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ABSTRACT
When triple negative breast cancer (TNBC) are analyzed by gene expression 

profiling different subclasses are identified, at least one characterized by genes related 
to immune signaling mechanisms supporting the role of these genes in the cancers. 
In an earlier study we observed differences in TNBC cell lines with respect to their 
expression of the cytokine IL32. Our analyses showed that certain cell lines expressed 
higher levels of the cytokine compared to others. Because TNBC are heterogeneous 
and immune-related genes appear to play a pivotal role in these cancers, we chose 
to examine the transcriptomes of the different cell lines based on IL32 expression. 
We performed group analyses of TNBC cell lines demonstrating high IL32 compared 
to low IL32 levels and identified IL32, GATA3, MYBL1, ETS1, PTX3 and TMEM158 as 
differentially associated with a subpopulation of TNBC. The six candidate genes were 
validated experimental and in different patient datasets. The genes distinguished a 
subset of TNBC from other TNBC, and TNBC from normal, luminal A, luminal B, and 
HER2 patient samples. The current project serves as a preliminary study in which we 
outline the discovery and validation of our list of six candidate genes.

INTRODUCTION

Over the past few years significant amounts of 
research has been performed in efforts to characterize 
triple negative breast cancers (TNBC). The goal of 
these studies was to identify genes that would serve as 
biomarkers and/or candidates for targeted therapies. Even 
with all the efforts, there is still much to learn regarding 
the cancers. Data however are clear in demonstrating that 
the TNBC subtype represent a heterogeneous group of 
patients [1, 2], not just a single subtype. Lehman et al [3] 
identified 2188 genes that defined six TNBC subclasses 
that were designated as basal-like 1 (BL1), basal-like 2 
(BL2), immunomodulatory (IM), mesenchymal (M), 
mesenchymal stem-like (MSL), and luminal androgen 
receptor (LAR) subclasses. Related to these studies Ring 
et al [4] developed a ‘leaner algorithm’ based on the same 
data and identified 101 genes that were able to identify 
the TNBC subclasses and in addition, predict patient 
outcome, recapitulating and expanding upon the results 
observed within the larger set of candidate genes. Together 

these data (a) emphasize the heterogeneity of TNBC (b) 
show that smaller gene sets can define the breast cancer 
subclasses and (c) demonstrate the ability of the gene sets 
to predict patient outcome. 

The identification of an IM-like subclass in TNBC 
further validate the relationship between cancers and 
immune-related processes. Although this is a relatively 
recent observation in TNBC, its long been shown that 
inflammatory processes are associated with various types 
of cancers. One of the earliest observations came from 
Rudolf Virchow dating back to the 19th century when 
he observed the presence of ‘irritations’, now known 
to be inflammatory cells present in tumors. TNBC are 
particularly relevant to this discussion because these 
cancers often exhibit increased expression and changes 
in regulation of immune-related genes compared to 
estrogen receptor positive breast cancers [5, 6]. Data 
show significant levels of tumor associated macrophages 
(TAM) and tumor infiltrating lymphocytes (TIL) in TNBC 
compared to levels found in receptor positive patient 
samples. TAMs are thought to help in the proliferation 
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of tumors [7, 8] and TIL [9] are thought to be the result 
of pro-inflammatory events. As confirmation of the 
relationship between receptor status and inflammation, 
studies show that Interleukin 1a (IL-1α), IL-1β, and IL-1ra 
[10] and IL6 [11] cytokines are over-expressed in TNBC 
patients compared to luminal cancers. In a separate study, 
Goldberg et al [12] found that elevated levels of IL6 in 
the serum and tissue were associated with invasiveness 
and poor prognosis. Denardo et al [13] reported that basal-
TNBC with CD68-high/CD8-low levels correlate with 
overall poor survival. While these and other studies are 
instrumental in helping to understand the relationships 
between the immune system and TNBC, perhaps the 
most promising experiments of late involve studies of 
the programmed death 1 (PD1) and programmed death 
ligand 1(PDL1) membrane proteins associated with 
T-cells and cancer cells, respectively. PD1 and PDL1 (so 
called checkpoint inhibitor) genes are over expressed in 
melanoma, lung, stomach, head and neck and ovarian 
cancers [14-20] and treatment strategies that down 
regulate expression of these genes show an impressive 
response to therapies in clinical trials. Because TNBC 
demonstrate over-expression of immune-related genes 
compared to other breast cancer subtypes, the cancers 
are being examined for the possible utility of PD1/PDL1 
directed therapies. Mittendorf et al [21] found that PD1 
was expressed in approximately 20% of TNBC, making 
the gene a possible therapeutic target in the cancers. 
Recent studies by Beckers et al [22] however show that 
PDL1 in TNBC is associated with improved clinical 
outcome. While these and other data convincingly support 
the relationship between immune related processes and 
TNBC, they underscore the need to better understand 
the signaling mechanisms involving immune-related 
processes and these cancers. 

