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ABSTRACT
Purpose  Here, this study verifies that cancer-
associated thrombosis (CAT) accelerates hypoxia, 
which is detrimental to the tumor immune 
microenvironment by limiting tumor perfusion. 
Therefore, we designed an oral anticoagulant 
therapy to improve the immunosuppressive tumor 
microenvironment and potentiate the efficacy of 
immunotherapy by alleviating tumor hypoxia.
Experimental design  A novel oral anticoagulant 
(STP3725) was developed to consistently prevent CAT 
formation. Tumor perfusion and hypoxia were analyzed 
with or without treating STP3725 in wild-type and P 
selectin knockout mice. Immunosuppressive cytokines 
and cells were analyzed to evaluate the alteration 
of the tumor microenvironment. Effector lymphocyte 
infiltration in tumor tissue was assessed by congenic 
CD45.1 mouse lymphocyte transfer model with or 
without anticoagulant therapy. Finally, various tumor 
models including K-Ras mutant spontaneous cancer 
model were employed to validate the role of the 
anticoagulation therapy in enhancing the efficacy of 
immunotherapy.
Results  CAT was demonstrated to be one of the 
perfusion barriers, which fosters immunosuppressive 
microenvironment by accelerating tumor hypoxia. 
Consistent treatment of oral anticoagulation therapy was 
proved to promote tumor immunity by alleviating hypoxia. 
Furthermore, this resulted in decrease of both hypoxia-
related immunosuppressive cytokines and myeloid-derived 
suppressor cells while improving the spatial distribution 
of effector lymphocytes and their activity. The anticancer 
efficacy of αPD-1 antibody was potentiated by co-
treatment with STP3725, also confirmed in various tumor 
models including the K-Ras mutant mouse model, which is 
highly thrombotic.
Conclusions  Collectively, these findings establish a 
rationale for a new and translational combination strategy 
of oral anticoagulation therapy with immunotherapy, 
especially for treating highly thrombotic cancers. 
The combination therapy of anticoagulants with 
immunotherapies can lead to substantial improvements of 
current approaches in the clinic.

INTRODUCTION
Limited tumor perfusion leads to impaired 
drug delivery, deprived oxygenation and 
exerts detrimental effects on the tumor micro-
environment (TME), which consequently 
decreases the efficacy of chemotherapy, 
immunotherapy, radiotherapy, nanomedi-
cine and more.1 2 Impaired tumor perfusion 
is attributed to the abnormal characteristics of 
tumor vasculature, such as high permeability, 
tortuosity, and compression.3 Antiangiogenic 
strategies resolve this issue, in part, however, 
vessel normalization seems transient and the 
therapeutic window of drugs are restrictively 
narrow for effective clinical use1 4; thus, alter-
native therapeutic approaches to enhance 
persistent tumor perfusion seem highly rele-
vant.1 2 5

The most difficult-to-overcome conse-
quence of limited perfusion is tumor hypoxia. 
Hypoxia in the TME exerts immunomod-
ulatory effects through complex interplay 
of cancer cells, immune cells and secretory 
cytokines.6 7 There have been controversial 
reports of hypoxia and hypoxia-inducing 
factor-1α (HIF-1α)-related pathways exerting 
pro-inflammatory or immunosuppressive 
effects. Some studies insisted that hypoxia 
driven HIF-1α exert pro-inflammatory 
effects and facilitate tumor infiltration of 
CD8+ T cells as well as enhance their func-
tion.8–10 However, majority of these studies 
have limitations as they used direct elimina-
tion of only HIF-1α and artifact-prone VHL 
KO mice models, which are not pertinent to 
fully reflect the tumor infiltrating lympho-
cytes (TILs) exposed to the TME. Mean-
while, since Sitkovsky et al11 first reported 
that tumor hypoxia is detrimental to adap-
tive immunity, series of studies in the last 
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two decades have widely proven that tumor hypoxia and 
hypoxia-related proteins and cytokines predominantly 
contribute to immunosuppression.6 12 Furthermore, 
there are numerous reported anti-immunosuppressive 
benefits of hypoxia relief that, in turn, lead to enhanced 
effector T cell activity, improved anti-tumor immunity and 
tumor regression.13 Thus, there is a growing interest in 
improving tumor oxygenation by strategies such as respi-
ratory hyperoxia, oxygenation agents or HIF inhibitors 
to diminish immunosuppression.13 14 Studies by groups 
such as Hatfield et al15–18 first proved the effectiveness 
of elimination of hypoxia for enhancement of immuno-
therapy. They also found that hypoxia exerts immunosup-
pressive effects through hypoxia-HIF-1α-CD39/CD73-A2 
adenosine receptors-cAMP-PKA-CREB-CRE, HIF-1α-
HRE-mediated immunosuppressive transcription and 
HIF-1α-CD39/CD73-A2 adenosine receptors-cAMP-PKA 
mediated inhibition of TCR (T cell receptor) triggered 
activation of T cells.11 13 19–21 Hence, relief of tumor 
hypoxia could be an attractive strategy in enhancing anti-
tumor immunity and the efficacy of immunotherapeutic 
agents.

