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Abstract

Protein kinase C (PKC) isoforms play a pivotal role in the regulation of numerous cellular

functions, making them extensively studied and highly attractive drug targets. Utilizing the

crystal structure of the PKCδ C1B domain, we have developed hydrophobic isophthalic acid

derivatives that modify PKC functions by binding to the C1 domain of the enzyme. In the

present study, we aimed to improve the drug-like properties of the isophthalic acid deriva-

tives by increasing their solubility and enhancing the binding affinity. Here we describe the

design and synthesis of a series of multisubstituted pyrimidines as analogs of C1 domain–

targeted isophthalates and characterize their binding affinities to the PKCα isoform. In con-

trast to our computational predictions, the scaffold hopping from phenyl to pyrimidine core

diminished the binding affinity. Although the novel pyrimidines did not establish improved

binding affinity for PKCα compared to our previous isophthalic acid derivatives, the present

results provide useful structure-activity relationship data for further development of ligands

targeted to the C1 domain of PKC.

Introduction

Protein kinase C (PKC) comprises a family of ten phospholipid-dependent serine/threonine

kinases [1, 2], which regulate several cellular processes including proliferation, migration, cell

survival and apoptosis [3–5]. Due to its central position in intracellular signaling, PKC is also

involved in the pathogenesis of various diseases, including diabetes, cancer, ischemic heart dis-

ease and heart failure, some autoimmune diseases, Parkinson’s disease and in Alzheimer’s dis-

ease [2]. The fact that PKC is linked with so many diseases makes it a very attractive subject of

research and a potential target for therapeutic discoveries.
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PKC consists of a single polypeptide chain that contains a conserved catalytic kinase

domain and a more variable regulatory domain [2]. PKC isoforms are divided into three clas-

ses based on differences of their regulatory domain subunit structure and arrangement and the

way in which the protein is activated. All conventional PKC isoforms (cPKCs: -α, -βI, -βII and

-γ), novel PKCs (nPKCs: -δ, -ε, -θ and -η) and atypical PKCs (aPKCs: -z- and -λ/ι) require

phosphatidylserine (PS) for their activation. In addition to PS, cPKCs require diacylglycerol

(DAG) and Ca2+ to be activated, while nPKCs are activated in a DAG-dependent and Ca2+-

independent manner. The structure of the regulatory domain of aPKCs however differs sub-

stantially from cPKCs and nPKCs, and therefore neither DAG nor Ca2+ is needed for their

activation.

The C1 domain region in the regulatory domains of cPKC and nPKC isoforms mediates

their translocation to cellular membranes [2]. It is the binding site for DAG and phorbol esters

and thus the region of interest for developing PKC modulators. Moreover, as the ATP binding

site in the catalytic domain is highly preserved throughout the human kinome, targeting the

regulatory C1 domain greatly increases the selectivity for PKC over other kinases [6, 7]. In

addition to PKCs, there are only six other protein families, compared to more than 500 protein

kinases in the human genome, containing a DAG-responsive C1 domain [8–10]. Throughout

the years, several PKC activators showing higher affinity than the natural DAG were described

and they represent a significant class of PKC modulators [11]. Natural and semi-synthetic C1

domain ligands (including phorbol esters and bryostatins) are generally complex in their

chemical structure, mostly due to the presence of stereocenters and macrocycles. Our group

and several others pursued to design and synthesize structurally simpler C1 domain–targeted

ligands.

Previously, we developed a set of dialkyl 5-(hydroxymethyl)isophthalate derivatives (HMIs)

that modify PKC functions by binding to the C1 domain of the enzyme [12]. Compounds

HMI-1a3 and -1b11 are examples of the most potent ligands for PKCα and -δ (Ki values in the

range 205–915 nM) with marked effects on cultured cells in low micromolar concentrations.

In HeLa cervical cancer cells, HMI-1a3 exhibited a marked antiproliferative effect and induced

PKC-dependent ERK1/2 phosphorylation. These same effects are induced by both HMI-1a3

and -1b11 in SH-SY5Y neuroblastoma cell-line, together with induction of neurite growth and

increased expression of GAP-43, which is a marker for neurite sprouting and neuronal differ-

entiation [13, 14].

In the current work, we focused on improving the drug-likeness of the HMIs by increasing

their solubility and enhancing the binding affinity. Hence, we chose to substitute the phenyl

core of the HMIs with a heterocycle. In this study, we describe the design, synthesis and struc-

ture-activity relationships of novel multisubstituted pyrimidines as analogs of C1 domain–tar-

geted isophthalates.

Chemistry

Design

C1 domains (C1a and C1b) function as an anchor stabilizing PKC on the cell membrane [15].

When binding to the C1 domains, phorbol esters contribute to the formation of a continuous

hydrophobic surface, which allows the protein-ligand complex to anchor to membranes and

stabilize the activated protein-ligand-membrane complex. From two studies on DAG lactones,

it appears that the amphipathic properties and the logP of a C1 domain–targeted ligand sub-

stantially affect the affinity for the protein [16, 17].

In our previous work, the molecular modeling of the HMIs suggests their interaction with

the PKCδC1B domain occurring in a similar manner as for the phorbol esters. The clogP
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(calculated logP) of the best HMIs ranges between 6–7 and their affinity for PKC between

205–915 nM [12]. In this study, we substituted the phenyl core of the isophthalates with a

pyrimidine moiety to investigate whether the activity of our ligands is affected by increasing

their solubility in aqueous buffer but maintaining the amphipathic properties of the HMIs

scaffold. We designed two new scaffolds (Fig 1), a symmetrical and an unsymmetrical one

which allowed us also to explore different degrees of substitution obtaining 2,4,6-trisubstituted

pyrimidines 1a-h and 2,4,5,6-tetrasubstituted pyrimidines 2a–l.

The derivatization of the ester moieties of the symmetrical 2,4,6-trisubstituted pyrimidines

comprises substituents with increasing length of linear (1a–c) and branched (1d–f) alkyl

chains and the benzylic 1g, compounds 1g and 1e being the corresponding pyrimidine

Fig 1. Scaffolds comparison. Comparison of the HMI scaffold (left) with the symmetrical 2,4,6-trisubstituted pyrimidine (center) and the

asymmetrical 2,4,5,6-tetrasubstituted pyrimidine (right) scaffolds. Common moieties are color-coded: H-bond donor/acceptor hydroxy

groups are shown in blue, carbonyl H-bond acceptor oxygens in red and hydrophobic substituents R in green.

https://doi.org/10.1371/journal.pone.0195668.g001
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versions of HMI-1a3 and -1b11. We also kept short ethyl derivatives (1d and 1h) to investigate

eventual alkyl chain length-dependent loss of activity. The design of the unsymmetrical

2,4,5,6-tetrasubstituted pyrimidines instead focused a deeper investigation on the symmetry-

related activity with compounds featuring the same substituents (2a–f) or different combina-

tions (2g–l) switching them between the ether and ester moieties in positions C4 and C6,

respectively.

Modeling

To design a set of pyrimidines we referred to the crystal structure of the phorbol 13-acetate

bound PKCδC1B (Protein Data Bank code: 1PTR) [18] and to the knowledge of the key func-

tional groups of the HMIs gained from our previous study [12]. The co-crystallized phorbol

acetate forms hydrogen bonds with the amino acids Thr242, Leu251 and Gly253 in the hydro-

philic pocket of the C1 domain while it completes the hydrophobic surface of the protein

through hydrophobic interactions with Leu251, Leu254 and Met239 (Fig 2A). According to

our previous docking study, the HMIs are able to bind to the active site in similar manner

Fig 2. Comparison of phorbol 13-acetate, HMI-1a3, 2b and 1f docked into the PKCδC1B domain (PDB: 1PTR).

(A) Phorbol 13-acetate; (B) HMI-1a3; (C) 2b; (D) 1f. Color code: carbon atoms are shown in grey, oxygen atoms in

red, nitrogen atoms in blue and fluorine atoms in lime. Hydrogen bonds are represented as cyan dashed lines. View

from the top of the binding site.

https://doi.org/10.1371/journal.pone.0195668.g002
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showing also a possible additional attractive interaction between Gln257 and the π-electrons

of the aromatic core (Fig 2B).

When comparing the previous docking poses with those of the new pyrimidines, the inter-

action pattern between the ligands and the backbone amino acids of the polar pocket (i.e.

Thr242, Leu251 and Gly253) (Fig 2) remain alike. The hydrophobic interactions, instead,

show a bit more variation, as the pyrimidines may interact also with for instance Pro241 and

Leu250 in addition to Leu251, Leu254 and Met239. (Fig 2C and 2D).

Synthesis

We prepared the symmetrical 2,4,6-trisubstituted pyrimidines in a two to three-step synthesis

(Fig 3). We started with an inverse electron demand Diels—Alder reaction reported on related

compounds by Duerfeldt, Anderson and coworkers [19, 20]. A commercially available diethyl

1,2,3-triazine-4,6-dicarboxylate (3) was reacted with 2-(4-methoxyphenoxy)acetamidine (4) to

obtain the 2,4,6-trisubstituted pyrimidine 5 containing a p-methoxyphenyl (PMP)–protected

hydroxymethyl moiety at the C2-position. The PMP protection allows the treatment of 5 with

different alcohols in the presence of a catalytic amount of sulfuric acid and transesterification

of the esters in positions C4 and C6 to give the intermediates 6a–g. Finally, the PMP was easily

removed by an oxidative cleavage reaction applying conditions reported by Lee [21] with

minor modifications. We treated the intermediates 6a–g with ceric(IV) ammonium nitrate

(CAN) to give the desired products 1a–g while the same conditions applied directly to the

intermediate 5 gave the final product 1h.

We performed a four to five-step synthesis to obtain the unsymmetrical 2,4,5,6-tetrasubsti-

tuted pyrimidines (Fig 4). In the first step, reported on related compounds by Otsuka and

coworkers [22], we reacted the commercially available diethyl oxalpropionate (7) and 2-

(4-methoxyphenoxy)acetamidine hydrochloride (8) in the presence of triethylamine (TEA)

in ethanol to obtain pyrimidine 9 containing a PMP-protected hydroxymethyl moiety in

C2-position. The substituted pyrimidine 9 was treated with phosphoryl bromide in N,N-

dimethylformamide (DMF) to give the aryl bromide 10 with the C4-position activated for the

subsequent nucleophilic substitution. Different alcohols were treated with NaH to generate the

respective alkoxides which reacted with intermediate 10 on both positions C4 and the carbonyl

moiety to give pyrimidines 11–13 in low yields. Instead, the carboxylic acids 14–18 were

formed during the reaction and were isolated for an esterification reaction to give compounds

Fig 3. Synthesis and derivatization of the 2,4,6-trisubstituted pyrimidines 1a–h. Conditions: (a) MeCN/1,4-dioxane, rt, 24 h, 63%; (b) alcohol,

H2SO4 (cat.), 100 ˚C, 3 h, 17–84%; (c) CAN, MeCN/H2O, -15 ˚C, 10 min, 49–80%.

https://doi.org/10.1371/journal.pone.0195668.g003
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19–27. The carboxyl groups of 14–18 were esterified with different methods including: 1)

treatment with SOCl2 in an alcohol as a solvent, 2) activation with 1,1’-carbonyldiimidazole

(CDI) and treatment with different alcohols in the presence of 1,8-diazabicyclo[5.4.0]undec-

7-ene (DBU) and 4-(dimethylamino)pyridine (DMAP) and 3) treatment with trimethylsilyl-

diazomethane. For the PMP-deprotection step, intermediates 11–13 and 19–27 were treated

with CAN to give the final compounds 2a–l.