In an earlier study, we identified Interleukin 32 
(IL32) as differentially expressed in TNBC compared to 
non-tumor and luminal breast cancer cell lines and patient 
samples [23]. Data however showed that only certain 
TNBC displayed IL32 gene over-expression. Because 
TNBC are known to be heterogeneous, the goal of this 
study is to start by characterizing TNBC with respect 
to IL32 expression and based on bioinformatics-based 
assessment, identify genes that are differentially expressed 
in TNBC cell lines that are high in IL32 compared to low 
in IL32 gene expression. Once these genes were identified, 
as a final selection criteria genes were selected based on 
experimental validation and assessment of differential 
expression in non-tumor, luminal and HER2 breast 
samples. Applying this selection criteria, a short list of 21 
genes were identified and a final list of six genes were 
selected. The cell lines and patient samples analyzed in 
this study were available as publically available DNA 
microarray datasets and the initial gene discoveries were 
performed using unsupervised methods of analyses. Our 
gene candidates were validated following PCR analyses 

and by supervised analyses of the Maire [24] and other 
datasets. The Maire dataset contained gene expression 
information from normal, luminal A, luminal B, HER2 
and TNBC patient samples. A final list of six candidate 
genes were found to be differentially expressed in a 
subpopulation of the TNBC compared to all other TNBC, 
normal, luminal A, luminal B and HER2 patient samples. 
The genes included IL32, PTX3, GATA3, TMEM158, 
ETS1 and MYBL1. The current study details our approach 
for identification and selection of our list of genes, 
followed by validation of their gene expression levels in 
cell lines and clinical samples.

RESULTS

Selection and analyses of microarray datasets 
demonstrating IL32-high vs IL32 low levels

The current study involved analyses of both 
patient samples and cell lines (Table 1). An outline of 
our experimental approach is given in Table 2. The 
study began with the observation that only particular 
basal-like\TNBC were positive for IL32 gene expression 
while other cell lines showed lower to negligible levels. 
Our aim was to separate the basal-like\TNBC cell lines 
into two groups based on IL32 expression and perform 
differential expression analyses and identify genes 
associated with the two groups. The basal-like\TNBCs 
were extracted from Gse12777 and Gse34211 datasets, 
each containing 18 and 24 cell lines respectively. To 
better assess the reproducibility of IL32 expression 
in the various samples, only cell lines common to both 
datasets were considered for analyses. Nine cell lines 
were found to be common in both datasets and in all, IL32 
demonstrated a similar pattern of gene expression. Of the 
nine cell lines, six cell lines (i.e., HCC1569, HCC1143, 
MDA MB436, Cal851, Hs578T and MDA MB231 to a 
comparatively lesser degree) demonstrated higher IL32 
levels, and three (HCC70, HC1806, and BT20 expressed 
lower to negligible IL32 levels [23]. Except for HCC1569 
(which is positive for HER2), all other cell lines were 
designated as TNBC. The receptor status of the cell lines 
is well documented. The cell lines could not otherwise be 
stratified based on Basal A and Basal B subtype. Analysis 
of the same cell lines in Cancer Cell Line Encyclopedia 
(CCLE) [25] showed a similar pattern of IL32 expression 
(data not shown). 

We separated the Basel-like\TNBC cell lines into 
two groups defined by high compared to low IL32 gene 
expression levels, and performed T-test and Wilcoxon 
rank analyses to identify the genes that defined the two 
groups. Gene expression levels were filtered to select 
genes demonstrating at least a 2-fold difference with p 
values <0.05. A list of 21 genes were selected for study. 
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These genes were designated as those differentially 
expressed in the IL32-high compared to the IL32-low 
basal/TNBC cell lines. The complete list of 21 genes and 
their pattern of differential gene expression in the cell lines 
are given in the supplemental Table 1. Search Tool for 
the Retrieval of Interacting Genes/Proteins (STRINGTM) 
analysis [26] show that the 21 genes are enriched in 
inflammatory and cytokine responses (p value 0.0059) 
and in the pathway related to HTLV infection (p value 
0.0031) (Supplementary Figure 1). The association with 
immune-related processes was not surprising because the 
initial analysis were performed to compare cell lines based 
on IL32-high compared to IL32-low levels of the cytokine 
gene. 

Selection of the final list of six candidate genes 
based on PCR

In efforts to validate the genes and identify a 
reliable subset of candidate genes, the list of 21 genes 
were examined experimentally via PCR using MCF7 
(luminal), MCF10A (triple negative, non-tumor), MDA 
MB468 (TNBC, basal A), (HCC70 (TNBC, lower IL32) 
and MDA MB231 (TNBC, higher IL32) cell lines. The 
focus was to validate differential expression of our 
candidate genes in IL32 high compared to IL32 low cell 
lines, but at the same time determine the gene expression 
levels in certain other breast samples. HCC70 was chosen 

Figure 1: PCR validation of the 6 candidate genes. (a) PCR (b) densitometer analysis agarose gel profile.

Table 1: Summary of the publically available GEO dataset used in the study.
Gene expression 
omnibus Type Characteristics\subtype Number of  

samples (n) Publication

Accession number

GDS2250\GSE7904 Patients Normal\non-basal-like\basal n = 47 Richardson AL, Wang ZC, De Nicolo A,  et al 
Cancer Cell. 2006 Feb;9(2):121-32. 

GDS1329 Patients Apocrine\basal-like\Luminal n = 49 Farmer P, Bonnefoi H, Becette V, et al
Oncogene. 2005 Jul 7;24(29):4660-71. 

GSE34211 Cell 
lines Luminal\basal n = 35 Hook KE, Garza SJ, Lira ME, et al

Mol Cancer Ther. 2012 Mar;11(3):710-9. 