Cancer-associated thrombosis (CAT) has been well 
reported to be common in most solid tumors such as the 
cancers of pancreas, stomach, kidney, prostate and etc.22 
According to clinical statistics, the risk of developing 
venous thromboembolism (VTE) for patients with cancer 
is four times higher than for non-cancer patients.23 This 
risk increases even more with chemotherapy treatment 
that damages blood vessels.24

The impact of CAT on blood perfusion and hypoxia 
in tumor tissue, however, has been immensely underes-
timated.25 By examining human glioblastoma samples, 
Brat and Van Meir26 identified that vaso-occlusion caused 
by intravascular thrombosis substantially affects tumor 
hypoxia and necrosis. Others have demonstrated, using 
several preclinical models, that the deposition of coag-
ulation factors in tumor stroma can exert massive solid 
stress, which decompresses vessels and limits perfusion.27 
They reported that the treatment of fibrinolytic enzymes 
such as tissue plasminogen activator could successfully 
degrade the fibrin clots and thus enhance both tumor 
perfusion and drug delivery. While evidence indicates 
that the formation of CAT in tumor vessels and stroma 
are positively correlated with the decreased perfusion 
and accelerated hypoxia, systematic observations or 
underlying mechanisms have yet to be elucidated.28 In 
this regard, we hypothesized that blood clots formed in 
blood vessels and interstitial areas of the tumor act as a 
major transport barrier that reduces tumor perfusion and 
aggravate hypoxia. Therefore, we also speculated that 
the constant use of proper anticoagulants could alleviate 
hypoxia, altering the TME to become more immune-
supportive, which would also augment the efficacy of 
immunotherapy.

Low-molecular-weight heparin (LMWH) has extensively 
been used in the clinic as the treatment option for CAT in 
cancer patients, as it has many advantages in its reliability 

in efficacy and safeness.29 However, as it is not orally 
available, direct oral anticoagulants (DOACs) are used 
increasingly as a consensus guideline for treating CAT 
in replacement of LMWH.30 31 In order to overcome this 
limitation and to further improve its pharmacokinetics, 
we have previously developed an orally active heparin 
conjugate, namely STP3725 as a new DOAC, which is a 
conjugate of enoxaparin and tetrameric deoxycholates.32 
We have found that STP3725 is orally active with 26.3% 
of oral bioavailability in rats and that its administration 
successfully prevented the formation of VTE in animal 
models. In this study, we validated our hypothesis that 
CAT is a major barrier, which can limit tumor perfusion 
and aggravate tumor hypoxia. We also verified that the 
administration of STP3725 potentiates the efficacy of 
immunotherapy by reducing hypoxia and fostering an 
immune-supportive microenvironment.

METHODS
STP3725 synthesis and formulation
STP3725 was previously developed by site-specific conju-
gation of a tetradeoxycholic acid to the end-site of 
enoxaparin.32 The synthesis of STP3725 for all animal 
experiments stated were carried out by ST Pharm in a 
previous study. For in vivo experiments, STP3725 was 
dissolved in distilled water, followed by the addition of 
poloxamer 188 (2.16 mg/kg) and labrasol (10 µL/mg 
STP3725) as solubilizers for the administration dosage 
of 5 mg/kg. The resulting solution (200 µL) was adminis-
tered to each mouse by oral gavage.

Statistics
Values are presented as mean±SEM unless otherwise 
indicated. For in vivo studies, replicates were performed 
three times, each time containing at least 8–10 individ-
uals. For all data, statistical significance was determined 
either by Student’s t-test between two groups or one-way 
analysis of variance followed by Turkey’s post hoc analysis 
for multiple-group comparisons. Statistical analysis was 
performed with GraphPad Prism V.7. Statistical signifi-
cance was set to p<0.05.