Fig 4. Synthesis and derivatization of the 2,4,5,6-tetrasubstituted pyrimidines 2a–l. Conditions: (a) TEA, EtOH, reflux, 2.5 h, 31%; (b) POBr3, DMF,

MW 90 ˚C, 10 min, 75%; (c) alcohol, NaH, THF, 0 ˚C! rt, overnight (20–22 h), 5–68%; (d) SOCl2, alcohol, MW 90 ˚C, 1 h, 33–50%; (e) CDI, DBU,

DMAP, DMF, MW 50 ˚C, 1 h, 51–74%; (f) 2 M Me3SiCHN2 in Et2O, CH2Cl2/MeOH, 0 ˚C, 30 min, 44–100%; (g) CAN, MeCN/H2O, -15 ˚C, 10 min,

17–76%.

https://doi.org/10.1371/journal.pone.0195668.g004
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Chemography and ChemGPS-NP

To compare the physicochemical properties of the novel pyrimidines with those of other

PKCα ligands we carried out a chemographic mapping including also the HMIs and some of

the most potent PKCα binders (for the complete list of the compounds see Materials and

methods and S1 File). We used the ChemGPS-NPWeb tool [23–25], a principal component

analysis–based chemical global positioning system, which allows to plot organic compounds

in a two/three-dimensional chemical space assigning a position based on their structure-

derived physicochemical properties. We converted the structures of the compounds into

SMILES (simplified molecular-input line-entry system) and uploaded them to the

ChemGPS-NPWeb server (http://chemgps.bmc.uu.se) which generated for each of them eight

principal components (dimensions PC1–8). Each PC describes different physicochemical

properties based on 35 descriptors and the four most significant PCs (PC1–4) represent 77%

of data variance. PC1 accounts for size, shape and polarizability, PC2 comprises aromaticity

and conjugation properties, PC3 includes lipophilicity, polarity, and H-bond capacity while

PC4 represents flexibility and rigidity [24]. We plotted the ligands in a three-dimensional

space setting PC1, PC2 and PC3 as the x, y and z axes, respectively, with conical arrows indi-

cating the positive sides (Fig 5). The full list of the compounds, ChemGPS-NP raw data,

SMILES and structures are available in S1 File.

The 3D-plot shows clearly how most of the best binders, the pyrimidines and HMIs are sep-

arated by PC2 in 4 bands, then distributed along PC1 by their size and along PC3 by their lipo-

philicity. In this analysis PC2 is the most significant dimension and, as explained previously, it

represents aromatic and conjugation properties of the compounds: the more aromatic rings/

conjugated systems feature in the structure of a compound the higher is the PC2-value the

compound obtains. The structures of all the potent binders, except mezerein, 9-decyl-benzo-

lactam-V8 and indolactam-V (Fig 5, cyan and magenta spheres respectively), feature only few

π-conjugated systems and no aromatic moieties in both core structure and substituents. This

Fig 5. 3D chemographic plot of PKC-targeted compounds from two different angles. Color code: Pyrimidines are

shown in green; HMIs in blue; bryostatins in red; phorbol esters in yellow; DAG-lactones in purple; iripallidal in black,

ingenol 3-angelate and prostratin in orange; mezerein in cyan; 9-decyl-benzolactam-V8 and indolactam-V in magenta.

Pyrimidines 1e and 2a, HMI-1a3 (towards the PC2-boundary) and HMI-1b11 (central area) are represented as cubes.

The full list of the compounds, ChemGPS-NP raw data, SMILES and structures are available in S1 File.

https://doi.org/10.1371/journal.pone.0195668.g005
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explains why they obtained lower PC2-values compared to the other compounds and thus

they aligned together on the most negative side of PC2. The aforementioned three potent bind-

ers, which instead did not align with the rest of the ligands with high affinity, present a non-

aromatic core but some aromatic features in their substituents that explains their higher

PC2-values. All the other compounds feature, instead, an aromatic core which increases their

PC2-values to form the two central bands of pyrimidines/HMIs bearing aliphatic substituents

while those with aromatic substituents clustered at the most positive side of PC2. Then PC2

highlights clearly the lower aromatic contribution of the pyrimidine ring compared to the phe-

nyl ring with all the pyrimidines separated, with lower PC2-values, from their HMI analogs.

The alignment of the pyrimidines, slightly closer to the most active compounds compared to

the HMIs, suggested that even better activity might occur. Unfortunately, the biological data

did not however support this hypothesis.

Biology

We tested the compounds for binding to the C1 domains of PKCα with a 96-well plate filtra-

tion assay as described earlier, at a concentration range of 0.2–30 μM [12, 26]. To our surprise,

none of the new compounds displaced [20-3H]phorbol-12,13-dibutyrate ([3H]PDBu) as effi-

ciently as HMI-1a3. The comparison of the displacement ability between the compounds 1a–

c, 1e, 1f and 2a–c aimed to reveal a correlation between the length of the linear side chain and

the binding affinity (Fig 6) (raw data available in S2 File). The differences, however, were very

low and no trend can be established. Compounds 1d, 1h, 2g, and 2k demonstrate that the core

structure requires longer alkyl side chains on both sides to achieve detectable binding. Surpris-

ingly, the corresponding pyrimidine version of HMI-1a3, 1g, could not displace [3H]PDBu at

the concentration range used (Fig 7) (raw data available in S2 File). However, the HMI-1b11

analog 1e was one of the most effective novel compounds to displace [3H]PDBu from PKCα.

Its affinity was however considerably lower than that of HMI-1b11 determined in our previous

work [12]. Compounds 2a and 2l showed the strongest concentration dependence (Fig 7). In

terms of lipophilicity, most of the novel compounds showed a lower clogP value compared to

HMI-1a3 (Fig 6).

Discussion and conclusion

The C1 domain of PKC represents a potential target for discovery of therapeutic drugs for dis-

eases with unmet medical needs [6]. Plant and animal derived natural C1 domain ligands,

such as phorbol esters and bryostatins, show high affinity and biological activity but they are

not optimal drug candidates as their complex chemical structures make their synthesis tedious.

In our previous work, we have demonstrated that simple 5-hydroxymethyl isophthalic acid

derivatives exhibit promising biological activity [9, 10, 12, 13]. The lipophilicity values for the

HMIs (clogP 6–7) are however higher than the Lipinski’s drug-like lipophilic property value

(logP�5) [27] and therefore, we endeavored to synthesize a new set of compounds with

reduced lipophilicity and retained/increased binding affinity.

In the present study, we designed and developed a novel set of PKC C1 domain–targeted

pyrimidines. Despite their similarity to the HMIs in terms of structure and predicted binding

mode, they were not able to displace [3H]PDBu from the C1 domain of PKCα at the concen-

tration range tested. Surprisingly, not even 1e and 1g showed similar binding to PKCα as the

corresponding HMI-1b11 and HMI-1a3, respectively. This overall outcome was not expected

based on the docking model of the pyrimidines, which returned docking scores in the same

range as for the HMIs and suggested the same binding interactions. In addition, the chemo-

graphic data from the ChemGPS-NP 3D-plot displayed the pyrimidines slightly closer to the

Pyrimidine analogs of isophthalates as PKC ligands: SAR and biological characterization
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Fig 6. Data comparison for HMI-1a3, symmetrical pyrimidines 1a–h and unsymmetrical pyrimidines 2a–l.

Binding affinity of pyrimidine derivatives expressed as the mean + standard error of the mean (SEM) (n = 2–8) of

residual [3H]PDBu binding (% of control) at 20 μM compound concentration. The raw data of the displacement assay

is available in S2 File.

https://doi.org/10.1371/journal.pone.0195668.g006
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more potent binding compounds suggesting, at first, a possible activity. In line with the nega-

tive feedback from the biological data, a reinterpretation of the chemographic study highlights

that (1) the overall lower affinity of the HMIs, compared to more potent ligands, may be due

to the aromatic/planar nature of the core structure; (2) the presence of aromatic substituents

have no effect or may favor the affinity; and (3) the scaffold hopping towards a heterocycle,

pyrimidine in this case, caused the loss of activity.

In addition to PKCα, the HMIs bind to PKCδ and other protein families containing a

DAG-responsive C1 domain (e.g. β-chimaerin, protein kinase D1 and myotonic dystrophy

kinase-related Cdc42-binding kinase [MRCK]) at comparable affinities [9]. The present work

demonstrates the binding affinities of the pyrimidines only for PKCα. As many other C1

domain ligands, these compounds might show substantial differences in binding affinity

towards different PKC isoforms or single C1 domains [28]. However, due to the analogy with

the HMIs we expect that the almost complete lack of binding of the pyrimidines to PKCαmay

indicate only weak or no affinity to other C1 domains as well. This is why we did not proceed

to characterize the binding of pyrimidines for those.

To improve the affinity and selectivity of C1 domain ligands Ohashi and coworkers recently

presented a novel set of dimeric DAG-lactone derivatives [17]. These dimeric lactones showed

no enhanced binding affinity to the full-length PKCα or -δ compared to their monomeric con-

structs, and they indicated higher lipophilicity (clogP values: 10.7–16.7). However, they

showed stronger binding to the individual PKCδC1B domain than the monomer. Physiologi-

cal relevance of this finding is unclear, as affinity for the full-length protein was not increased.

Elhalem and coworkers studied the C1 domain selectivity of indololactones, bearing a hetero-

cyclic ring at the sn-1 or sn-2 position, for PKCα, -δ and Ras guanine nucleotide-releasing pro-

tein (RasGRP1) [29]. They demonstrated selectivity for RasGRP1 over PKCα when the indole

ring is in the sn-2 position of indololactones [30]. Binding affinity for PKCα, -δ and RasGRP1

Fig 7. Representative binding curves for HMI 1a3, pyrimidines 1e, 1g, 2d, 2l and PMA. Binding of [3H]PDBu (10 nM) to purified PKCαmeasured

in the presence of increasing concentrations of the tested compounds. The data is presented as mean of residual [3H]PDBu binding (% of control) from

three parallel samples in a single representative experiment. The raw data of the displacement assays are available in S2 File.

https://doi.org/10.1371/journal.pone.0195668.g007
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as well as selectivity for RasGRP1 decreased when substituted at the sn-1 position compared to

the sn-2 position. These results encourage a further pharmacophore optimization for the

design and synthesis of novel C1 domain targeted ligands to achieve improved binding affinity

and selectivity for PKCs and other C1 domain-containing targets.

Taken together, we demonstrated previously that the isophthalate derivatives show affinity

for the C1 domains of cPKCs and nPKCs and possess promising biological activities in cell cul-

ture models related to cancer and Alzheimer’s disease. In an attempt to improve the aqueous

solubility of the C1 domain ligands, we prepared a set of 2,4,6-trisubstituted–and 2,4,5,6-tetra-

substituted pyrimidines, bearing similar hydrophobic substituents as the isophthalates, and

quantified their binding to PKCα. We can conclude that the novel pyrimidine analogs did not

establish improved binding affinity for PKCα compared to the most promising isophthalates

and the lower binding affinity of the isophthalates, compared to more potent ligands, may cor-

relate to the aromatic/planar nature of their core structure. Results presented here, however,

provide useful SAR data for further development of ligands targeted to the C1 domain of PKC.

Materials and methods

Modeling

We docked our 22 compounds to the crystal structure of the C1B domain of PKCδ (PDB ID:

1PTR) using Glide of Schrödinger Maestro [31] with SP parameters. The targeted binding site

was defined by the mass center of the co-crystallized ligand, phorbol 13-acetate, which was

also used as a reference compound in docking. Prior to the docking, the target protein was pre-

pared with Maestro’s Protein preparation tool, and 3D coordinates of the compounds were

calculated by Schrödinger’s LigPrep utilizing Epik to generate protonation states. For scoring,

we used Glide’s “docking score”.