GSE12777 Cell 
lines Luminal\basal n = 49 Hoeflich KP, O'Brien C, Boyd Z, 

Clin Cancer Res. 2009 Jul 15;15(14):4649-64. 

GSE65194 Patients Normal, Luminal A, Luminal B
Her2, Triple negative n = 161 Maire V, Némati F, Richardson M, 

Cancer Res. 2013 Jan 15;73(2):813-23. 

GSE76124 Patients Triple negative, normal n = 48 Burstein MD, Tsimelzon A, Poage GM, et al
Clin Cancer Res. 2015 Apr 1;21(7):1688-98. 

GSE43502 Patients Triple negative n = 25 Yu KD, Zhu R, Zhan M, Rodriguez AA, et al 
Clin Cancer Res. 2013 May 15;19(10):2723-33
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to represent the IL32-low cell line and MDA MB231 
was chosen to represent the IL32-high cell line based on 
previous observations showing a differential pattern of 
expression between the cell lines in the original analyses. 

Following PCR analyses, and based on levels observed 
for HCC70 compared to MDA MB231, 6 of the 21 genes 
demonstrated differential gene expression (Figure 1), thus 
chosen as candidate genes for downstream analyses. The 

Figure 2: Hierarchical cluster (HC) analysis of 6 candidate genes in Maire patient samples. (a) HC analyses of 6 genes in 
all TNBC (red bars) compared to normal, Luminal A, B and HER2 (yellow bars). (b) HC analyses of 6 genes in TNBC-25 compared to 
normal, Luminal A, B and HER2 patient samples. The arrow shows clustering of the TNBC-25 patient samples. (c) Principal component 
analysis (PCR) of HC identified in panel B – TNBC-25 compared to normal, Luminal A, B and HER2.

Table 2: Outline of the experimental approach used for gene discovery and validation 
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final list of genes included IL32 (cytokine), PTX3 (tumor 
necrosis factor induced gene), GATA3 (transcription 
factor), TMEM158 (transmembrane protein), ETS1 
(transcription factor) and MYBL1 (transcription factor). 
All of the genes were up-regulated in IL32-high TNBC 
(MDA MB231) except GATA3 where comparably lower 
levels were detected. These data are consistent with that 
documented by other investigators demonstrating lower 
levels of GATA3 in some TNBC (i.e., MDA MB231), and 
significantly higher levels of GATA3 in luminal samples 
(i.e. MCF7) [27]. Significant levels of PTX3 gene was 
observed in MCF10A, but still higher levels were found 
in MDA MB231 compared to all other cell lines. A 
summary table of the Gene Ontology (GO) as generated 
by Gene Annotation Tool to Help Explain Relationships 
(GATHER) [28] and mAdb [29] are given in Table 3. 
GATHER and mAdb analyses show our gene panel 
over-represented in response to defense mechanisms, 
immune responses and protein binding/transcription factor 
activity. GATHER show highly significant p values and 
mAdb show a higher than expected functional occurrence 

for our gene set, validating enrichment of the cellular 
processes. These data also suggest ETS1, IL32 and PTX3 
are regulated by NFKappa B (p65), and validate protein 
binding of both GATA3 and ETS1. 

Analyses of the six candidate genes in Maire DNA 
microarray dataset

As validation of the processes used to select our 
candidate genes, the expression pattern of the 6 genes 
were analyzed against the Maire clinical dataset [24], 
which contained normal, luminal A, luminal B, HER2 
and TNBC patient samples. This dataset was chosen 
based on its sample types and the platform used for the 
microarray analyses. A description of the Maire dataset 
can be retrieved from GEO GSE65194. Seven normal 
samples from the GDS2250 (GSE10780) dataset were 
combined with the Maire dataset in order to increase the 
number of normal patient samples. The quality metrics 
(i.e., % present, 3/5’ ratio, and scaling factor) for both 
GDS2250 and Maire microarray datasets were similar, 

Figure 3: Analyses of 6 candidate genes in normal, and TNBC characterized as MES, LAR, BLIA and BLIS.

Table 3:  Gene Ontology functional analysis of the 6 candidate genes as designated 
following GATHER and mAdb program analyses.
GATHER
GENE ONTOLOGY
Annotation genes significance bayes factor
defense mechanism IL32, PTX3, GATA3 , ETS1 0.0001 7
immune responses ETS1, IL32, PTX2 0.0003 4
kegg pathway none
transcription factor 
NFKAPPA B (p65) IL32, ETS1, PTX3 0.0001 5

protein binding ETS2 ETS1, GATA3 <0.0001 11
mAdb
GENE ONTOLOGY
Annotation Observed/Expected Ratio
immune responses IL32, PTX3, GATA3 , ETS1 6.9
transcriptional activity ETS1, GATA3, MYBL1 9.6
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allowing for the datasets to be combined. The datasets 
did not show evidence of a batch effect when they were 
compared via cluster analysis. In total, 168 unique clinical 
samples were used for the analyses including 37 normal, 
29 luminal A, 30 luminal B, 30 Her2 and 42 TNBC from 
the Maire and GDS2250 datasets. The clinical samples in 
both datasets were defined previously by diagnoses and 
immunohistochemistry processes. 

