAGCGGC
C12B2 CAGCTTTCGGATGTTGCGAG ACCGGCCAGATGGTTTCATT
C12B1 TACGCACACTGCCGAAAGAT TTCCGGACAAGCACTCTCAC
CP306 CCTGCTCGCGCTATTAGTCA TTCAAGAATTCCCGCACCGA
CP304 AGCGTCGTGCTGACGATTAT GTATGCCCATTCGCGTGTTC
C6A14 ACACTGCGGAAATACACGGT CGAAACGATCGGGTTCAGGA
CP4S3 AAGCGCTGAAGGTACTGCAT AAGTGTCGACTTCTTCGCGT
CP132 AGCACACCTCTTCAATCCCG CTGCGATCTCAGCATAACGC
CP316 AATCGGTTCGGTGCAGAAGT ATGATCTGCGCTGTGTAGCA
CP304 TGAGGTCGTAGGTAGAGGGC GCTCCGTGTCTACCAATGCT
CP6G2 CGCGCTGTGTTCAAGTTCAG CGCAGAAACTCGGTAGAGGT

Tomato defensive pathways genes and primers
PORK1 AGACCCTCAATGAAAGAGGTA GGTGGAGCTAGAAGTGAGACA
slPPO1 GTGGACAGGATGTGGAACGA CTTCTTGGTGTCCAGGCAGT
slPPO2 AGTTGTTGCCCTCCTGTACC CCCTCATTCGACTCGTAGCC
LecRK1 CTTTGCAGGCATCGTGCTTT GCGCAAAGGTGAAGGGATTG
PIIF TGGTGTACCAACAAAGCTTGC GCATTTGTACAACAAAGCCCA
LeMPK1 GATGGTTCCGTTCCGCAAAC GAACCTGCCACCATGGCTTA
LeMPK2 GCGCTTGCTCATCCTTACCT AATCCAACAGCAAACGAGCG
LeMPK3 CGCCCTTACGAAGGGAGTTT ACTTTAGCCCACGGAGAAGC
GGP2 CCTCCACTTCCAGGCGTATT GCATCAGACAAATCACGGGC
Mi-1.1 AAAGCTCACCAGTGGATCGG CCATGCACGAAGGTCGAAAC

(continued on next page)
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Table 2 (continued)

Bactrocera tryoni detoxification pathways genes and primers

Gene
symbol

Forward sequence 5′–3′ Reverse sequence 5′–3′

LOXB GCGTTTAAGGCTTTGTGCGA GTAGGCCTTGACCATCCGTT
LOXD GCAGATCGCTAAAGCACACG GCGCTTAACTGCCTATGTGC
CCoAOMT ACCAAATGATTGACGACGGC TCCGTTCCAAAGGGTGTTGT
LeGAD2 TGAGCCCTGAGAAAGCTGTG GGAGTGTCCCACCCTGTTTC
a-AIs1 AAGTGCCTCACCAACACCAT CAGAATTCGTCGCGGATGGA

Table 3 Mean qPCR primer check results of primer pairs for selected putative detoxification genes
in Bactrocera tryoni and induced-defence mechanism genes in tomato fruit. For B. tryoni larvae,
RS10B, RK18A, RT15, RT14 genes and for tomato FPPS1, IDI1 genes used as housekeeping genes (internal
control). The qPCR template was cDNA for B. tryoni larvae or tomato tissue. The Cq means calculated
from two technical replications and the cycle quantification analysis was done in LightCycler R© 96, version
1.1.0.1320, Roche.

Gene name Unpicked status Picked status

Cqmean Cqmean

Rep 1 Rep 2 Rep 3 Rep 1 Rep 2 Rep 3

B. tryoni
GSTD1 19.66 20.07 19.19 20.23 20.38 19.96
GSTT1 17.10 17.71 17.45 17.93 17.79 18.86
GST7 25.64 25.34 25.00 25.67 25.90 25.05
ESTF 23.82 24.10 23.22 23.91 23.81 24.21
EST1 28.63 28.39 28.25 28.38 28.42 28.26
SUR 27.10 26.81 26.05 27.36 27.17 27.34
ABCG1 24.46 24.71 24.84 25.01 25.18 25.68
ABCA3 22.69 22.82 21.74 22.27 22.78 22.39
L259 24.81 25.07 24.70 24.51 24.64 24.53
MDR49 24.06 25.17 22.37 24.15 24.16 23.29
CP6A9 26.98 27.33 26.84 26.80 27.08 26.53
CP313 22.66 23.67 21.76 22.99 23.79 22.27
CP134 27.25 27.19 24.71 26.77 26.95 25.07
CP4D8 28.46 29.37 29.54 27.91 29.18 26.57
CP6G1 27.03 27.09 26.98 27.75 27.71 27.08
C12E1 23.12 22.76 21.52 22.60 22.77 21.69
CP6T1A 28.71 29.11 28.43 28.34 29.32 27.43
CP6T1B 28.72 28.86 28.57 28.01 29.08 27.09
C12B2 22.96 22.24 21.03 22.05 22.15 22.03
C12B1 26.86 27.17 25.89 26.92 26.88 26.00
CP306 25.65 25.84 25.30 25.13 25.76 25.93
CP304A 28.68 28.49 29.74 28.05 28.93 27.42
C6A14 24.44 23.56 21.97 23.83 23.47 22.85
CP4S3 24.70 23.96 23.80 24.11 24.91 25.08
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Table 3 (continued)

Gene name Unpicked status Picked status

Cqmean Cqmean

Rep 1 Rep 2 Rep 3 Rep 1 Rep 2 Rep 3

CP132 23.03 22.59 21.98 22.71 22.30 22.00
CP316 27.65 27.64 26.09 27.34 26.97 26.74
CP304B 27.68 28.01 28.03 27.32 28.55 27.09
CP6G2 27.43 27.60 26.89 27.06 27.91 26.84

HK genes
RS10B 14.60 14.49 14.12 14.42 14.87 14.84
RK18A 13.92 13.76 13.48 13.94 14.11 13.91
RT15 19.59 19.39 19.41 19.25 19.56 20.28
RT14 19.46 19.06 18.77 19.26 19.37 19.50

Tomato fruit
PORK1 24.56 25.10 25.4 25.31 26.13 27.01
SIPO1 30.63 29.33 30 31.92 30.81 30.04
SIPO2 30.55 29.86 28.87 30.18 31.53 30.52
LeRK1 20.90 20.94 21.58 21.34 22.14 22.70
PII 21.33 20.74 18.89 21.01 21.48 29.22
LeMPK1 21.73 21.48 21.47 21.91 22.41 24.42
LeMPK2 19.44 19.72 19.72 20.11 20.10 21.10
LeMPK3 18.94 18.56 18.74 18.99 19.41 20.29
GGP2 19.01 19.48 19.07 19.33 19.38 21.01
Mi_1.1 26.53 26.02 27.06 27.74 27.61 29.83
LOXB 15.56 17.04 16.88 15.29 14.83 14.41
LOXD 17.63 17.55 18.79 18.18 20.06 20.71
CCoAOMT 19.10 19.96 19.84 19.64 20.21 21.62
LeGAD2 19.37 19.89 19.49 20.06 20.27 23.93
a-AIs1 24.60 29.13 25.71 29.20 32.32 30.03

HK genes
FPPS1 18.22 19.70 18.46 18.40 18.78 19.63
IDI1 18.00 18.60 18.17 18.39 18.04 18.70

knowing when and where (i.e., on what cellular or metabolic pathway) larvae are most
challenged by plant defenses, and similarly when and how the fruit are challenging the
larvae, is fundamental to any manipulation of the system.
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