Syntheses

All reagents were acquired from Sigma-Aldrich (Schnelldorf, Germany), Fluorochem (Had-

field, United Kingdom) and Fluka (Buchs, Switzerland), and were used without further purifi-

cation. All reactions in anhydrous conditions were conducted using dry solvents in oven-dried

glassware under an inert atmosphere of dry argon. The progress of chemical reactions was

monitored by thin-layer chromatography on Silica Gel 60 F254 aluminum sheets acquired

from Merck (Darmstadt, Germany), visualized under UV light (254/366 nm) and stained with

phosphomolybdic acid (10% w/v in EtOH). Microwave reactions were performed with a Bio-

tage Initiator+ SP Wave Microwave Synthesizer (Uppsala, Sweden). Flash SiO2 column chro-

matography was performed with an automated high performance flash chromatography

Biotage Sp1-system equipped with a 0.1-mm path length flow cell UV-detector/recorder mod-

ule (fixed wavelength 254 nm) or with a Biotage Isolera™ Spektra Systems with ACI™ and Assist

(ISO-1SW Isolera One) equipped with a variable UV-VIS (200–800 nm) photodiode array

(Uppsala, Sweden), and the indicated mobile phase gradient. 1H, 13C and 19F NMR spectra

(also available in S1 Appendix including 13C HSQC, 13C HMBC and 15N HMBC 2D NMR

spectra) were acquired on a Bruker Ascend 400 MHz—Avance III HD NMR spectrometer

(Bruker Corporation, Billerica, MA, USA) as solutions in CDCl3. Chemical shifts (δ) are

reported as parts per million (ppm) relative to the solvent peaks at 7.26 and 77.16 ppm for 1H

and 13C NMR respectively. Multiplicities of peaks are represented by s (singlet), d (doublet), t

(triplet), q (quartet), quint (quintet), and m (multiplet). Visual features of peaks including

broad (br) or apparent (app) are also indicated. In 13C NMR data, peaks referring to two sym-

metrical carbons (sym, 2C) or two different carbons with overlapping signals (2C) are also

indicated. All spectra were processed for recorded FID files with MestReNova 11.0.4 software
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(Mestrelab Research, Santiago de Compostela, Spain). Low resolution mass (MS-APCI) analy-

ses were performed on a MS Advion expression1 CMS spectrometer equipped with an APCI

ion source and an Atmospheric Solids Analysis Probe (ASAP) and the data was reported for

the molecular ions [M+H]+. Exact mass and purity (>95%) of all tested compounds was con-

firmed by LC-MS analyses with a Waters Acquity1 UPLC system (Waters, Milford, MA,

USA) equipped with an Acquity UPLC1 BEH C18 column (1.7 μm, 50 × 2.1 mm, Waters, Ire-

land), an Acquity PDA detector and a Waters Synapt G2 HDMS mass spectrometer (Waters,

Milford, MA, USA) via an ESI ion source in positive mode. High resolution mass (HRMS-ESI)

data was reported for the molecular ions [M+H]+. The clogP values of the compounds were

calculated with ChemDraw Professional 16.0.0.82 software (PerkinElmer Informatics, Wal-

tham, MA, USA).

Diethyl 2-[(4-methoxyphenoxy)methyl]pyrimidine-4,6-dicarboxylate (5). Diethyl

1,2,3-triazine-4,6-dicarboxylate (3) (252 mg, 1.12 mmol, 2 equiv) was dissolved in dry MeCN

(2.4 mL) and stirred with crushed molecular sieves (4 Å) under argon atmosphere. Meanwhile,

a solution of the free base amidine 4 (101 mg, 0.560 mmol) in dry 1,4-dioxane (2 mL) and dry

MeCN (2.4 mL) was added dropwise to the first mixture. Nitrogen and subsequent ammonia

evolution occurred and the color of the mixture turned from orange to black. After stirring the

reaction mixture for 24 h at rt the solvents were evaporated under reduced pressure. The black

residue was taken up in EtOAc and washed with water. The organic layer was dried with anhy-

drous Na2SO4, filtrated and the solvent evaporated under reduced pressure. The residue was

purified by flash column chromatography [cyclohexane (A), EtOAc (B); gradient: 6%! 30%

B×10 CV] to give 5 (129 mg, 0.357 mmol, 63.7% yield) as a dark yellow solid. Rf 0.42 (cyclohex-

ane/EtOAc 2:1 + 2% TEA). 1H NMR (400 MHz, CDCl3) δppm 8.51 (app t, J = 0.6 Hz, 1H),

7.02–6.93 (m, 2H), 6.85–6.76 (m, 2H), 5.42 (s, 2H), 4.52 (q, J = 7.1 Hz, 4H), 3.75 (s, 3H), 1.45

(t, J = 7.1 Hz, 6H). 13C NMR (101 MHz, CDCl3) δppm 167.9, 163.5 (sym, 2C), 158.1 (sym, 2C),

154.4, 152.6, 119.1, 116.4 (sym, 2C), 114.7 (sym, 2C), 71.5, 63.2 (sym, 2C), 55.8, 14.3 (sym, 2C).

MS-APCI (m/z): [M+H]+ 361.1.

General procedure I: Acid-catalyzed transesterification. Compound 5 was dissolved in

alcohol (13–16 equiv) and heated to 100 ˚C for 3 h in the presence of a catalytic amount of

H2SO4 (0.1 equiv). Complete dissolution occurred while heating. The reaction was quenched

by adding a saturated solution of NaHCO3 in water and the mixture was extracted with

EtOAc. The organic layers were combined, and the solvent was evaporated under reduced

pressure at 40 ˚C. The residual alcohol was removed by vacuum distillation. The crude residue

was purified by flash column chromatography with appropriate eluents and a gradient.

Diheptyl 2-[(4-methoxyphenoxy)methyl]pyrimidine-4,6-dicarboxylate (6a). General

procedure I was followed. Compound 5 (73 mg, 0.20 mmol), 1-heptanol (0.50 mL, 3.2 mmol,

16 equiv), H2SO4 (1 μL, 0.03 mmol, 0.1 equiv). Flash chromatography eluents: n-hexane (A),

Et2O (B); gradient: 8%! 66% B×10 CV. Compound 6a was isolated as a dark yellow oil (81

mg, 0.16 mmol, 80% yield). Rf 0.20 (n-hexane/Et2O 2:1). 1H NMR (400 MHz, CDCl3) δppm

8.48 (app t, J = 0.6 Hz, 1H), 7.02–6.95 (m, 2H), 6.85–6.77 (m, 2H), 5.42 (s, 2H), 4.44 (t, J = 6.9

Hz, 4H), 3.75 (s, 3H), 1.82 (quint, J = 6.9 Hz, 4H), 1.49–1.21 (m, 16H), 0.89 (app t, J = 7.0 Hz,

6H). 13C NMR (101 MHz, CDCl3) δppm 168.0, 163.6 (sym, 2C), 158.1 (sym, 2C), 154.4, 152.6,

119.1, 116.4 (sym, 2C), 114.7 (sym, 2C), 71.5, 67.3 (sym, 2C), 55.8, 31.8 (sym, 2C), 29.0 (sym,

2C), 28.6 (sym, 2C), 25.9 (sym, 2C), 22.7 (sym, 2C), 14.2 (sym, 2C). MS-APCI (m/z): [M+H]+

501.7.

Dioctyl 2-[(4-methoxyphenoxy)methyl]pyrimidine-4,6-dicarboxylate (6b). General

procedure I was followed. Compound 5 (0.100 g, 0.277 mmol), 1-octanol (0.700 mL, 4.44

mmol, 16.0 equiv), H2SO4 (2 μL, 0.04 mmol, 0.1 equiv). Flash chromatography eluents: n-hex-

ane (A), EtOAc (B); gradient: 4%! 30% B×9 CV. Compound 6b was isolated as a dark yellow
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oil (0.120 g, 0.227 mmol, 81.9% yield). Rf 0.41 (n-hexane/EtOAc 5:1). 1H NMR (400 MHz,

CDCl3) δppm 8.48 (app t, J = 0.6 Hz, 1H), 7.04–6.89 (m, 2H), 6.88–6.73 (m, 2H), 5.42 (s, 2H),

4.44 (t, J = 6.9 Hz, 4H), 3.75 (s, 3H), 1.82 (quint, J = 6.9 Hz, 4H), 1.49–1.14 (m, 20H), 0.88 (app

t, J = 7.0 Hz, 6H). 13C NMR (101 MHz, CDCl3) δppm 168.0, 163.6 (sym, 2C), 158.1 (sym, 2C),

154.4, 152.6, 119.1, 116.4 (sym, 2C), 114.7 (sym, 2C), 71.5, 67.3 (sym, 2C), 55.8, 31.9 (sym, 2C),

29.32 (sym, 2C), 29.28 (sym, 2C), 28.6 (sym, 2C), 26.0 (sym, 2C), 22.8 (sym, 2C), 14.2 (sym,

2C). MS-APCI (m/z): [M+H]+ 529.6.

Diundecyl 2-[(4-methoxyphenoxy)methyl]pyrimidine-4,6-dicarboxylate (6c). General

procedure I was followed. Compound 5 (73.0 mg, 0.202 mmol), 1-undecanol (673 μL, 3.24

mmol, 16.0 equiv), H2SO4 (1 μL, 0.03 mmol, 0.1 equiv). Flash chromatography eluents: cyclo-

hexane (A), Et2O (B); gradient: 6%! 50% B×10 CV + 50% B×5 CV. Compound 6c was iso-

lated as a yellow oil (65.2 mg, 0.106 mmol, 52.5% yield). Rf 0.25 (cyclohexane/Et2O 3:1). 1H

NMR (400 MHz, CDCl3) δppm 8.48 (s, 1H), 7.02–6.95 (m, 2H), 6.85–6.78 (m, 2H), 5.43 (s, 2H),

4.44 (t, J = 6.9 Hz, 4H), 3.76 (s, 3H), 1.82 (quint, J = 6.9 Hz, 4H), 1.48–1.17 (m, 32H), 0.87 (app

t, J = 6.7 Hz, 6H). 13C NMR (101 MHz, CDCl3) δppm 168.0, 163.6 (sym, 2C), 158.1 (sym, 2C),

154.4, 152.6, 119.1, 116.4 (sym, 2C), 114.7 (sym, 2C), 71.5, 67.3 (sym, 2C), 55.8, 32.0 (sym, 2C),

29.74 (sym, 2C), 29.72 (sym, 2C), 29.6 (sym, 2C), 29.5 (sym, 2C), 29.4 (sym, 2C), 28.6 (sym,

2C), 26.0 (sym, 2C), 22.8 (sym, 2C), 14.3 (sym, 2C). MS-APCI (m/z): [M+H]+ 613.5.