T-test were performed to compare the TNBCs 
(i.e., group 1) compared to all the other clinical sample 
types (i.e., group 2) using an unsupervised method of 
analysis. Results of the analysis were then used to access 

the expression of our 6 candidate genes (Figure 2a). 
These data show the six genes appear to define 25 of 
the 42 TNBC but not all TNBC. When the samples are 
regrouped such that the 25 TNBC (TNBC-25) represent 
a separate group-1 and all other TNBC, luminal A, 
luminal B, HER2 and normal to represent group-2, data 
show the six genes differentially associated with TNBC-
25 (Figure 2b). Results of these analyses show that our 
6 candidate genes are differentially associated with 
~60% of the TNBC. Data by other investigators show 
that TNBC are a heterogeneous subtype [2]. Based on 
our studies, we suggest that our 6 candidate genes show 

Figure 4: Genes identified when TNBC-25 compared to the 8 other TNBC. (a) STRING analysis of 16 genes differentially 
expressed between the two groups of TNBC. (b) KEGG analysis of panel of 16 genes. Red ball shows genes involved in TNF pathway in 
panel a. (c) PCA analysis of the panel of 16 genes. (d) gel electrophoresis of NFE4, C8orf46 and GAPDH (control) transcripts in MDA 
MB468, HCC70 and MDA MB 231.

Table 4: Differential gene expression of 6 genes in TNBC-25 compared to all Luminal A/B, Her2, normal samples.
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differential expression in some TNBC, in part supporting 
the differences related to the TNBC genomes. 

Although PTX3 was a somewhat reliable candidate 
for characterizing TNBC, substantial levels of the gene 
were identified in some normal samples, causing the 
normal patient samples to cluster closely to TNBC. 
Significant levels of PTX3 were detected in several of 
the normal samples, but the levels did not exceed those 
observed for TNBC. When PTX3 was excluded from the 
gene list and the cluster analyses repeated, normal samples 
clustered at opposite ends, most distant from the TNBC 
(data not shown). We should note that while ETS1 failed 
to demonstrate at least a 2-fold difference when examined 
against our entire patient sample population, it consistently 
demonstrated highly significant p values, and did appear 
differentially expressed upon analysis by PCR. 

The expression of our candidate genes in the TNBC-
25 were also compared directly to the levels found in 
normal, luminal A, luminal B and HER2 (Table 4). Even 
with PTX3 included in the analysis, statistically significant 
differences were observed between the TNBC-25 and 
normal samples, and luminal A, B and HER2 samples. 

We chose to also examine gene expression levels 
of our candidate genes in the GDS2250 and GDS1329 
patient sample datasets. The datasets were chosen based 
on their use of the U133 plus 2 platform and because the 
gene expression profiles for the Affymetrix probes-set 
were curated and available in Gene Expression Omnibus 
[30]. GDS2250 contained 7 normal (referenced above), 19 
luminal and 20 basal-like/TNBC samples. The GDS1329 
contained 16 basal-like/TNBC, 27 luminal and 6 apocrine 
tumors. Neither of the datasets specifically distinguished 

basal-like compared to TNBC samples, nonetheless, 
our candidate genes showed a specific pattern of over-
expression expression in some basal/TNBC compared to 
luminal patient samples (Supplementary Figure 2).

Analyses of the candidate genes in additional 
datasets

In efforts to further validate our candidate genes, we 
compared our gene list to two additional TNBC datasets. 
The first dataset was the result of genomic profile studies 
aimed at defining the heterogeneity of TNBC. Burstein et 
al [31] found that TNBC gene expression patterns can be 
defined by four subgroups which they designated Luminal 
androgen receptor (AR; LAR; Subtype 1) Mesenchymal 
(MES; Subtype 2) Basal-Like Immune-Suppressed 
(BLIS; Subtype 3) Basal-Like Immune-Activated (BLIA; 
Subtype 4). LAR are characterized based on estrogen 
receptor and receptor regulated genes (ESR1, GATA3). 
MES are characterized by mesenchymal-stem like and 
claudin low associated genes. BLIS are characterized 
by genes involved in down-regulation of B-cell, T-cell, 
and natural killer cell immune-regulating pathways and 
cytokine pathways, and in patients with the worst disease 
free survival. BLIA are characterized by tumors displaying 
an up-regulation of genes controlling B-cell, T-cell, and 
natural killer cell functions and in patients with an overall 
better prognosis.

As itemized in GEO, we chose the first samples 
from each group for download, including 7 normal 
patient samples, 10 LAR, 11MES, 10 BLIS and 11BLIA 

Table 5: TNBC-25 compared to select TNBC based on T-test analysis of microarray datasets.
Affymetrix ID Gene symbol Fold difference p value Description

220979_s_at ST6GALNAC5 2.6 1.40E+06 ST6 N-acetylgalactosaminide alpha-2,6-
sialyltransferase 5

