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Physiologically active sulfur-containing compounds produced by Allium spp. have long fascinated
chemists, biochemists, and biologists. The major focus of attention has been on garlic compounds where
the starting point for the complex chemistry is alliin (S-allylcysteine sulfoxide). Alliin is acted upon
by the cysteine-S-lyase enzyme alliinase, when cell damage mixes substrate and enzyme. The first
major volatile product is allicin (diallylthiosulfinate), giving crushed garlic its characteristic odor.
Allicin decomposes readily to allylsulfenic acid (2-propensulfenic acid) and thioacreolin (2-propenethial),
which enter into a cascade of reactions producing alkyl disulfides including diallyl disulfide and various
polysulfanes, vinyl dithiins, and ajoene.

This special issue, “The Chemistry of Alliums”, contains nine contributions that report on the
chemistry and physiology of Allium organosulfur compounds. The paper by Eric Block et al. merits
particular attention, as it introduces a new facet to the subject by reporting on the synthesis and
physiological activity of fluorinated analogues of garlic organosulfur compounds [1]. Continuing the
theme of taking garlic substances as lead compounds, Siyo et al., in an elegant molecular biological
study, report on the activation of the unfolded protein response as the mechanism of cytotoxicity of
the ajoene analogue bisPMB [2].

Garlic is consumed in many forms worldwide, and interest in the potential health benefits of aged,
or ‘black garlic’, which no longer contains allicin but is enriched with several downstream metabolites,
is increasing. Five contributions in this special issue relate to aged garlic and its sulfur-containing
constituents. Ryu and Kang [3] contribute an up-to-date review on the reported physiological activities
and constituents of aged black garlic, and Farrag et al. compare the effects of different drying methods
in an MS-based metabolomics study [4]. Aged black garlic is enriched in S-allyl cysteine (SAC), and
Tsukoa et al. report on the beneficial effects of SAC on pulmonary fibrosis in rats [5]. Kodera et al. report
on the biological properties of the closely related S-1-propenyl-L-cysteine [6], and Pérez-Torres et al.
report on the effect of the extracts of aged garlic cardiovascular function in rats exhibiting metabolic
syndrome [7].

The assimilation mechanisms that plants use for SO4
2− can also be used for SeO4

2− or
SeO3

2−, and the sulfur-rich alliums are often good dietary sources of Se, which is frequently
deficient in the human diet and is very important for antioxidative, protective enzymes, such as
glutathione peroxidase. However, cultivated alliums can only synthesize and accumulate sulfur- and
selenium-containing organic compounds if they have an adequate source of these elements during
growth. González-Morales et al. investigate this aspect in their contribution to this special issue [8].

Lastly, returning full circle to allicin, in a paper that will hopefully be useful to allicin researchers
worldwide, Albrecht et al. report a facile synthesis and purification procedure to achieve a good
yield of highly pure product, based on the already-published favored method of oxidation of diallyl
disulfide with a peracid catalyst. Furthermore, they show novel data clarifying the reaction mechanism
and kinetics [9].

Thus, this special issue addresses a wide range of contemporary issues relating to the chemistry
of alliums as well as the biological effects and potential uses of their organosulfur compounds and the
derivatives thereof and will be of interest to students and researchers alike.
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