4-ethyl 6-(heptan-3-yl) 2-[(4-methoxyphenoxy)methyl]pyrimidine-4,6-dicarboxylate

(6d) and di(heptan-3-yl) 2-[(4-methoxyphenoxy)methyl]pyrimidine-4,6-dicarboxylate

(6e). General procedure I was followed. Compound 5 (58 mg, 0.16 mmol), 3-heptanol (0.301

mL, 2.12 mmol, 13.1 equiv), H2SO4 (1 μL, 0.02 mmol, 0.1 equiv). Flash chromatography elu-

ents: cyclohexane (A), EtOAc (B); gradient: 8%! 52% B×8 CV. Compound 6d was isolated as

a yellow oil (12 mg, 0.027 mmol, 17% yield). Rf 0.55 (cyclohexane/EtOAc 2:1). 1H NMR (400

MHz, CDCl3) δppm 8.47 (app t, J = 0.6 Hz, 1H), 7.05–6.90 (m, 2H), 6.88–6.76 (m, 2H), 5.43 (s,

2H), 5.17 (app quint, J = 6.1 Hz, 1H), 4.53 (q, J = 7.1 Hz, 2H), 3.75 (s, 3H), 1.85–1.57 (m, 4H),

1.46 (t, J = 7.1 Hz, 3H), 1.45–1.21 (m, 4H), 0.95 (t, J = 7.4 Hz, 3H), 0.89 (app t, J = 7.0 Hz, 3H).
13C NMR (101 MHz, CDCl3) δppm 168.0, 163.7, 163.2, 158.4, 158.0, 154.4, 152.7, 119.0, 116.5

(sym, 2C), 114.7 (sym, 2C), 79.2, 71.5, 63.2, 55.8, 33.3, 27.6, 27.1, 22.7, 14.3, 14.1, 9.8. MS-APCI

(m/z): [M+H]+ 431.4. Compound 6e was isolated as a yellow oil (41 mg, 0.081 mmol, 51%

yield). Rf 0.75 (cyclohexane/EtOAc 2:1). 1H NMR (400 MHz, CDCl3) δppm 8.42 (app t, J = 0.6

Hz, 1H), 7.07–6.92 (m, 2H), 6.88–6.70 (m, 2H), 5.44 (s, 2H), 5.16 (app quint, J = 6.1 Hz, 2H),

3.75 (s, 3H), 1.92–1.55 (m, 8H), 1.42–1.22 (m, 8H), 0.95 (t, J = 7.4 Hz, 6H), 0.89 (app t, J = 7.1

Hz, 6H). 13C NMR (101 MHz, CDCl3) δppm 168.0, 163.4 (sym, 2C), 158.3 (sym, 2C), 154.4,

152.7, 118.8, 116.6 (sym, 2C), 114.6 (sym, 2C), 79.1 (sym, 2C), 71.5, 55.8, 33.3 (sym, 2C), 27.6

(sym, 2C), 27.0 (sym, 2C), 22.7 (sym, 2C), 14.1 (sym, 2C), 9.8 (sym, 2C). MS-APCI (m/z): [M

+H]+ 501.6.

Di(octan-3-yl) 2-[(4-methoxyphenoxy)methyl]pyrimidine-4,6-dicarboxylate (6f). Gen-

eral procedure I was followed. Compound 5 (73 mg, 0.20 mmol), 3-octanol (0.516 mL, 3.24

mmol, 16.0 equiv), H2SO4 (1 μL, 0.03 mmol, 0.1 equiv). Flash chromatography eluents: n-hex-

ane (A), Et2O (B); gradient: 8%! 66% B×10 CV + 66% B×2 CV. Compound 6f was isolated

as a dark yellow oil (85 mg, 0.17 mmol, 84% yield). Rf 0.37 (n-hexane/Et2O 3:1). 1H NMR (400

MHz, CDCl3) δppm 8.42 (app t, J = 0.6 Hz, 1H), 7.03–6.95 (m, 2H), 6.84–6.77 (m, 2H), 5.44 (s,

2H), 5.16 (app quint, J = 6.2 Hz, 2H), 3.75 (s, 3H), 1.83–1.59 (m, 8H), 1.46–1.21 (m, 12H), 0.95

(t, J = 7.4 Hz, 6H), 0.87 (app t, J = 6.8 Hz, 6H). 13C NMR (101 MHz, CDCl3) δppm 168.0, 163.4

(sym, 2C), 158.3 (sym, 2C), 154.4, 152.7, 118.8, 116.6 (sym, 2C), 114.6 (sym, 2C), 79.1 (sym,

2C), 71.6, 55.8, 33.6 (sym, 2C), 31.8 (sym, 2C), 27.0 (sym, 2C), 25.1 (sym, 2C), 22.6 (sym, 2C),

14.1 (sym, 2C), 9.8 (sym, 2C). MS-APCI (m/z): [M+H]+ 529.1.
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Bis[3-(trifluoromethyl)benzyl] 2-[(4-methoxyphenoxy)methyl]pyrimidine-4,6-dicar-

boxylate (6g). General procedure I was followed. Compound 5 (52 mg, 0.14 mmol), 3-(tri-

fluoromethyl)benzyl alcohol (0.300 mL, 2.21 mmol, 15.3 equiv), H2SO4 (1 μL, 0.02 mmol, 0.1

equiv). Flash chromatography eluents: cyclohexane (A), acetone (B); gradient: 8%! 38%

B×10 CV. Compound 6g was isolated as a dark yellow oil (57 mg, 0.092 mmol, 64% yield). Rf

0.25 (cyclohexane/acetone 2:1). 1H NMR (400 MHz, CDCl3) δppm 8.53 (app t, J = 0.6 Hz, 1H),

7.73 (s, 2H), 7.69–7.60 (m, 4H), 7.52 (t, J = 7.7 Hz, 2H), 7.02–6.89 (m, 2H), 6.83–6.74 (m, 2H),

5.51 (s, 4H), 5.43 (s, 2H), 3.74 (s, 3H). 13C NMR (101 MHz, CDCl3) δppm 168.3, 163.2 (sym,

2C), 157.6 (sym, 2C), 154.5, 152.5, 135.7 (sym, 2C), 132.1 (app q, J = 1.1 Hz, sym, 2C), 131.3 (q,

J = 32.5 Hz, sym, 2C), 129.5 (sym, 2C), 125.8 (q, J = 3.7 Hz, sym, 2C), 125.5 (q, J = 3.8 Hz, sym,

2C), 124.0 (q, J = 272.3 Hz, sym, 2C), 119.4, 116.4 (sym, 2C), 114.7 (sym, 2C), 71.3, 67.7 (sym,

2C), 55.8. MS-APCI (m/z): [M+H]+ 621.6.

General procedure II: p-Methoxyphenyl deprotection. Ceric(IV) ammonium nitrate (3

equiv) was added to a cooled (-15 ˚C) solution of a PMP-protected compound in CH3CN/

H2O 4:1 (0.4–2.8 mL) and stirred for 10 min. The mixture was diluted with water and

extracted with EtOAc. The combined organic layers were washed with brine, dried with anhy-

drous Na2SO4 and filtrated. The solvent was evaporated under reduced pressure at 40 ˚C. The

residual hydroquinone was removed by high vacuum. The crude residue was purified by flash

column chromatography with appropriate eluents and a gradient.

Diheptyl 2-(hydroxymethyl)pyrimidine-4,6-dicarboxylate (1a). General procedure II

was followed. Compound 6a (62 mg, 0.12 mmol), CH3CN/H2O 4:1 (1.8 mL). Flash chroma-

tography eluents: n-hexane (A), Et2O (B); gradient: 12%! 100% B×10 CV. Compound 1a

was isolated as an orange oil (29 mg, 0.074 mmol, 60% yield). Rf 0.35 (n-hexane/Et2O 1:1). 1H

NMR (400 MHz, CDCl3) δppm 8.46 (app t, J = 0.8 Hz, 1H), 5.03 (app d, J = 0.8 Hz, 2H), 4.45 (t,

J = 6.9 Hz, 4H), 3.16 (br s, 1H), 1.82 (quint, J = 6.8 Hz, 4H), 1.55–1.16 (m, 16H), 0.88 (app t,

J = 6.8 Hz, 6H). 13C NMR (101 MHz, CDCl3) δppm 170.4, 163.4 (sym, 2C), 157.7 (sym, 2C),

118.7, 67.3 (sym, 2C), 64.9, 31.8 (sym, 2C), 29.0 (sym, 2C), 28.6 (sym, 2C), 25.9 (sym, 2C), 22.7

(sym, 2C), 14.2 (sym, 2C). MS-APCI (m/z): [M+H]+ 395.3. HRMS-ESI (m/z): [M+H]+ calcd

for C21H35N2O5 395.2546; found 395.2545.

Dioctyl 2-(hydroxymethyl)pyrimidine-4,6-dicarboxylate (1b). General procedure II

was followed. Compound 6b (0.100 g, 0.189 mmol), CH3CN/H2O 4:1 (2.8 mL). Flash chroma-

tography eluents: n-hexane (A), EtOAc (B); gradient: 6%! 44% B×13 CV. Compound 1b was

isolated as an orange oil (57.9 mg, 0.137 mmol, 72.4% yield). Rf 0.42 (n-hexane/EtOAc 5:1). 1H

NMR (400 MHz, CDCl3) δppm 8.46 (app t, J = 0.8 Hz, 1H), 5.04 (d, J = 4.5 Hz, 2H), 4.45 (t,

J = 6.8 Hz, 4H), 3.62 (t, J = 5.4 Hz, 1H), 1.82 (quint, J = 7.2 Hz, 4H), 1.51–1.18 (m, 20H), 0.88

(app t, J = 6.8 Hz, 6H). 13C NMR (101 MHz, CDCl3) δppm 170.4, 163.4 (sym, 2C), 157.7 (sym,

2C), 118.7, 67.3 (sym, 2C), 64.9, 31.9 (sym, 2C), 29.3 (sym, 2C), 29.3 (sym, 2C), 28.6 (sym, 2C),

26.0 (sym, 2C), 22.8 (sym, 2C), 14.2 (sym, 2C). MS-APCI (m/z): [M+H]+ 423.3. HRMS-ESI

(m/z): [M+H]+ calcd for C23H38N2O5 423.2859; found 423.2858.

Diundecyl 2-(hydroxymethyl)pyrimidine-4,6-dicarboxylate (1c). General procedure II

was followed. Compound 6c (50.0 mg, 0.0816 mmol), CH3CN/H2O 4:1 (1.2 mL). Flash chro-

matography eluents: n-hexane (A), Et2O (B); gradient: 12%! 100% B×10 CV. Compound 1c

was isolated as an orange oil (25.8 mg, 0.0509 mmol, 62.4% yield). Rf 0.19 (n-hexane/Et2O 1:1).
1H NMR (400 MHz, CDCl3) δppm 8.46 (app t, J = 0.7 Hz, 1H), 5.04 (s, 2H), 4.45 (t, J = 6.8 Hz,

4H), 3.59 (br s, 1H), 1.82 (quint, J = 7.1 Hz, 4H), 1.54–1.15 (m, 32H), 0.87 (t, J = 7.2 Hz, 6H).
13C NMR (101 MHz, CDCl3) δppm 170.4, 163.4 (sym, 2c), 157.7 (sym, 2c), 118.8, 67.3 (sym,

2c), 64.9, 32.0 (sym, 2c), 29.73 (sym, 2c), 29.71 (sym, 2c), 29.6 (sym, 2c), 29.5 (sym, 2c), 29.4

(sym, 2c), 28.6 (sym, 2c), 26.0 (sym, 2c), 22.8 (sym, 2c), 14.3 (sym, 2c). MS-APCI (m/z): [M

+H]+ 507.7. HRMS-ESI (m/z): [M+Na]+ calcd for C29H50N2O5Na 529.3618; found 529.3619.
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4-ethyl 6-(heptan-3-yl) 2-(hydroxymethyl)pyrimidine-4,6-dicarboxylate (1d). General

procedure II was followed. Compound 6d (11 mg, 0.026 mmol), CH3CN/H2O 4:1 (0.4 mL).

Flash chromatography eluents: cyclohexane (A), EtOAc (B); gradient: 12%! 92% B×9 CV.

Compound 1d was isolated as a pale yellow oil (4.8 mg, 0.014 mmol, 53% yield). Rf 0.4 (cyclo-

hexane/EtOAc 1:1). 1H NMR (400 MHz, CDCl3) δppm
1H NMR (400 MHz, CDCl3) δ 8.46 (app

t, J = 0.8 Hz, 1H), 5.18 (app quint, J = 6.1 Hz, 1H), 5.04 (app d, J = 0.8 Hz, 2H), 4.53 (q, J = 7.1

Hz, 2H), 3.55 (br s, 1H), 1.84–1.59 (m, 4H), 1.46 (t, J = 7.1 Hz, 3H), 1.42–1.27 (m, 4H), 0.97 (t,

J = 7.4 Hz, 3H), 0.90 (app t, J = 6.9 Hz, 3H). 13C NMR (101 MHz, CDCl3) δppm 170.3, 163.5,

163.1, 157.9, 157.7, 118.7, 79.3, 64.9, 63.2, 33.4, 27.6, 27.1, 22.7, 14.3, 14.1, 9.8. MS-APCI (m/z):

[M+H]+ 325.2. HRMS-ESI (m/z): [M+H]+ calcd for C16H25N2O5 325.1764; found 325.1766.