229430_at C8ORF46 2.2 4.70E+05 chromosome 8 open reading frame 46
1560527_at NFE4 2.5 8.50E+07 Transcription factor NF-E4
213338_at TMEM158 2.1 8.20E-08 transmembrane protein 158 (gene/pseudogene)
216252_x_at FAS 1.9 1.30E-04 Fas cell surface death receptor
203828_s_at IL32 1.9 2.30E-04 interleukin 32
210538_s_at BIRC3 1.8 2.00E+06 baculoviral IAP repeat containing 3
213906_at MYBL1 1.8 2.30E-04 MYB proto-oncogene like 1
1555355_a_at ETS1 1.6 1.99E+05 ETS proto-oncogene 1, transcription factor
1554474_a_at MOXD1 1.6 4.00E-04 monooxygenase DBH like 1
205992_s_at IL15 1.5 1.80E-03 interleukin 15
228314_at LRRC8C 1.5 1.10E+06 leucine rich repeat containing 8 family member C
202638_s_at ICAM1 1.5 1.20E-03 intercellular adhesion molecule 1
211919_s_at CXCR4 1.5 1.90E-03 C-X-C motif chemokine receptor 4
205150_s_at TRIL -1.7 7.10E-03 TLR4 interactor with leucine rich repeats
200862_at DHCR24 -2.1 5.30E+05 24-dehydrocholesterol reductase
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samples identified as belonging to the particular subgroup. 
Analyzing our candidate genes in these samples, we 
observed a distinct clustering pattern however, the most 
distinct clustering pattern was observed for both BLIA and 
BLIS compared to MES and LAR (Figure 3). Both the 
BLIA and BLIS subgroups are characterized by an over-
representation of genes involved in immune processes, 
similar to the GO designations of our gene panel. Even 
though our genes fail to serve as signatures for a particular 
TNBC subclass, the results are somewhat consistent 
with our previous observations, in that our genes likely 
recognizes TNBC over-represented by genes related 
to immune processes. Our 6 candidate genes were not 
identified in the Burstein et al study. 

As validation of the TNBC samples, we analyzed the 
Maire TNBC using the 101-gene list previously shown by 
Kao et al [32] to be TNBC gene expression signatures. All 
but four of the Maire samples showed precise correlation 
(via clustering) with the Kao 101-gene list (data not 
shown). The Kao list of signatures were selected because 
their data were generated following analyses of both cell 
lines and clinical samples, similar to the approach outlined 
here. Their approach and others [33] validate the use of 
use of cell lines as a tool for gene discovery. 

We also compared our gene list to a small TNBC 
dataset defined by patient samples that were resistance 
to neoadjuvant chemotherapy [34]. The investigators 
theorized that after neoadjuvant chemotherapy, 
chemoresistant TNBC patients that relapse (i.e., recurrent) 
compared to those that do not relapse (i.e., no recurrence) 
represent different populations of TNBCs distinguishable 
by gene expression profiling. We grouped the patient 
populations into two groups based on their designation 
as recurrent (R) compared to non-recurrent (NR) and 
performed supervised analysis of our six candidate 
genes. Our gene list failed to distinguish the TNBC 
patient populations (data not shown). As a result of their 
analyses, the investigators identified a list of 7 genes 
that distinguished the R compared to the NR TNBC 
populations, one of which included GATA3 which was a 
gene common to both their and our candidate-lists. 

Comparison of the TNBC-25 to other TNBC 
samples in the Maire dataset

The TNBC-25 were selected based on cluster 
analyses of the total number of TNBC following 
analysis of our candidate genes (see Figure 1). Our data 
do not suggest that the TNBC-25 represent a distinct 
subpopulation of TNBC, however data do suggest that 
(a) a sizeable number of the TNBC can be distinguished 
based on our gene panel, and (b) the gene panel can 
distinguish TNBC compared to normal luminal A/B and 
HER2 clinical samples. However, a key question is ‘how 
do the TNBC-25 differ from the remaining TNBC’? To 
begin to address this question we compared the TNBC-

25 to the remaining TNBC (including 17 TNBC) and 
observed minor differences between the two groups. 
This is because even though the TNBC-25 appeared as 
a cluster, there were several other TNBC clustering quite 
close which demonstrated a similar gene expression profile 
based on our genes. When we compared the TNBC-25 
to the TNBC which clustered furthest from the TNBC 
(which included 8 TNBC; Figure 1), more substantial 
differences were observed between the transcriptomes 
(Table 5). The final gene list contained 16 genes when 
a less stringent cut-off of 1.5 fold difference and a more 
stringent p value of 0.001 was used. The stringency related 
to fold-difference was lowered because we expected the 
two groups of TNBCs to be very similar. Despite the fact 
lower levels of differential gene expression were detected 
in many of the samples, the genes still appeared to define 
TNBC as determined by clustering and PCA analysis. 
Four of the 16 genes were from our original gene list 
which included MYBL1, IL32, TMEM158 and ETS1. 
GATA3 and PTX3 are not included in the list of 16 genes, 
perhaps because GATA3 is a luminal cell marker, and 
even though PTX3 show differential expression in TNBC, 
the gene shows substantial expression in some normal 
samples. STRINGTM analysis show enrichment of the 
gene list in Tumor necrosis factor (TNF) pathway with 
a false discovery rate of 0.0001 (Figure 4). There were 
four genes (ICAM1, IL15, BIRC3 and FAS) found to be 
associated with the TNF signaling pathway, but although 
the p values and false discovery rates were significant, we 
chose to on experimentally validate genes with > 2.0 fold 
differences. The genes linked by STRINGTM were found 
to be associated via known interactions based on curated 
databases, text mining and co-expression. The NFE4 
and TRIL genes were not detected by the STRINGTM 
program, so they were excluded from these analyses. 
Together these data support the association of MYBL1, 
IL32, TMEM158 and ETS1 with certain TNBCs and the 
enrichment of genes involved in immune related processes 
as differentially associated with the cancers.