Other detailed methods are provided in online supple-
mental methods.

RESULTS
CAT aggravates hypoxia while reducing immune cell 
infiltration
In highly thrombotic B16F10.OVA melanoma 
(Ovalbumin-transfected B16F10 melanoma)-bearing 
C57BL/6 mice, an induced thrombosis model was estab-
lished by injecting fluorescently labeled fibrinogen. 
Fibrinogen-Cy5.5 dosage was varied from low, moderate 
to high amounts that showed corresponding patterns of 
fluorescence by IVIS (In vivo imaging system) imaging 
(figure 1A) and this was also quantified (figure 1B) that 
shows 12.30-fold increase in the ‘high’ group compared 
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with ‘low’. Detection of tumor hypoxia by pimonidazole 
showed an increase in pattern in correlation to fibrin-
ogen-Cy5.5 amount by immunofluorescence staining 
(figure 1C) and flow cytometry (figure 1D,E) that showed 
2.58-fold increase in the ‘high’ group compared with 
‘low’.

Subsequently, detection of intratumoral CD8+ T cells 
showed an inverse correlation to injected fibrinogen-Cy5.5 
(figure  1F). Quantified flow cytometry analysis showed 
that number of T cells decreased by 2.76-fold in the 
‘high’ group compared with ‘low’ (figure 1G). Similarly, 
exogenously injected CD45.1+ congenic T lymphocytes 
were detected harvested tumors of melanoma-bearing 
wild-type mice to show a decreasing pattern of newly infil-
trating lymphocytes (figure  1H) and quantified values 
showed 4.56-fold decrease in the ‘high’ group compared 
with ‘low’ (figure 1I).

Further, linear regression analysis was performed of 
the relationship between injected fibrinogen and tumor 
hypoxia (pimonidazole) (figure 1J) that showed a posi-
tive correlation and the relationship between injected 
fibrinogen and infiltration of CD45.1+ congenic lympho-
cytes that showed negative correlation (figure 1K).

Overall, these results showed that this induced throm-
bosis model displays tumor hypoxia exerted by CAT, and 
that this fibrinogen-mediated limited tumor perfusion 
shows a corresponding pattern of tumor hypoxia and 
tumor infiltration of both existing and newly introduced 
lymphocytes.

Anticoagulation therapy enhances tumor perfusion and 
reduces hypoxia
In the same melanoma model, various experiments were 
performed to investigate the effect of anticoagulation 

Figure 1  Cancer-associated thrombosis (CAT) aggravates hypoxia while reducing immune cell infiltration. (A, B) Induced 
thrombosis model of melanoma tumors was observed by varying dosage of fibrinogen-Cy5.5 and tumors imaged ex vivo by 
IVIS imaging (A) and fluorescence quantified (B). (C–E) Tumor hypoxia was observed by tissue staining for pimonidazole (C), 
and flow cytometry analysis (D, E). (F, G) Infiltration of CD8 T cells in tumors were analyzed and quantified by flow cytometry. 
(H, I) Exogenosuly injected CD45.1 congenic lymphocytes were detected (H) and quantified by flow cytometry (I). (J, K) 
Linear regression analysis showing the relationship between injected fibrinogen and tumor hypoxia (pimonidazole) (J) and 
the relationship between injected fibrinogen and infiltration of CD45.1 congenic lymphocytes (K). All data represent mean‍±
‍SEM. *P<0.05, **p<0.01, ***p<0.001, ****p<0.0001 compared with low group and #p<0.05, ####p<0.0001 compared with the 
moderate group by one-way ANOVA with Turkey’s post-test. ANOVA, analysis of variance. FITC, fluorescein isothiocyanate.
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therapy on tumor perfusion and hypoxia. P selectin 
knockout (Psel-/-) mice were used for negative control as 
P selectin is essential for the formation of CAT. Control, 
P sel-/-, enoxaparin- and STP3725-treated mice were eval-
uated for blood clots (figure 2A) that showed that its inci-
dence was highest in the wild-type mice compared with all 
other groups (figure 2B). Vessel occlusion caused by CAT 
was quantified by H&E staining (fully occluded >80%, 
partially occluded <80%). Enoxaparin-administered 

mice showed diminished thrombosis compared with 
control and STP3725 treated group presented even less 
incidence of clots similar to P sel-/- group (online supple-
mental figure 1A).