Di(heptan-3-yl) 2-(hydroxymethyl)pyrimidine-4,6-dicarboxylate (1e). General proce-

dure II was followed. Compound 6e (0.040 g, 0.080 mmol), CH3CN/H2O 4:1 (1.2 mL). Flash

chromatography eluents: cyclohexane (A), EtOAc (B); gradient: 8%! 60% B×9 CV. Com-

pound 1e was isolated as an orange oil (25 mg, 0.064 mmol, 80% yield). Rf 0.5 (cyclohexane/

EtOAc 2:1). 1H NMR (400 MHz, CDCl3) δppm
1H NMR (400 MHz, CDCl3) δ 8.41 (app t,

J = 0.8 Hz, 1H), 5.16 (app quint, J = 6.2 Hz, 2H), 5.02 (d, J = 5.3 Hz, 2H), 3.71 (t, J = 5.3 Hz,

1H), 1.84–1.59 (m, 8H), 1.43–1.23 (m, 8H), 0.95 (t, J = 7.4 Hz, 6H), 0.88 (app t, J = 7.1 Hz, 6H).
13C NMR (101 MHz, CDCl3) δppm 170.3, 163.2 (sym, 2C), 157.9 (sym, 2C), 118.5, 79.2 (sym,

2C), 64.8, 33.3 (sym, 2C), 27.6 (sym, 2C), 27.0 (sym, 2C), 22.6 (sym, 2C), 14.1 (sym, 2C), 9.8

(sym, 2C). MS-APCI (m/z): [M+H]+ 395.3. HRMS-ESI (m/z): [M+H]+ calcd for C21H35N2O5

395.2546; found 395.2544.

Di(octan-3-yl) 2-(hydroxymethyl)pyrimidine-4,6-dicarboxylate (1f). General proce-

dure II was followed. Compound 6f (63.1 mg, 0.126 mmol), CH3CN/H2O 4:1 (1.8 mL). Flash

chromatography eluents: n-hexane (A), Et2O (B); gradient: 12%! 100% B×10 CV. Com-

pound 1f was isolated as an orange oil (41.1 mg, 0.0973 mmol, 77.2% yield). Rf 0.35 (n-hexane/

Et2O 1:1). 1H NMR (400 MHz, CDCl3) δppm
1H NMR (400 MHz, CDCl3) δ 8.42 (app t, J = 0.7

Hz, 1H), 5.18 (app quint, J = 6.1 Hz, 2H), 5.03 (d, J = 0.6 Hz, 2H), 3.33 (s, 1H), 2.05–1.51 (m,

8H), 1.50–1.10 (m, 12H), 0.96 (t, J = 7.4 Hz, 6H), 0.87 (app t, J = 7.0 Hz, 6H). 13C NMR (101

MHz, CDCl3) δppm 170.3, 163.3 (sym, 2C), 157.9 (sym, 2C), 118.6, 79.3 (sym, 2C), 64.9, 33.6

(sym, 2C), 31.7 (sym, 2C), 27.1 (sym, 2C), 25.1 (sym, 2C), 22.6 (sym, 2C), 14.1 (sym, 2C), 9.8

(sym, 2C). MS-APCI (m/z): [M+H]+ 423.3. HRMS-ESI (m/z): [M+H]+ calcd for C23H39N2O5

423.2859; found 423.2857.

Bis[3-(trifluoromethyl)benzyl] 2-(hydroxymethyl)pyrimidine-4,6-dicarboxylate (1g).

General procedure II was followed. Compound 6g (56 mg, 0.090 mmol), CH3CN/H2O 4:1 (1.3

mL). Flash chromatography eluents: cyclohexane (A), EtOAc (B); gradient: 12%! 100%

B×10 CV. Compound 1f was isolated as a yellow oil (30 mg, 0.047 mmol, 52% yield). Rf 0.25

(cyclohexane/EtOAc 1:1). 1H NMR (400 MHz, CDCl3) δppm 8.50 (app t, J = 0.7 Hz, 1H), 7.72

(s, 2H), 7.66 (d, J = 7.6 Hz, 2H), 7.63 (d, J = 7.9 Hz, 2H), 7.53 (t, J = 7.7 Hz, 2H), 5.51 (s, 4H),

5.03 (s, 2H), 3.60 (br s, 1H). 13C NMR (101 MHz, CDCl3) δppm 170.7, 163.0 (sym, 2C), 157.2

(sym, 2C), 135.6 (sym, 2C), 132.1 (app q, J = 1.1 Hz, sym, 2C), 131.4 (q, J = 32.6 Hz, sym, 2C),

129.5 (sym, 2C), 125.9 (q, J = 3.7 Hz, sym, 2C), 125.6 (q, J = 3.9 Hz, sym, 2C), 123.9 (q,

J = 272.4 Hz, sym, 2C), 119.0, 67.7 (sym, 2C), 64.9. 19F NMR (376 MHz, CDCl3) δppm -62.73.

MS-APCI (m/z): [M+H]+ 515.1. HRMS-ESI (m/z): [M+H]+ calcd for C23H17N2O5F6 515.1042;

found 515.1042.

Diethyl 2-(hydroxymethyl)pyrimidine-4,6-dicarboxylate (1h). General procedure II

was followed. Compound 6h (16 mg, 0.043 mmol), CH3CN/H2O 4:1 (0.6 mL). Flash chroma-

tography eluents: cyclohexane (A), EtOAc (B); gradient: 20%! 35% B×15 CV + 35%! 100%

B×15 CV. Compound 1h was isolated as a yellow oil (5.4 mg, 0.021 mmol, 49% yield). Rf 0.15

(cyclohexane/EtOAc 3:2). 1H NMR (400 MHz, CDCl3) δppm 8.49 (app q, J = 0.7 Hz, 1H),
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5.04 (s, 2H), 4.52 (q, J = 7.1 Hz, 4H), 3.61 (s, 1H), 1.46 (t, J = 7.1 Hz, 6H). 13C NMR (101 MHz,

CDCl3) δppm 170.4, 163.4 (sym, 2C), 157.6 (sym, 2C), 118.8, 64.9, 63.2 (sym, 2C), 14.3 (sym,

2C). HRMS-ESI (m/z): [M+H]+ calcd for C11H15N2O5 255.0981; found 255.0981.

Ethyl 6-hydroxy-2-[(4-methoxyphenoxy)methyl]-5-methylpyrimidine-4-carboxylate

(9). Diethyl oxalpropionate (0.932 mL, 4.95 mmol) was added to a solution of 2-(4-methoxy-

phenoxy)acetamidine hydrochloride (1.18 g, 5.44 mmol, 1.1 equiv) in ethanol (20 mL) and

triethylamine (1.52 mL, 10.9 mmol, 2.2 equiv) and refluxed for 2.5 h under argon atmosphere.

The yellow solution turned brown approaching the reflux point. The solvent was evaporated

under reduced pressure at 40 ˚C. The residue was taken up with EtOAc, water (15 mL) was

added and the mixture was extracted with EtOAc (3×25 mL). The combined organic layers

were washed with brine (3×25 mL) and the solvent was evaporated under reduced pressure at

40 ˚C. The residue was purified by flash column chromatography [cyclohexane (A), EtOAc

(B); gradient: 25%! 40% B×7 CV + 40%! 100% B×7 CV] to give 9 (488 mg, 1.53 mmol,

30.9% yield) as a yellow solid. Rf 0.45 (cyclohexane/EtOAc 1:1). 1H NMR (400 MHz, CDCl3)

δppm 11.05 (br s, 1H), 6.98–6.89 (m, 2H), 6.89–6.79 (m, 2H), 4.98 (s, 2H), 4.43 (q, J = 7.1 Hz,

2H), 3.76 (s, 3H), 2.25 (s, 3H), 1.41 (t, J = 7.1 Hz, 3H). 13C NMR (101 MHz, CDCl3) δppm

165.5, 163.5, 155.1, 154.7, 151.1, 150.0, 125.3, 115.9 (sym, 2C), 115.0 (sym, 2C), 67.3, 62.4, 55.8,

14.3, 11.8. MS-APCI (m/z): [M+H]+ 319.3. HRMS-ESI (m/z): [M+H]+ calcd for C16H19N2O5

319.1294; found 319.1296.

Ethyl 6-bromo-2-[(4-methoxyphenoxy)methyl]-5-methylpyrimidine-4-carboxylate

(10). Phosphoryl bromide (1.80 g, 6.28 mmol, 2 equiv) was added to a solution of 9 (1.00 g,

3.14 mmol) in DMF (10 mL) and the mixture was microwave irradiated for 10 min at 90 ˚C.

The yellow color of the mixture turned dark brown. The reaction was quenched by adding ice

water (25 mL) and the mixture was extracted with EtOAc (3×25 mL). The combined organic

layers were washed with brine (3×25 mL) and the solvent was evaporated under reduced pres-

sure at 50 ˚C. The residue was purified by flash column chromatography [cyclohexane (A),

EtOAc (B); gradient: 8%! 66% B×10] to give 10 (0.900 g, 2.36 mmol, 75.1% yield) as a yellow

solid. Rf 0.65 (cyclohexane/EtOAc 2:1). 1H NMR (400 MHz, CDCl3) δppm
1H NMR (400 MHz,

CDCl3) δ 7.04–6.88 (m, 2H), 6.88–6.73 (m, 2H), 5.20 (s, 2H), 4.47 (q, J = 7.2 Hz, 2H), 3.76 (s,

3H), 2.50 (s, 3H), 1.42 (t, J = 7.2 Hz, 3H). 13C NMR (101 MHz, CDCl3) δppm 164.6, 164.0,

158.2, 156.9, 154.5, 152.6, 130.2, 116.4 (sym, 2C), 114.7 (sym, 2C), 71.0, 62.9, 55.8, 17.8, 14.2.

MS-APCI (m/z): [M+H]+ 381.2. HRMS-ESI (m/z): [M+H]+ calcd for C16H18N2O4Br 381.0450;

found 381.0450.

General procedure III: Nucleophilic substitutions on 10 by alkoxides. An alcohol

(2.25–6.1 equiv) was added dropwise to a cooled suspension of NaH (60% dispersion in min-

eral oil; 2.2–6 equiv) in dry THF (0.5–1.5 mL) at 0 ˚C and the mixture was stirred for 1 h

under argon atmosphere. A solution of 10 in dry THF (0.5–1.5 mL) was added dropwise and

mixture was stirred overnight letting to warm up to rt. The reaction was quenched with ice

water and acidified with a solution of KHSO4 until pH�3. The aqueous phase was extracted

with EtOAc. The combined organic layers were washed with brine and the solvent was evapo-

rated under reduced pressure at 40 ˚C. The crude residue was purified by flash column chro-

matography with appropriate eluents and a gradient.