In addition to MYBL1, IL32, TMEM158 and ETS1, 
twelve other genes were identified, however, only 4 of 
the 12 genes demonstrated significant differences (i.e., > 
2-fold) between the two TNBC groups allowing for their 
analysis via PCR. The genes included STGALNAC5, 
NFE4, C8ORF46 and DHCR24. Using MDA MB231, 
HCC70 and MDA MB468 as test samples, only the 
NFE4 demonstrated a consistent differential expression 
pattern similar to that generated by data analyses. NFE4 
was upregulated in MDA MB231 (basal B) compared to 
HCC70 and MDA MB468. Although both HCC70 and 
MDA MB468 are basal A samples (and MDA MB231 is 
basal B), preliminary data suggest that our gene panel does 
not distinguish based on basal A/basal B typing. These 
data suggest NFE4 might be a suitable gene to examine 
further as validation of its differential pattern of expression 
in TNBC. 
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DISCUSSION

In an earlier study we found that the cytokine 
IL32 was over-expressed in particular TNBC and under-
expressed in other TNBC cell lines. Based on this 
observation, the primary goal of the current study was 
to further characterize TNBCs based on their expression 
of IL32 and identify genes differentially expressed with 
IL32 with the aim of identifying possible biomarkers. 
Data by other investigators support the involvement of 
immune-related genes in both pro-inflammatory and 
anti-inflammatory processes in cancers [35], and these 
and other studies show that the heterogeneity in TNBCs 
can in part be due to these complex immune-related 
processes [36]. Our rationale was that characterization of 
TNBC samples based on IL32 expression might lead to 
identification of genes relevant to immune processes, and 
this might ultimately result in a better understanding of 
signaling processes that either drive or are associated with 
the disease. We were in search of genes that were reliably 
differentially expressed across various datasets, and genes 
that would validate via experimental analyses. Our main 
focus is to continue analyses of TNBC, and also identify 
genes that might distinguish TNBC from normal and other 
breast cancer types. We ultimately selected six genes for 
study including IL32, PTX3, GATA3, ETS1, TMEM158 
and MYBL1. Also, following a separate analyses, IL32, 
ETS1, TMEM158 and MYBL1 showed differential gene 
expression when our subset of TNBC-25 were compared 
to other TNBC patient samples. For this particular 
subset of genes, the difference was not expected to be as 
substantial (i.e., > 2-fold) as when TNBC was compared to 
luminal A, luminal B, HER2 and normal patient samples, 
however the false discovery rate and p values for the 
expression patterns of these genes was quite significant. 
Regardless of the comparisons, when the TNBC-25 
are compared to other groups, even when we increase 
stringency related-to-fold-difference of these comparisons, 
the gene lists continue to show over-representation of 
genes related to immune processes as determined by GO 
analyses. It is too early in our studies to suggest that the 
heterogeneity of TNBC can be defined by IL32 or even the 
other five genes described in this study. However, we can 
say that our panel of genes demonstrate a specific pattern 
of differential expression in certain TNBC, and in TNBC 
compared to normal and luminal breast samples. Three of 
the six genes are transcription factors and may play a role 
either synergistically or antagonistically as key regulators 
in TNBCs. In the event these genes continue to show 
promise, the genes will be examined individually and in 
combination to determine their role in TNBC.

The IL32 gene has nine isoforms several of which 
appear to contribute to the differential gene expression 
[37] observed in TNBC. To the best of our knowledge, 
Park et al [38] were the first to demonstrate a role of IL32 
gene in breast cancer. Park et al detected IL32 β in both 

MDA MB231 and MCF7 cell lines, and showed that both 
samples were regulated by vascular-endothelial-growth-
factor-signal-transducer-and-activator (VEGF-STAT3). 
Their data also showed that IL32 contributed to tumor 
progression in both cell lines. 

In addition to studies by Park et al, over the past few 
years there has been a substantial increase in the number of 
published studies related to the function and role of IL32 
in cancers [39-41]. Data show that IL32 is a pluripotent 
cytokine that induces IL6 and Tumor necrosis factor alpha 
[42]. We found that Tumor necrosis factor receptor super 
family genes (TNFRSF) and IL6 were highly expressed 
in our PCR analyses, along with IL8. IL6, TNFRSF and 
IL8 showed differential expression via PCR analysis, 
but all failed to show reliable differential patterns of 
expression when examined in patient samples. As a result, 
The TNFSF, IL6 and IL8 genes were eliminated from 
our candidate gene list. IL32 gene however appears to 
demonstrate differential expression when compared across 
different types of breast cancers.