Further, three‐dimensional (3D) Doppler analysis 
was used in this model to visualize and quantify perfu-
sion in the tumor tissue in B16F10 (figure  2C,D). 
We found that both sectional blood flow and total 
blood volume in the tumor tissue were increased by 

Figure 2  Anticoagulation therapy enhances tumor perfusion and reduces hypoxia. (A, B) B16F10 tumors were sectioned 
and stained with H&E to show blood clots. Representative slides of fully (left) and partially (right) occluded vessel (A). Scale 
bar 50 µm. tumors from control, P selectin knock out, enoxaparin-treated and STP3725-treated mice were compared (B). (C) 
B16F10-bearing mice treated with either the vehicle or STP3725, were imaged with 3D Doppler and (D) in vivo intratumoral 
blood volumes were measured. (E) Comparison of pimonidazole+ (green) hypoxic areas in tumor tissue treated with the vehicle 
or STP3725, analyzed by flow cytometry and (F) quantified. (G) GLUT-1+(red) hypoxic areas in tumor tissue was shown with 
confocal microscopy and (H) quantified. Scale bar 2 mm. (I) PET/MR images for detection of11 FMISO. (J) SUVR (18FMISO 
intensity in tumor/18FMISO intensity in muscle) values quantified in B16F10 bearing mice treated with the vehicle or STP3725. 
All data represent mean±SEM. *P<0.05, **p<0.01, ****p<0.0001 compared with the control group, #p<0.05, ##p<0.01, 
####p<0.0001 compared with the Psel-/- group, $p<0.05 compared with the enoxaparin group by one-way ANOVA in (B) with 
Tukey’s post-test and Students’ t-test in (D, F, H, J). See also online supplemental figures 1 and 2 and online supplemental video 
1 and online supplemental video 2. ANOVA, analysis of variance.
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STP3725 administration, also apparent in the 3D 
tumor images of control (online supplemental video 
1 and STP3725-treated mice online supplemental  
video 2).

Also, similar patterns of perfusion were observed in 
other tumor types (AsPC-1, CT26) following STP3725 
treatment (online supplemental figure 1B–E).

STP3725 enhanced tumor perfusion and subsequently 
diminished tumor hypoxia, analyzed by flow cytometric 
analysis that showed hypoxic (pimonidazole+) cells 
decreased by 44.39‍±‍7.64% in STP3725-treated mice 
compared with control (figure 2E,F). This was also evident 
by staining the tumor tissue for GLUT-1, overexpressed 
in hypoxic conditions, that stained significantly less by 
35.06±4.32% for tumors in the STP3725-treated mice 
(figure 2G,H). Subsequently, live imaging of hypoxia in 
tumor was observed by PET/MR, using11 FMISO dye, that 
showed STP3725 diminished the SUVR (Standardized 
uptake value/region) value by 27.27‍±‍5.55% compared 
with control (figure 2I,J).

Collectively, we conclude that prevention of CAT using 
anticoagulation therapy can be an effective strategy to 
enhance tumor perfusion while alleviating hypoxia.

Anticoagulation therapy modulates the tumor immune 
microenvironment and promotes infiltration of lymphocytes
The alleviation of hypoxia rendered by STP3725 treat-
ment, and its effects on the tumor immune microenvi-
ronment was investigated by analyzing hypoxia-related 
immunosuppressive molecules: HIF-1α; transforming 
growth factor β; vascular endothelial growth factor A; 
chemokine ligand 28. STP3725 directly reduced the 
expression of these proteins (figure 3A–F) compared with 
control group and this evidently verifies that STP3725 can 
contribute to the relief of immunosuppression.

Tumor whole slide showed that total level of hypoxia 
was also lower in the STP3725 group compared with 
control, but number of infiltrated CD8+ cells were higher 
(figure  3G). Magnified images showed that CD8+ cells 
were almost depleted in the pimonidazole+ area in both 
control and STP3725 groups (figure  3H). This indi-
cates that STP3725 can expand the spatial distribution 
of lymphocytes within the tumor tissue by alleviating 
hypoxia.

Further, the effect of STP3725 on the infiltration of 
new lymphocytes was investigated using a congenic 
(CD45.1+) mouse model, where harvested lymphocytes 
were injected into B16F10.OVA tumor-bearing syngeneic 
wild-type (CD45.2+) mice after immunization of lympho-
cytes with tumor-specific antigen (figure 3I). Infiltration 
of new (CD45.1+) lymphocytes in the tumor tissue of 
receiving mice were higher in STP3725-treated group by 
3.96-fold compared with control (figure 3J,K) suggesting 
that consistent anticoagulation therapy promotes the 
entry of new lymphocytes into tumor tissue.