Heptyl 6-(heptyloxy)-2-[(4-methoxyphenoxy)methyl]-5-methylpyrimidine-4-carboxyl-

ate (11). General procedure III was followed except that the mixture containing the alkoxide

was added dropwise to the solution of 10. NaH (60% in mineral oil; 69.2 mg, 1.73 mmol, 2.2

equiv), dry THF (1.25 mL), 1-heptanol (0.250 mL, 1.77 mmol, 2.25 equiv); compound 10

(0.300 g, 0.787 mmol), dry THF (1.25 mL). Flash chromatography eluents: cyclohexane (A),

EtOAc (B); gradient: 10%! 30% B×15 CV. Compound 11 was isolated as an orange oil (46.6

mg, 0.0958 mmol, 12.2% yield). Rf 0.9 (cyclohexane/EtOAc 2:1). 1H NMR (400 MHz, CDCl3)
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δppm 6.98–6.86 (m, 2H), 6.86–6.75 (m, 2H), 5.14 (s, 2H), 4.37 (t, J = 6.9 Hz, 2H), 4.35 (t, J = 6.7

Hz, 2H), 3.75 (s, 3H), 2.27 (s, 3H), 1.78 (quint, J = 6.9 Hz, 2H), 1.71 (quint, J = 7.2 Hz, 2H),

1.47–1.17 (m, 16H), 0.89 (app t, J = 6.9 Hz, 3H), 0.88 (app t, J = 6.8 Hz, 3H). 13C NMR (101

MHz, CDCl3) δppm 169.3, 165.8, 163.1, 155.0, 154.1, 152.9, 116.6, 116.1 (sym, 2C), 114.6 (sym,

2C), 71.2, 67.7, 66.4, 55.8, 31.9, 31.8, 29.1, 29.0, 28.74, 28.67, 26.04, 25.98, 22.73, 22.71, 14.22,

14.20, 11.1. MS-APCI (m/z): [M+H]+ 487.5.

Octyl 2-[(4-methoxyphenoxy)methyl]-5-methyl-6-(octyloxy)pyrimidine-4-carboxylate

(12). General procedure III was followed except that the mixture containing the alkoxide was

added dropwise to the solution of 10. NaH (60% in mineral oil; 46.7 mg, 1.18 mmol, 2.2

equiv), dry THF (1 mL), 1-octanol (187 μL, 1.18 mmol, 2.25 equiv); compound 10 (0.200 g,

0.525 mmol), dry THF (1 mL). Flash chromatography eluents: cyclohexane (A), EtOAc (B);

gradient: 10%! 30% B×15 CV. Compound 12 was isolated as an orange oil (0.040 g, 0.078

mmol, 15% yield). Rf 0.9 (cyclohexane/EtOAc 2:1). 1H NMR (400 MHz, CDCl3) δppm 7.02–

6.86 (m, 2H), 6.86–6.69 (m, 2H), 5.13 (s, 2H), 4.37 (t, J = 6.8 Hz, 2H), 4.35 (t, J = 6.6 Hz, 2H),

3.75 (s, 3H), 2.27 (s, 3H), 1.77 (quint, J = 7.0 Hz, 2H), 1.71 (quint, J = 7.1 Hz, 2H), 1.47–1.33

(m, 4H), 1.35–1.19 (m, 16H), 0.88 (app t, J = 6.7 Hz, 3H), 0.88 (app t, J = 6.9 Hz, 3H). 13C

NMR (101 MHz, CDCl3) δppm 169.3, 165.9, 163.1, 155.1, 154.1, 152.9, 116.6, 116.1 (sym, 2C),

114.6 (sym, 2C), 71.2, 67.7, 66.4, 55.8, 31.94, 31.91, 29.39, 29.35, 29.33, 29.30, 28.74, 28.66, 26.1,

26.0, 22.79, 22.77, 14.24, 14.23, 11.1.

Heptan-3-yl 6-(heptan-3-yloxy)-2-[(4-methoxyphenoxy)methyl]-5-methylpyrimidine-

4-carboxylate (13) and 6-(heptan-3-yloxy)-2-[(4-methoxyphenoxy)methyl]-5-methylpyri-

midine-4-carboxylic acid (18). General procedure III was followed except that the alcohol

was used as solvent. NaH (60% in mineral oil; 80.8 mg, 2.02 mmol, 2.2 equiv), 3-heptanol (1.5

mL); compound 10 (0.350 g, 0.918 mmol), 3-heptanol (2.5 mL). Flash chromatography elu-

ents: cyclohexane (A), EtOAc (B); gradient: 3%! 28% B×15 CV + 28% B×4 CV. Compound

13 was isolated as a dark red oil (23 mg, 0.047 mmol, 5.1% yield). Rf 0.9 (cyclohexane/EtOAc

2:1). 1H NMR (400 MHz, CDCl3) δppm 6.98–6.84 (m, 2H), 6.84–6.69 (m, 2H), 5.19 (quint,

J = 5.9 Hz, 1H), 5.13 (s, 2H), 5.12 (app quint, J = 6.0 Hz, 1H), 3.74 (s, 3H), 2.22 (s, 3H), 1.79–

1.63 (m, 4H), 1.67–1.51 (m, 4H), 1.47–1.29 (m, 4H), 1.32–1.13 (m, 4H), 0.98 (t, J = 7.4 Hz,

3H), 0.91 (app t, J = 7.0 Hz, 3H), 0.85 (app t, J = 6.8 Hz, 3H), 0.84 (t, J = 7.4 Hz, 3H).13C NMR

(101 MHz, CDCl3) δppm 169.2, 166.1, 163.1, 156.2, 154.0, 153.0, 116.0 (sym, 2C), 115.5, 114.6

(sym, 2C), 78.2, 78.1, 70.9, 55.8, 33.3, 33.0, 27.6, 27.4, 27.0, 26.6, 22.74, 22.72, 14.1 (2C), 11.1,

9.8, 9.5. Compound 18 was isolated as an orange solid (115 mg, 0.296 mmol, 32.2% yield). Rf

0.1 (cyclohexane/EtOAc 3:1 + 2% AcOH). 1H NMR (400 MHz, CDCl3) δppm 9.04 (br s, 1H),

6.98–6.85 (m, 2H), 6.85–6.71 (m, 2H), 5.25 (quint, J = 5.9 Hz, 1H), 5.11 (s, 2H), 3.76 (s, 3H),

2.57 (s, 3H), 1.78–1.59 (m, 4H), 1.38–1.17 (m, 4H), 0.97–0.80 (m, 6H). 13C NMR (101 MHz,

CDCl3) δppm 170.6, 163.7, 161.6, 154.4, 152.6, 148.6, 120.9, 115.9 (sym, 2C), 114.8 (sym, 2C),

79.5, 70.2, 55.8, 32.9, 27.5, 26.6, 22.7, 14.1, 10.7, 9.6.

6-(hexyloxy)-2-[(4-methoxyphenoxy)methyl]-5-methylpyrimidine-4-carboxylic acid

(14). General procedure III was followed. NaH (60% in mineral oil; 189 mg, 4.72 mmol, 6

equiv), dry THF (1.5 mL), 1-hexanol (603 μL, 4.80 mmol, 6.1 equiv); compound 10 (0.300 g,

0.786 mmol), dry THF (1.5 mL). Flash chromatography eluents: CHCl3 (A), CHCl3/MeOH

20:1 + 1% AcOH (B); gradient: 0%! 20% B×15 CV. Compound 14 was isolated as a pale yel-

low solid (65 mg, 0.17 mmol, 22% yield). Rf 0.5 (CHCl3/MeOH 20:1 + 1% AcOH). 1H NMR

(400 MHz, CDCl3) δppm 9.25 (br s, 1H), 7.02–6.85 (m, 2H), 6.85–6.68 (m, 2H), 5.12 (s, 2H),

4.40 (t, J = 6.6 Hz, 2H), 3.76 (s, 3H), 2.57 (s, 3H), 1.77 (quint, J = 6.8 Hz, 2H), 1.53–1.20 (m,

6H), 0.90 (app t, J = 6.8 Hz, 3H). 13C NMR (101 MHz, CDCl3) δppm 170.6, 163.6, 161.7, 154.4,

152.5, 148.4, 120.8, 115.9 (sym, 2C), 114.8 (sym, 2C), 70.3, 68.5, 55.8, 31.6, 28.6, 25.7, 22.7,

14.1, 10.7.
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2-[(4-methoxyphenoxy)methyl]-5-methyl-6-[(2-propylpentyl)oxy]pyrimidine-4-car-

boxylic acid (15). General procedure III was followed. NaH (60% in mineral oil; 177 mg,

4.42 mmol, 6 equiv), dry THF (1.5 mL), 2-propyl-1-pentanol (706 μL, 4.49 mmol, 6.1 equiv);

compound 10 (281 mg, 0.737 mmol), dry THF (1.5 mL). Flash chromatography eluents: cyclo-

hexane (A), EtOAc (B); gradient: 0%! 100% B×20 CV. Compound 15 was isolated as a pale

yellow solid (79 mg, 0.19 mmol, 26% yield). Rf 0.2 (cyclohexane/EtOAc 3:1 + 2% AcOH). 1H

NMR (400 MHz, CDCl3) δppm 8.90 (br s, 1H), 6.94–6.86 (m, 2H), 6.85–6.77 (m, 2H), 5.12 (s,

2H), 4.30 (d, J = 5.6 Hz, 2H), 3.76 (s, 3H), 2.57 (s, 3H), 1.91–1.75 (m, 1H), 1.46–1.28 (m, 8H),

0.96–0.86 (m, 6H). 13C NMR (101 MHz, CDCl3) δppm 170.7, 163.8, 161.7, 154.4, 152.5, 148.7,

120.8, 116.0 (sym, 2C), 114.8 (sym, 2C), 71.1, 70.3, 55.8, 37.1, 33.8 (sym, 2C), 20.1 (sym, 2C),

14.5 (sym, 2C), 10.7.

2-[(4-methoxyphenoxy)methyl]-5-methyl-6-[[3-(trifluoromethyl)benzyl]oxy]pyrimi-

dine-4-carboxylic acid (16). General procedure III was followed. NaH (60% in mineral oil;

54.2 mg, 2.26 mmol, 2.2 equiv), dry THF (0.5 mL), 3-(trifluoromethyl)benzyl alcohol (419 μL,

3.08 mmol, 5 equiv); compound 10 (235 mg, 0.616 mmol), dry THF (0.5 mL). Flash chroma-

tography eluents: cyclohexane (A), EtOAc (B); gradient: 0%! 100% B×20 CV. Compound 16

was isolated as a yellow solid (160 mg, 0.357 mmol, 57.9% yield). Rf 0.2 (cyclohexane/EtOAc

3:1 + 2% AcOH). 1H NMR (400 MHz, CDCl3) δppm 9.47 (br s, 1H), 7.71 (s, 1H), 7.62 (d, J = 7.6

Hz, 2H), 7.50 (t, J = 7.7 Hz, 1H), 6.99–6.86 (m, 2H), 6.86–6.76 (m, 2H), 5.52 (s, 2H), 5.16 (s,

2H), 3.77 (s, 3H), 2.63 (s, 3H). 13C NMR (101 MHz, CDCl3) δppm 170.0, 163.2, 161.8, 154.5,

152.5, 149.0, 136.6, 131.7 (d, J = 1.1 Hz), 129.3, 125.4 (d, J = 3.9 Hz), 125.2 (d, J = 3.7 Hz),

121.1, 115.9 (sym, 2C), 114.9 (sym, 2C), 70.2, 68.8, 55.8, 10.8 (the quartets of C-CF3 quaternary

carbons with J� 32 Hz and J� 273 Hz could not be identified due to a low signal/noise ratio;

for the same reason, the quartets of the adjacent carbons with J = 3.9 Hz, J = 3.8 and J = 1.1 Hz

are indicated as doublets). 19F NMR (376 MHz, CDCl3) δppm -62.69. MS-APCI (m/z): [M+H]+

449.3.