Based on their level of differential expression across 
patient samples, data suggest that MYBL1 and TMEM158 
are candidates worthy of further study. Kao et al [32] 
identified down-regulation of the transcriptional regulator 
MYB in TNBC, while in our studies we identified MYBL1 
transcription factor as over-expressed in TNBC compared 
to most other normal and breast cancer types. MYBL1 
belongs to MYB family and has been shown to function 
as an antagonist of MYB. While MYB and MYBL2 
were both down-regulated in TNBC samples processed 
here, neither made our final gene list. Data suggest MYB 
is a tumor suppressor while it might be that MYBL1 is 
involved in tumor progression. Liu et al [43] validated 
the role of MYB as a ‘good prognostic indicator’ in 
breast cancer and using bioinformatics-based approaches 
suggested that MYBL1 could partially decrease the 
activity of MYB. In the event the MYBL1 gene continues 
to demonstrate differential expression in breast clinical 
samples following RNA and protein analyses, its precise 
mode of action will be studied for its association with a 
subpopulation of TNBC. As for TMEM158, the gene is 
a transmembrane protein also described as RAS-induced 
senescence protein 1. The gene has been shown to be 
associated with different types of cancers. Studies show 
that TMEM158 frame-shift mutations are frequently 
detected in colorectal cancer [44] and other studies show 
over expression of the gene in 15% of primary breast 
carcinomas [45]. Little is known about the function of the 
protein, but it could be that the breast cancers previously 
described as overexpressingTMEM158, represent an 
enrichment of TNBC.

A substantial difference in expression was observed 
when our TNBC-25 were compared to normal and luminal 
clinical samples, with marginal differences between the 
TNBC-25 and the remaining TNBC. Compared to other 
groups, slightly higher levels of IL32 gene were detected 
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in HER2 breast cancers. Overall, TMEM158, Mybl1, 
IL32, ETS1 and PTX3 gene levels were higher in TNBC. 
Strategies focused on down-regulating TMEM158, 
Mybl1, IL32, ETS1 and PTX3 should be considered 
to determine their effect on TNBC tumor progression. 
These experiments should lead to a better understanding 
of signaling events that define TNBC. Although PTX3 
shows statistically significant differential expression in our 
studies, it also shows expression in some normal breasts 
which make it a less desirable candidate compared to the 
other gene candidates. GATA3 gene, on the other hand, 
has been extensively studied in breast cancers. Our interest 
lie in the possibility that GATA3 gene is related to indirect 
cell signaling mechanisms with one or more of the five 
candidate genes. 

A key question related to this study is “how or if 
the six candidate genes are related” in TNBC processes? 
Based on pathway analysis, the six genes did not show 
relationships based on signaling events, however, GO 
and STRINGTM analyses did show a higher than expected 
ratio of association with immune-related processes as 
determined by text-mining, experimental assessments and 
co-expression assays. In this current study we observe 
opposing levels of expression of GATA3 and ETS1, 
however, there is evidence that GATA3 and ETS1 function 
synergistically to regulate inflammatory processes [46]. 
And, in a separate study Jung et al [47] show that ETS1 
is related to mechanisms that promote aggressiveness 
and poor prognosis in TNBC. Demonstrating a possible 
link to IL32, ETS1 has been shown to regulate VEGF 
which has been shown to regulate IL32 gene expression. 
Although it has not been substantiated, based on GATHER 
analyses performed in this study NFKappa B might play 
a role in regulating IL32 PTX3 and possibly ETS1. 
Demonstrating a possible link to TMEM158 (which 
is a RAS-induced gene), recent data show that ETS1 is 
required for activation of RAS/ERK signaling pathways 
[48]. Expansion of the STRINGTM network analyses to 
show ‘more (+)’ indirect associations, show experimental, 
text-mining and co-occurrence relationships between 
MYBL1, GATA3 and ETS1. Differential expression 
of these genes in our study, further support their role in 
mechanisms related to TNBC. As for how our candidate 
genes contribute to the biological functions in TNBC 
remains to be determined. 

MATERIALS AND METHODS

Cell lines

The cell lines used in the study were MCF10A, 
MCF7, MDA MB468, HCC70 and MDA MB231. The 
cell lines were purchased from Atcc.org (Manassas VA). 
Except for MCF10A, the cells were grown in Dulbecco’s 

Modified Eagle Minimum essential media (DMEM) 
supplemented with 1% penicillin and 10 % serum in a 
370C incubator with 5% CO2 as suggested by the supplier. 
MCF10A cells were grown in DMEM / F12 (Gibco) 
supplemented with 10% FBS, 20ng/ml epidermal growth 
factor, 20ng/ml insulin-like growth factor and 500ng/ml 
hydrocortisone. Cells were fed twice weekly, grown to 
70-90% confluence and harvested using a 0.25% trypsin 
solution.

Microarray datasets for cell lines and clinical 
patient samples

The datasets used in this study were identified in 
Gene Expression Omnibus (GEO) [30] using the search 
terms “Affymetrix and breast and/or triple negative”. 
The datasets selected for study were generated using 
the Affymetrix U133 plus 2.0 microarray platform. This 
microarray platform would allow for analyses of the 
transcriptome and down-stream signaling pathway studies. 
A summary of the cell line and patient sample information 
is given in Table 1. The Affymetrix microarray quality 
metrics (i.e., box plots, 3/5’ ratios, scale factors, 
background and percent present genes) were examined to 
ensure the quality of the datasets. 

RNA extraction and cDNA generation

Total RNA was extracted from cell lines using 
the TRIzolTM reagent, followed by further purification 
using the QIAGEN RNA extraction kit; both methods 
were performed as suggested by their manufacturer. 
RNA integrity was assessed by spectrophotometer (i.e., 
A260/A280 ratios) and via RNA agarose gel analyses. 
The cDNA was generated using the iScript Reverse 
Transcriptase (BioRad.com; Hercules CA) kit as suggested 
by the manufacturer using a starting concentration of 1 
microgram of total RNA. 