Excised tumors were also analyzed for hypoxia 
following rivaroxaban and STP3725 treatment. Tissue 
immunofluorescence staining showed a similar pattern 

of decrease in tumor hypoxia following oral anticoagu-
lation therapy by rivaroxaban and STP3725, and this was 
quantified by flow cytometry to show the same pattern 
(online supplemental figure 2A,B). In this tumor model, 
rivaroxaban or STP3725 treatment did not affect tumor 
growth compared with control (data not shown). Further, 
tumor CD8+ T cells were detected by flow cytometry to 
show increased numbers of T cells for rivaroxaban and 
STP3725-treated mice (online supplemental figure 2C).

Collectively, the data indicate that STP3725 can 
enhance the infiltration and spatial distribution of new 
lymphocytes in the tumor tissue by alleviating hypoxia 
(online supplemental figure 3).

Anticoagulation therapy potentiates the anticancer efficacy of 
αPD-1 antibody
After confirming the immune-favorable microenviron-
ment changes induced by STP3725 treatment, this was 
combined with αPD-1 (anti-programmed cell death 
protein 1) antibody to show inhibition of tumor growth 
by 77.26±2.78% in the combination group (figure  4A) 
in a B16F10.OVA model; STP3725 monotherapy showed 
marginal effects and antibody monotherapy presented 
46.60‍±‍7.88% inhibition compared with control without 
severe toxicity (figure  4B–D). Effective tumor growth 
inhibition was also confirmed in a mouse colorectal 
CT26.CL25 model (figure 4E–H).

STP3725 treatment also significantly improved both 
the distribution and the accumulation of αPD-1 anti-
body-Cy5.5 in the tumor tissue by 1.92-fold compared 
with control (online supplemental figure 4) indicating 
that STP3725 administration promotes αPD-1 antibody 
delivery and distribution in the tumor tissue possibly by 
promoting tumor perfusion. Furthermore, higher CD8+ 
TIL numbers and diminished hypoxia was observed in 
the combination therapy compared with αPD-1 group 
(online supplemental figure 5). These results correlated 
with the enhanced anti-tumor efficacy and indicate syner-
gistic benefits of the combination therapy.

A highly immune-depleted mouse pancreatic Pan02 
model was also investigated, and the results showed 
similar patterns of promotion of αPD-1 antibody efficacy 
in inhibiting tumor growth (online supplemental figure 
6).

Combination of anticoagulant and αPD-1 antibody promotes 
the infiltration of effector lymphocytes
Analysis of immune cell changes after STP3725 adminis-
tration in a B16F10.OVA model showed increases in the 
population of TIL (CD45+), cytotoxic T cells (CD3+CD8+) 
and helper T cells (CD3+CD4+) compared with control, 
and the combination group showed highest populations 
(figure 5A–C). There were no significant differences in 
the regulatory T cells (CD4+foxp3+) numbers, however, 
the increase in ratio of cytotoxic to regulatory T cells was 
meaningful only in the combination group (figure 5D,E). 
Interestingly, STP3725 treatment reduced the myeloid-
derived suppressor cell (MDSC) (CD11b+Gr-1+) 
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populations compared with control, and the pattern was 
the same for combination group compared with αPD-1 
monotherapy (figure  5F). Here, αPD-1 monotherapy 
exerted no changes and it can be deduced that STP3725 
was solely responsible for the reduction of MDSCs. 
Similarly, only in the combination group did the ratio 
of cytotoxic T cells to MDSCs show significant increase 
compared with both the control and αPD-1 monotherapy 
groups (figure 5G).

Evaluation of cytotoxic T cell function showed that 
PD-1+ mean fluorescence intensity (MFI) were lowered 
after STP3725 treatment regardless of αPD-1 treatment 

(figure  5H); also, the population of Ki67+ cells were 
highest in the combination group (figure  5I). T cell 
functions in tumor were further investigated by showing 
that STP3725 and the combination groups substantially 
enhanced interferon gamma (IFNγ) secretion of OVA-
stimulated B16F10.OVA tumor-derived lymphocytes 
(figure  5J). Similarly, numbers of IFNγ, tumor necrosis 
factor alpha (TNFα)-releasing CD8+ T cell and ‘polyfunc-
tional T cell’ (IFNγ+TNFα+) showed the same patterns 
(figure  5K,L). Based on the data that show reduction 
of PD-1-expressing T cells and increase in proliferating 