6-(heptyloxy)-2-[(4-methoxyphenoxy)methyl]-5-methylpyrimidine-4-carboxylic acid

(17). General procedure III was followed except that the alcohol was used as solvent and

THF as cosolvent. NaH (60% in mineral oil; 57.7 mg, 1.44 mmol, 2.2 equiv), 1-heptanol (1.5

mL); compound 10 (0.250 g, 0.656 mmol), 1-heptanol (1.3 mL), dry THF (1.5 mL). Flash chro-

matography eluents: cyclohexane (A), EtOAc (B) + 2% AcOH; gradient: 3%! 100% B×10

CV. Compound 17 was isolated as a pale yellow solid (172 mg, 0.444 mmol, 67.7% yield). Rf

0.5 (EtOAc + 2% AcOH). 1H NMR (400 MHz, CDCl3) δppm 9.37 (br s, 1H), 6.93–6.87 (m, 2H),

6.85–6.78 (m, 2H), 5.13 (s, 2H), 4.41 (t, J = 6.6 Hz, 2H), 3.76 (s, 3H), 2.58 (s, 3H), 1.78 (quint,

J = 7.2 Hz, 2H), 1.49–1.21 (m, 8H), 0.90 (app t, J = 7.0 Hz, 3H). 13C NMR (101 MHz, CDCl3)

δppm 170.6, 163.5, 161.7, 154.4, 152.6, 148.4, 120.9, 116.0 (sym, 2C), 114.8 (sym, 2C), 70.3, 68.5,

55.8, 31.9, 29.1, 28.7, 26.0, 22.7, 14.2, 10.7. MS-APCI (m/z): [M+H]+ 389.2.

Hexyl 6-(hexyloxy)-2-[(4-methoxyphenoxy)methyl]-5-methylpyrimidine-4-carboxylate

(19). To a solution of 14 (64 mg, 0.17 mmol) in 1-hexanol (1 mL), SOCl2 (37 μL, 0.51 mmol,

3 equiv) was added under argon atmosphere. The mixture was microwave irradiated for 1 h at

90 ˚C. The reaction was quenched by adding a saturated solution of NaHCO3 in water (10 mL)

and the mixture was extracted with EtOAc (3×15 mL). The combined organic layers were

washed with brine (3×15 mL) and the solvent was evaporated under reduced pressure at

40 ˚C. Residual 1-hexanol was removed by vacuum distillation. The residue was purified by

flash column chromatography [cyclohexane (A), EtOAc (B); gradient: 10%! 13% B×10 CV]

to give 19 as a brown oil (26 mg, 0.056 mmol, 33% yield). Rf 0.7 (cyclohexane/EtOAc 5:1). 1H

NMR (400 MHz, CDCl3) δppm 67.00–6.86 (m, 2H), 6.86–6.72 (m, 2H), 5.13 (s, 2H), 4.37 (t,

J = 6.9 Hz, 2H), 4.35 (t, J = 6.7 Hz, 2H), 3.75 (s, 3H), 2.26 (s, 3H), 1.77 (quint, J = 7.2 Hz, 2H),

1.71 (quint, J = 7.1 Hz, 2H), 1.48–1.36 (m, 4H), 1.36–1.24 (m, 8H), 0.89 (app t, J = 7.2 Hz, 6H).
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13C NMR (101 MHz, CDCl3) δppm 169.3, 165.9, 163.1, 155.1, 154.1, 153.0, 116.6, 116.1 (sym,

2C), 114.6 (sym, 2C), 71.2, 67.6, 66.4, 55.8, 31.6, 31.5, 28.7, 28.6, 25.73, 25.68, 22.7, 22.6, 14.1

(2C), 11.1.

2-propylpentyl 2-[(4-methoxyphenoxy)methyl]-5-methyl-6-[(2-propylpentyl)oxy]

pyrimidine-4-carboxylate (20). To a solution of 15 (69 mg, 0.17 mmol) in 1-hexanol (1 mL),

SOCl2 (37 μL, 0.51 mmol, 3 equiv) was added under argon atmosphere. The mixture was

microwave irradiated for 1 h at 90 ˚C. The reaction was quenched by adding a saturated solu-

tion of NaHCO3 in water (10 mL) and the mixture was extracted with EtOAc (3×15 mL). The

combined organic layers were washed with brine (3×15 mL) and the solvent was evaporated

under reduced pressure at 40 ˚C. Residual 1-hexanol was removed by vacuum distillation. The

residue was purified by flash column chromatography [cyclohexane (A), EtOAc (B); gradient:

10%! 13% B×10 CV] to give 19 as a brown oil (44 mg, 0.085 mmol, 50% yield). Rf 0.75

(cyclohexane/EtOAc 5:1). 1H NMR (400 MHz, CDCl3) δppm 6.98–6.86 (m, 2H), 6.86–6.74 (m,

2H), 5.13 (s, 2H), 4.29 (d, J = 5.8 Hz, 2H), 4.25 (d, J = 5.6 Hz, 2H), 3.75 (s, 3H), 2.26 (s, 3H),

1.93–1.67 (m, 2H), 1.44–1.24 (m, 16H), 0.98–0.81 (m, 12H). 13C NMR (101 MHz, CDCl3)

δppm
13C NMR (101 MHz, CDCl3) δ 169.4, 166.1, 163.1, 155.3, 154.1, 153.0, 116.3, 116.2 (sym,

2C), 114.6 (sym, 2C), 71.3, 70.2, 69.0, 55.8, 37.1, 37.0, 33.9 (sym, 2C), 33.6 (sym, 2C), 20.1

(sym, 2C), 20.0 (sym, 2C), 14.54 (sym, 2C), 14.50 (sym, 2C), 11.1. MS-APCI (m/z): [M+H]+

515.2.

General procedure IV: CDI-promoted esterification of carboxylic acids. To a solution

of a carboxylic acid in dry DMF (0.2–1.6 mL), CDI (2–2.2 equiv) was added and the mixture

was stirred at rt for 1 h under argon atmosphere. An alcohol (1.1–2 equiv), DBU (0.5–2 equiv)

and DMAP (0.1 equiv) were subsequently added and the reaction mixture was microwave irra-

diated at 50 ˚C for 1 h. The reaction was quenched with ice water and extracted with EtOAc.

The combined organic layers were washed with a saturated solution of NaHCO3 in water,

brine and the solvent was evaporated under reduced pressure at 40 ˚C. The crude residue was

purified by flash column chromatography with appropriate eluents and a gradient.

3-(trifluoromethyl)benzyl 2-[(4-methoxyphenoxy)methyl]-5-methyl-6-[[3-(trifluoro-

methyl)benzyl]oxy]pyrimidine-4-carboxylate (21). General procedure IV was followed.

Compound 16 (0.060 g, 0.13 mmol), dry DMF (0.2 mL), CDI (43 mg, 0.27 mmol, 2 equiv), 3-

(trifluoromethyl)benzyl alcohol (36 μL, 0.27 mmol, 2 equiv), DBU (0.010 mL, 0.067 mmol, 0.5

equiv), DMAP (1.6 mg, 0.013 mmol, 0.1 equiv). Flash chromatography eluents: cyclohexane

(A), EtOAc (B); gradient: 6%! 45% B×10 CV. Compound 21 was isolated as a yellow oil (49

mg, 0.081 mmol, 62% yield). Rf 0.5 (cyclohexane/EtOAc 4:1). 1H NMR (400 MHz, CDCl3)

δppm 7.72 (s, 1H), 7.68 (s, 1H), 7.67–7.48 (m, 4H), 7.51 (t, J = 7.7 Hz, 1H), 7.45 (t, J = 7.7 Hz,

1H), 7.00–6.85 (m, 2H), 6.85–6.70 (m, 2H), 5.47 (s, 2H), 5.46 (s, 2H), 5.17 (s, 2H), 3.75 (s, 3H),

2.31 (s, 3H). 13C NMR (101 MHz, CDCl3) δppm 168.7, 165.1, 163.3, 154.7, 154.2, 152.8, 137.0,

136.3, 131.7 (2C), 129.4, 129.2, 125.6–125.3 (m, 2C), 125.3–125.0 (m, 2C), 117.5, 116.0 (sym,

2C), 114.7 (sym, 2C), 70.9, 68.1, 66.8, 55.8, 11.1 (the quartets of C-CF3 quaternary carbons

with J� 32 Hz and J� 273 Hz could not be identified due to a low signal/noise ratio).

Methyl 2-[(4-methoxyphenoxy)methyl)]-5-methyl-6-[[3-(trifluoromethyl)benzyl]oxy]

pyrimidine-4-carboxylate (22). A 2-molar solution of (trimethylsilyl)diazomethane in Et2O

(134 μL, 0.268 mmol, 2 equiv) was added to a solution of 16 (60.0 mg, 0.134 mmol) in dry

CH2Cl2/MeOH (200 μL, 1:1) at 0 ˚C under argon atmosphere. The mixture was stirred for 30

min letting the temperature to rise to rt. The reaction was quenched by adding water (10 mL)

and the mixture was extracted with EtOAc (3×10 mL). The combined organic layers were

washed with brine (2×10 mL) and the solvent was evaporated under reduced pressure at

40 ˚C. The residue was purified by flash column chromatography [cyclohexane (A), EtOAc

(B); gradient: 8%! 30% B×14 CV] to give 22 as a pale yellow oil (27.0 mg, 0.0584 mmol,
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43.6% yield). Rf 0.3 (cyclohexane/EtOAc 4:1). 1H NMR (400 MHz, CDCl3) δppm 7.69 (s, 1H),

7.64–7.51 (m, 2H), 7.45 (t, J = 7.7 Hz, 1H), 6.97–6.86 (m, 2H), 6.85–6.75 (m, 2H), 5.47 (s, 2H),

5.17 (s, 2H), 3.98 (s, 3H), 3.76 (s, 3H), 2.36 (s, 3H). 13C NMR (101 MHz, CDCl3) δppm 168.8,

165.7, 163.1, 154.7, 154.2, 152.8, 137.1, 131.7 (app q, J = 1.2 Hz), 131.1 (d, J = 32.4 Hz), 129.2,

126.8 (d, J = 271.1 Hz), 125.2 (q, J = 3.9 Hz), 125.1 (q, J = 3.9 Hz), 117.7, 116.0 (sym, 2C), 114.7

(sym, 2C), 71.0, 68.1, 55.8, 53.2, 11.2 (the quartets of C-CF3 quaternary carbons with J� 32.4

Hz and J� 271.1 Hz are indicated as doublets because the lower intensity peaks could not be

identified due to a low signal/noise ratio).

Heptan-3-yl 2-[(4-methoxyphenoxy)methyl]-5-methyl-6-[[3-(trifluoromethyl)benzyl]

oxy]pyrimidine-4-carboxylate (23). General procedure IV was followed. Compound 16

(0.060 g, 0.13 mmol), dry DMF (0.3 mL), CDI (43 mg, 0.27 mmol, 2 equiv), 3-heptanol (38 μL,

0.27 mmol, 2 equiv), DBU (0.010 mL, 0.067 mmol, 0.5 equiv), DMAP (1.6 mg, 0.013 mmol,

0.1 equiv). Flash chromatography eluents: cyclohexane (A), EtOAc (B); gradient: 5%! 40%

B×10 CV. Compound 23 was isolated as a yellow oil (37 mg, 0.068 mmol, 52% yield). Rf 0.85

(cyclohexane/EtOAc 4:1). 1H NMR (400 MHz, CDCl3) δppm 7.69 (s, 1H), 7.61–7.52 (m, 2H),

7.45 (t, J = 7.7 Hz, 1H), 6.99–6.88 (m, 2H), 6.86–6.75 (m, 2H), 5.46 (s, 2H), 5.16 (s, 2H), 5.13

(app quint, J = 6.5 Hz, 1H), 3.76 (s, 3H), 2.30 (s, 3H), 1.81–1.59 (m, 4H), 1.45–1.23 (m, 4H),

0.97 (t, J = 7.4 Hz, 3H), 0.91 (app t, J = 7.1 Hz, 3H). 13C NMR (101 MHz, CDCl3) δppm 168.6,

165.6, 163.2, 156.6, 154.1, 152.9, 137.2, 131.7 (app q, J = 1.3, 0.9 Hz), 129.1, 125.2–125.0 (m,

2C), 116.1 (sym, 2C), 115.8, 114.6 (sym, 2C), 78.3, 71.0, 67.9, 55.8, 33.3, 27.6, 27.0, 22.7, 14.1,

11.1, 9.8 (the quartets of C-CF3 quaternary carbons with J� 32 Hz and J� 273 Hz respectively

could not be identified due to low signal/noise ratio).