PCR primer design and polymerase chain 
reaction (PCR)

Primer design

The sequence corresponding to each gene (in 
the form of probe-set information) was retrieved from 
NetAffxTM resources (http://www.affymetrix.com/estore/
analysis/index.affx) available at Affymetrix.com. The 
same information was available as part of the mAdb data 
analysis portal (https://madb.nci.nih.gov/) [29]. PCR 
primers were designed using the Primer3TM program 
(http://bioinfo.ut.ee/primer3-0.4.0/) [49], using the default 
primer design conditions. The primer sequences were 
validated using the University of California at Santa Cruz 
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In Silico PCR program [50] and National Biotechnology 
Blast program (http://www.ncbi.nlm.nih.gov/) [51] primer 
programs. The primer sets corresponding to each gene 
were synthesized by IDTDNA (IDTDNA.com, Iowa). 
Primer sequences are summarized in Supplementary Table 
2.
PCR reaction

Approximately 10 nanograms of cDNA was mixed 
with the PCR primer (~10uM) and TAQ polymerase 
Masters mix (Life Technologies) as suggested by the 
manufacturer. All PCRs were run at 95degrees (5min), 
and 30-32 cycles at 95degrees 30seconds, 58degrees 
30seconds, 70degrees 30seconds. Qualitative PCR 
was performed to determine the relative difference in 
gene expression levels between the cell lines. The PCR 
products were analyzed using 1-2% agarose gels and the 
relative difference in transcript levels per cell line were 
determined by densitometer analysis of the agarose gel 
profiles using the ImageProTM software available on the 
Bio-Rad ChemiDocTM.

Data analyses

Analysis of TNBC cell lines and breast cancer clinical 
samples

Datasets were retrieved from the GEO available 
on the National Center for Biotechnology Information 
(NCBI). Raw data included in the CEL intensity files 
for each dataset were uploaded into mAdb data analyses 
resource (https://madb.nci.nih.gov/) available through the 
National Cancer Institute. Resources available at mAdb 
include but not limited to Hierarchical clustering, GO, 
principal component analysis (PCA), pathway analyses 
and group analyses using T-test and Wilcoxon ran test. 
Hierarchical clustering was performed using the Euclidean 
distance metric and Average Linkage method. All of 
the samples used in this study were previously defined 
based on clinical diagnosis, receptor status and invasive 
potential as documented at Atcc.org and/or GEO. Both 
unsupervised and supervised analyses were performed 
in this study. Functional and pathway analyses were also 
assessed using NCBI, GATHER (http://changlab.uth.tmc.
edu/gather/gather.py) and STRINGTM software (https://
string-db.org/) in addition to mAdb. 
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Abbreviations

BLIA: Basal-Like Immune-Activated; BLIS: Basal-
Like Immune-Suppressed; C8orf46: Chromosome 8 Open 
Reading Frame 46; CCLE: Cancer Cell Line Encyclopedia; 
CD68: macrophage antigen; CD8: T cell antigen; CEL: 
cell intensity file; DHCR24: 24-dehydrocholesterol 
reductase; DMEM: Dulbecco’s Modified Eagle Minimum 
essential media; ESR1: estrogen receptor 1; ETS1: ETS 
proto-oncogene 1, transcription factor; GATA3: GATA 
binding protein 3; GATHER: Gene Annotation Tool to 
Help Explain Relationships; GDS: GDS dataset; GEO: 
Gene expression Omnibus; GO: Gene ontology; GSE: 
GEO series; HER2: human epidermal growth factor 
receptor 2; HTLV: Human T-cell lymphotropic virus; IL-
1ra: Interleukin 1receptor a; IL-1α: interleukin 1a; IL-1β: 
Interleukin 1B; IL32: interleukin 32; IL6: Interleukin 6; 
iL8: Interleukin 8; IM: immunomodulatory; LAR: luminal 
androgen receptor; M: mesenchymal; mAdb: microarray 
database; MES: Mesenchymal; MSL : mesenchymal 
stem–like; MYB: Avian Myeloblastosis Viral Oncogene 
Homolog; MYBL1: MYB proto-oncogene like 1; NCBI: 
National Center for Biotechnology Information; NFE4: 
Transcription factor NF-E4; NFKappa B: Nuclear 
Factor Of Kappa Light Polypeptide Gene Enhancer In 
B-Cells 3; PCA: principal component analysis; PCR: 
polymerase chain reaction; PD1: programmed death 1; 
PDL1: programmed death – ligand 1; PTX3: pentraxin 3; 
RAS/ERK: Rat sarcoma / Extracellular Signal-Regulated 
Kinase; ST6GALNAC5: ST6 N-acetylgalactosaminide 
alpha-2,6-sialyltransferase 5; STRING: Search Tool 
for the Retrieval of Interacting Genes/Proteins; TAM: 
tumor associated macrophages; TIL: tumor infiltrating 
lymphocytes; TMEM158: transmembrane protein 158; 
TNBC : Triple negative breast cancer; TNBC-25: Triple 
negative breast cancer Maire subclass of 25 patient 
samples; TNF: Tumor necrosis factor; TNFRSF: Tumor 
necrosis factor receptor superfamily;VEGF-STAT3:  
vascular-endothelial-growth-factor-signal-transducer-and-
activator
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