Figure 3  Anticoagulation therapy modulates the tumor immune microenvironment and promotes infiltration of lymphocytes. 
(A, B) Staining of HIF1α+ (green) (A) and VEGF-A+ (green) (B) in B16F10 tumor tissue slide from vehicle or STP3725-treated 
mice. Scale bar 2 mm. (C–F) hypoxia-related cytokines HIF1α (C) VEGF-A (D), TGF-β (E) and CCL28 (F) were quantified in 
whole tumor lysate using ELISA. (G) Costaining of pimonidazole+(green) hypoxic region and CD8+ (red) cells in whole tumor 
slide (H) and magnified images from vehicle (above) or STP3725-treated (below) mice to identify the spatial distribution of CD8+ 
cells in hypoxic region. Scale bar 3 mm in (G), 100 µm in (H). (I) Diagram depicting lymphocyte transfer model using congenic 
(CD45.1+) and wild-type (CD45.2+) C57BL/6 mice with B16F10.OVA tumor. (J) Representative flow cytometric plots showing 
wild-type CD45.2+ and exogenously injected congenic CD45.1+ lymphocytes, (K) quantified. All data represent mean±SEM. 
*P<0.05 compared with the control group, by Student’s t-test. See also online supplemental figure 3. CCL28, chemokine ligand 
28; HIF1α, hypoxia-inducing factor-1α; VEGF, vascular endothelial growth factor; TGF-β, transforming growth factor β; FACS, 
fluorescence-activated cell sorting analysis.
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and cytokine-secreting T cells in tumor, we contend that 
STP3725 also improved the function of cytotoxic T cells. 
All data was analyzed in comparison to the corresponding 
IgG antibody data (online supplemental figure 7).

Additionally, in a CT26.CL25 model, STP3725 also 
exerted increase in TILs, cytotoxic T cells and helper 
T cells, while reducing MDSCs and PD-1- CD8+ T cells 
in tumor (online supplemental figure 5); these results 
collectively confirm again, the alteration of the tumor 
immune microenvironment by STP3725.

Overall, STP3725 significantly enhanced the efficacy 
of αPD-1 antibody by reducing MDSC population while 
enhancing both the numbers and function of T cells.

Combination therapy promotes tumor-specific memory 
responses
Additionally, tumor (OVA)-specific immune responses 
were assessed by measuring IFNγ levels after stimulating 

tumor-derived lymphocytes and splenocytes with tumor 
specific antigen from B16F10.OVA-bearing mice 
(figure  6A). The results showed highest IFNγ levels in 
the combination group analyzed by ELIspot as depicted 
in the representative images and quantitative analysis of 
the spotting in tumor derived lymphocytes (figure 6B,C). 
Splenocytes also presented similar results, in that the 
combination group showed highest IFNγ levels in ELIspot 
as well as and ELISA (figure 6D,E). It is important to note 
that STP3725 monotherapy showed negligible results 
on IFNγ levels, which implies that anticoagulant alone is 
not enough to exert a strong local or systemic immune 
memory response. Collectively, these data suggest that 
combination of anticoagulant and immunotherapy can 
strongly elicit tumor specific memory responses both for 
local and systemic manner.

Figure 4  Anticoagulant therapy potentiates the anticancer efficacy of αPD-1 antibody. (A–D) (A) Comparison of B16F10.OVA 
tumor growth inhibition in control, STP3725, αPD-1 and combination groups. (B) Tumors harvested on day 19 were weighed. 
(C) Body weight changes and (D) individual tumor growth. (E–H) similarly, tumor growth inhibition in the same groups were 
measured using CT26.CL25 tumor model. (F) Tumors harvested on day 24 were weighed. (G) Body weight changes and (H) 
individual tumor growth. All data represent mean±SEM. **p<0.01, ***p<0.001, ****p<0.0001 compared with the control group, 
#p<0.05, ##p<0.01 compared with the STP3725 group by one-way ANOVA with Tukey’s post-test. See also online supplemental 
figures 4 and 5. ANOVA, analysis of variance.
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Combination therapy attenuates tumor development in a K-ras 
mutant mouse model
The efficacy of STP3725 combination with αPD-1 anti-
body was previously verified in various syngeneic/orthot-
opic tumor models and the same regimen was also applied 
in the highly thrombotic K-Ras mutant spontaneous lung 
cancer mouse model. After treatment of drugs, mice 
were sacrificed and the lungs were harvested and imaged 
(figure  7A,B). We found that while STP3725 mono-
therapy mediated negligible changes compared with 
control, the combination with αPD-1 antibody substan-
tially reduced nodule formation, lung weight and tumor 
area fractions in the H&E slides (figure 7C–F). The MSB 
staining showed that STP3725 significantly attenuated 
clot incidence in both intratumoral and non-tumoral 
areas of the lung tissue (figure  7G,H). In conclusion, 
the treatment of STP3725 considerably diminished the 
thrombotic incidences and the combination of STP3725 
and αPD-1 antibody substantially attenuated spontaneous 
lung cancer development in this model. Based on these 
results, we postulate that the potentiation of anticancer 

effects of αPD-1 antibody in this K-Ras mutant model 
is also attributable to the improved tumor immune-
microenvironment resulted from reduced hypoxia and 
incidence of CAT.

DISCUSSION
In this study, we verified systematically that CAT serves as 
a major perfusion barrier, which limits oxygen supply in 
tumor and prevention of CAT using oral anticoagulation 
therapy effectively reduces hypoxia. Furthermore, the 
enhanced perfusion alleviated tumor hypoxia, resulting 
in the alteration of the TME into an ‘immune-supportive’ 
state that reduced the expression of immunosuppressive 
cytokines and MDSC populations, which in turn, facili-
tated the entry of new lymphocytes.

STP3725 treatment also increased the ratio of PD-1 
negative to positive CD8+ T cells in tumors. Hypoxic and 
glucose-limited TME is associated with the expression of 
checkpoint molecules, such as PD-1, LAG-3 and CTLA-4 
on T cells in the tumor, the markers of exhaustion.33 34 

Figure 5  Combination of anticoagulant and αPD-1 antibody promotes the infiltration of effector lymphocytes. (A) Flow 
cytometry analysis of CD45+ cell fraction in whole B16F10.OVA tumor and CD45+-gated cells for (B) CD3+CD4+ T cells, (C) 
CD3+CD8+ T cells, (D) regulatory T cells, (E) ratio of CD8+ cells/regulatory T cells, (F) MDSCs, (G) ratio of CD8+ cells/MDSCs, 
(H) PD-1-CD8+ T cells, and (I) proliferating CD8+ T cells in each group. Cytokine-secreting CD8+ cells such as (J) IFNγ-secreting 
CD8+ T cells, (K) TNFα-secreting CD8+ T cells, (L) IFNγ+TNFα+CD8+ T cells (poly functional T cell) were also analyzed. All data 
represent mean±SEM. *P<0.05, **p<0.01, ***p<0.001, ****p<0.0001 compared with the control group, #p<0.05, ##p<0.01, 
###p<0.001, ####p<0.0001 compared with the STP3725 group, $p<0.05, $$p<0.01 compared with the αPD-1 group, by 
one-way ANOVA with Tukey’s post-test. See also online supplemental figures 6 and 7. ANOVA, analysis of variance; IFNγ, 
interferon-γ; MDSC, myeloid-derived suppressor cell; TNFα, tumor necrosis factor-α.

https://dx.doi.org/10.1136/jitc-2021-002332
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Thus, we contend that the alleviation of hypoxia and the 
increased number of newly infiltrated T cells following 
STP3725 treatment contribute to this increase in the 
number of PD-1 negative CD8+ T cells.

In addition, STP3725 is responsible for the reduction 
of MDSC regardless of the αPD-1 antibody co-admin-
istration. Based on several studies which revealed that 
hypoxia-dependent HIF-1α is highly associated to MDSC 
levels in the TME,35 36 we can presume that the observed 
decrease in the cytokine levels after STP3725 treatment 
is responsible for the reduction in MDSC population. As 
circulating MDSC level inversely correlate with the overall 
survival and clinical outcomes of immunotherapies,37 38 
MDSC reduction after STP3725 treatment could be an 
additional benefit that improves the efficacy of immuno-
therapeutic agents.

Heparin is known for exerting various immunological 
and biological effects that may affect the tumor and its 
microenvironment.39–41 In order to demonstrate that 
tumor hypoxia was diminished by the anticoagulation 
effect, we compared STP3725 to an existing DOAC, 
rivaroxaban in the same tumor model. Both anticoagu-
lant drugs resulted in a decrease in tumor hypoxia and 

increase in CD8+ T cells, but STP3725 was similar or 
slightly more effective compared with rivaroxaban. From 
these results, we can postulate that heparin mediates 
additional effects to anticoagulation that contribute to its 
merit over rivaroxaban, but further studies are required 
to clearly demonstrate this.

We next selected the K-Ras mutation mouse model, 
in which all mice developed lung cancer spontaneously; 
this model was chosen as the mouse phenotype has high 
incidence of CAT, deriving from the mutation42 and 
this model can simulate the features of the Ras mutant 
cancers relevant to clinics.43 We were able to validate the 
effects of STP3725 on reducing the formation of CAT and 
on enhancing the efficacy of αPD-1 antibody in a sponta-
neous cancer model. We expect that this strategy, proven 
effective in this model, will be applicable to highly throm-
botic solid tumors.

CAT formation is an inevitable element persistent 
during tumor development and methods to treat CAT 
in patients with cancer is actively pursued in the clinic44; 
thus, it is appealing to use its role of a perfusion limiting 
barrier as a target for a combination regimen consisting of 
anticoagulants and immunotherapies. As anticoagulation 

Figure 6  Combination therapy promotes tumor-specific memory responses. (A) Diagram depicting the tumor antigen specific 
T cell response ex vivo model using IFNγ ELISPOT and ELISA. (B) IFNγ ELISpot images were acquired after stimulating 
splenocytes with OVA from the tumor tissues in each group and (C) area of dot was quantified in each group. (D) Similarly, IFNγ 
ELISpot images were acquired after stimulating splenocytes with OVA from the splenocytes in each group and (E) the amount 
of IFNγ in splenocytes cultured media after OVA stimulation was measured using ELISA. IFNγ, interferon γ. All data represent 
mean±SEM. **p<0.01, ****p<0.0001 compared with the control group, #p<0.05, ##p<0.01, ####p<0.0001 compared with the 
STP3725 group, $$p<0.01, $$$p<0.001 compared with the αPD-1 group, by one-way ANOVA with Tukey’s post-test.
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Figure 7  Combination therapy attenuates tumor development in a in K-ras mutant mouse model. (A) Schematic figure 
depicting the dosing schedule in K-ras mutant model. (B) Representative images of lung tissues harvested from vehicle, 
STP3725, and STP3725+αPD-1 antibody-treated mice. (C) Quantification of lung nodules, (D) lung weight, (E) and total tumor 
area fraction of lung tissues. (F) Representative whole tissue image was shown. Scale bar 2 mm. (G) Fibrin clots in lung tissue 
slides were distinguished both in tumor and non-tumoral areas using MSB (Lendrum) staining method (H) and quantified. (I) 
Schematic diagram depicting changes in the tumor immune microenvironment following anticoagulant treatment. STP3725 
treatment enhances the blood flow into the tumor tissue while alleviates tumor hypoxia, which leads to changes in the 
composition and population of immune cells (MDSCs and T cells). Scale bar 100 µm. All data represent mean±SEM. *P<0.05, 
**p<0.01, ***p<0.001, ****p<0.0001 compared with control group and one-way ANOVA in (C–E) and two-way ANOVA in (H) with 
Turkey’s post-test. ANOVA, analysis of variance; MDSCs, myeloid-derived suppressor cell.
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therapy can be used to enhance the efficacy of immu-
notherapy, STP3725 may also be combined with other 
hypoxia-relieving strategies for a synergistic effect in 
enhancing anti-tumor immunity.13

As long-term treatment and prevention of VTE still 
remain a problem for cancer patients,29 45 a new combina-
torial protocol consisting of a new oral anticoagulant and 
immunotherapies could generate synergistic therapeutic 
benefits for patients with cancer. Although the use of anti-
coagulants in cancer patients require caution because 
of the heightened risk of hemorrhage,46 47 a systematic 
scoring system of evaluating CAT including the ‘Khorana 
score’ can help to predict the risk of VTE.48 49 We expect 
that the benefits of our combinatorial strategy can far 
outweigh the disadvantages of using anticoagulants alone.

In conclusion, STP3725, the orally active enoxaparin, 
can enhance tumor perfusion and alleviate hypoxia by 
preventing CAT, to help enhance the efficacy of immu-
notherapies by fostering an immune-supportive microen-
vironment (figure 7I). This strategy has strong potential 
for expanding the combinatorial criteria of anticoagula-
tion therapy to include other types immunotherapies and 
appears highly appropriate for clinical translation.
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