Heptan-3-yl 6-(heptyloxy)-2-[(4-methoxyphenoxy)methyl]-5-methylpyrimidine-4-car-

boxylate (24). General procedure IV was followed. Compound 17 (70.0 mg, 0.180 mmol),

dry DMF (1.6 mL), CDI (64 mg, 0.40 mmol, 2.2 equiv), 3-heptanol (28 μL, 0.20 mmol, 1.1

equiv), DBU (54 μL, 0.36 mmol, 2.2 equiv), DMAP (2.2 mg, 0.018 mmol, 0.1 equiv). Flash

chromatography eluents: n-hexane (A), EtOAc (B); gradient: 3%! 28% B×10 CV. Compound

24 was isolated as a pale yellow oil (65.0 mg, 0.134 mmol, 74.4% yield). Rf 0.75 (n-hexane/

EtOAc 5:1). 1H NMR (400 MHz, CDCl3) δppm 6.98–6.89 (m, 2H), 6.84–6.74 (m, 2H), 5.13 (s,

2H), 5.12 (app quint, J = 6.1 Hz, 1H), 4.34 (t, J = 6.6 Hz, 2H), 3.75 (s, 3H), 2.24 (s, 3H), 1.79–

1.59 (m, 6H), 1.45–1.20 (m, 12H), 0.97 (t, J = 7.4 Hz, 3H), 0.90 (app t, J = 6.6 Hz, 3H), 0.89

(app t, J = 6.7 Hz, 3H). 13C NMR (101 MHz, CDCl3) δppm 169.2, 165.9, 163.1, 156.0, 154.1,

153.0, 116.2 (sym, 2C), 115.7, 114.6 (sym, 2C), 78.1, 71.2, 67.6, 55.8, 33.3, 31.9, 29.1, 28.8, 27.6,

27.0, 26.0, 22.74, 22.72, 14.2, 14.1, 11.1, 9.8. MS-APCI (m/z): [M+H]+ 487.2.

3-(trifluoromethyl)benzyl 6-(heptyloxy)-2-[(4-methoxyphenoxy)methyl]-5-methylpyri-

midine-4-carboxylate (25). General procedure IV was followed. Compound 17 (0.070 g, 0.18

mmol), dry DMF (1.6 mL), CDI (64 mg, 0.40 mmol, 2.2 equiv), 3-(trifluoromethyl)benzyl alco-

hol (27 μL, 0.20 mmol, 1.1 equiv), DBU (54 μL, 0.36 mmol, 2.2 equiv), DMAP (2.2 mg, 0.018

mmol, 0.1 equiv). Flash chromatography eluents: n-hexane (A), EtOAc (B); gradient: 4%!

34% B×10 CV. Compound 25 was isolated as a yellow oil (0.060 g, 0.11 mmol, 61% yield). Rf

0.75 (n-hexane/EtOAc 5:1). 1H NMR (400 MHz, CDCl3) δppm 7.72 (s, 1H), 7.65–7.58 (m, 2H),

7.50 (t, J = 7.7 Hz, 1H), 6.96–6.89 (m, 2H), 6.83–6.75 (m, 2H), 5.46 (s, 2H), 5.14 (s, 2H), 4.36 (t,

J = 6.6 Hz, 2H), 3.75 (s, 3H), 2.26 (s, 3H), 1.72 (quint, J = 6.7 Hz, 2H), 1.45–1.16 (m, 8H), 0.89

(app t, J = 7.0 Hz, 3H). 13C NMR (101 MHz, CDCl3) δppm 169.4, 165.3, 163.2, 154.2, 154.1,

152.9, 136.4, 131.7 (app q, J = 1.5 Hz), 131.2 (q, J = 32.6 Hz), 129.3, 125.4 (q, J = 3.6 Hz), 125.1

(q, J = 3.7 Hz), 124.3 (q, J = 272.5 Hz), 117.4, 116.1 (sym, 2C), 114.6 (sym, 2C), 71.2, 67.8, 66.7,

55.8, 31.9, 29.1, 28.7, 26.0, 22.7, 14.2, 11.1. MS-APCI (m/z): [M+H]+ 547.1.

Methyl 6-(heptan-3-yloxy)-2-[(4-methoxyphenoxy)methyl]-5-methylpyrimidine-4-car-

boxylate (26). A 2 M solution of (trimethylsilyl)diazomethane in Et2O (128 μL, 0.257 mmol,
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2 equiv) was added to a solution of 18 in dry CH2Cl2/MeOH (200 μL, 1:1) at 0 ˚C under argon

atmosphere. The mixture was stirred for 30 min letting the temperature to rise to rt and the

solvent was evaporated under reduced pressure at 40 ˚C. The residue was used without further

purification. 1H NMR (400 MHz, CDCl3) δppm 6.93–6.84 (m, 2H), 6.82–6.73 (m, 2H), 5.19

(quint, J = 6.0 Hz, 1H), 5.12 (s, 2H), 3.96 (s, 3H), 3.73 (s, 3H), 2.28 (s, 3H), 1.76–1.48 (m, 4H),

1.34–1.12 (m, 4H), 0.92–0.77 (m, 6H). 13C NMR (101 MHz, CDCl3) δppm 169.4, 166.1, 163.0,

154.3, 154.0, 152.9, 117.4, 115.9 (sym, 2C), 114.6 (sym, 2C), 78.4, 70.9, 55.8, 53.0, 32.9, 27.4,

26.6, 22.7, 14.1, 11.1, 9.5.

3-(trifluoromethyl)benzyl 6-(heptan-3-yloxy)-2-[(4-methoxyphenoxy)methyl]-

5-methylpyrimidine-4-carboxylate (27). General procedure IV was followed. Compound

18 (50.0 mg, 0.128 mmol), dry DMF (0.2 mL), CDI (42 mg, 0.26 mmol, 2 equiv), 3-(trifluoro-

methyl)benzyl alcohol (35 μL, 0.26 mmol, 2 equiv), DBU (0.010 mL, 0.064 mmol, 0.5 equiv),

DMAP (1.6 mg, 0.013 mmol, 0.1 equiv). Flash chromatography eluents: cyclohexane (A),

EtOAc (B); gradient: 4%! 21% B×6 CV. Compound 27 was isolated as a transparent oil (45

mg, 0.082 mmol, 64% yield). Rf 0.45 (n-hexane/EtOAc 5:1). 1H NMR (400 MHz, CDCl3) δppm

7.72 (s, 1H), 7.64 (d, J = 7.6 Hz, 1H), 7.61 (d, J = 7.9 Hz, 1H), 7.51 (t, J = 7.7 Hz, 1H), 6.97–6.84

(m, 2H), 6.84–6.71 (m, 2H), 5.46 (s, 2H), 5.21 (quint, J = 5.9 Hz, 1H), 5.14 (s, 2H), 3.74 (s, 3H),

2.23 (s, 3H), 1.76–1.48 (m, 4H), 1.33–1.11 (m, 4H), 0.92–0.74 (m, 6H). 13C NMR (101 MHz,

CDCl3) δppm 169.4, 165.5, 163.2, 154.3, 154.1, 152.9, 136.4, 131.7 (app q, J = 0.9 Hz), 129.3,

125.4 (q, J = 3.8 Hz), 125.2 (q, J = 3.8 Hz), 117.2, 116.0 (sym, 2C), 114.6 (sym, 2C), 78.5, 70.9,

66.7, 55.8, 32.9, 27.4, 26.6, 22.7, 14.1, 11.1, 9.5 (the quartets of C-CF3 quaternary carbons with

J� 32 Hz and J� 273 Hz could not be identified due to a low signal/noise ratio).

Hexyl 6-(hexyloxy)-2-(hydroxymethyl)-5-methylpyrimidine-4-carboxylate (2a).

General procedure II was followed. Compound 19 (26 mg, 0.055 mmol), CH3CN/H2O 4:1

(660 μL). Flash chromatography eluents: cyclohexane (A), EtOAc (B); gradient: 13%! 25%

B×15 CV. Compound 2a was isolated as an orange oil (11 mg, 0.031 mmol, 56% yield). Rf 0.3

(cyclohexane/EtOAc 6:1). 1H NMR (400 MHz, CDCl3) δppm 4.69 (s, 2H), 4.40 (t, J = 5.9 Hz,

2H), 4.37 (t, J = 6.1 Hz, 2H), 3.40 (br s, 1H), 2.28 (s, 3H), 1.85–1.65 (m, 4H), 1.49–1.38 (m,

4H), 1.37–1.30 (m, 8H), 1.02–0.74 (m, 6H). 13C NMR (101 MHz, CDCl3) δppm 169.2, 165.8,

165.3, 154.5, 116.3, 67.7, 66.4, 64.2, 31.6, 31.5, 28.7, 28.6, 25.8, 25.7, 22.69, 22.65, 14.13, 14.11,

11.1. HRMS-ESI (m/z): [M+H]+ calcd for C19H33N2O4 353.2440; found 353.2445.

Heptyl 6-(heptyloxy)-2-(hydroxymethyl)-5-methylpyrimidine-4-carboxylate (2b).

General procedure II was followed. Compound 11 (0.040 g, 0.082 mmol), CH3CN/H2O 4:1

(1.2 mL). Flash chromatography eluents: cyclohexane (A), EtOAc (B); gradient: 15%! 18%

B×10 CV. Compound 2b was isolated as an orange oil (21 mg, 0.055 mmol, 67% yield). Rf 0.67

(cyclohexane/EtOAc 4:1). 1H NMR (400 MHz, CDCl3) δppm 4.69 (s, 2H), 4.39 (t, J = 6.1 Hz,

2H), 4.36 (t, J = 6.3 Hz, 2H), 3.55 (br s, 1H), 2.27 (s, 3H), 1.91–1.65 (m, 4H), 1.52–1.36 (m,

4H), 1.38–1.17 (m, 12H), 0.89 (app t, J = 6.7 Hz, 3H), 0.88 (app t, J = 6.7 Hz, 3H). 13C NMR

(101 MHz, CDCl3) δppm 169.2, 165.7, 165.3, 154.5, 116.3, 67.7, 66.4, 64.2, 31.9, 31.8, 29.1, 29.0,

28.8, 28.7, 26.1, 26.0, 22.72, 22.69, 14.19, 14.18, 11.0. HRMS-ESI (m/z): [M+H]+ calcd for

C21H37N2O4 381.2753; found 381.2751.

Octyl 2-(hydroxymethyl)-5-methyl-6-(octyloxy)pyrimidine-4-carboxylate (2c). Gen-

eral procedure II was followed. Compound 12 (29 mg, 0.056 mmol), CH3CN/H2O 4:1 (0.83

mL). Flash chromatography eluents: cyclohexane (A), EtOAc (B); gradient: 20%! 100%

B×15 CV. Compound 2c was isolated as a brown oil (14 mg, 0.035 mmol, 62% yield). Rf 0.8

(cyclohexane/EtOAc 4:1). 1H NMR (400 MHz, CDCl3) δppm 4.69 (s, 2H), 4.39 (t, J = 6.3 Hz,

2H), 4.36 (t, J = 6.4 Hz, 2H), 3.22 (br s, 1H), 2.27 (s, 3H), 1.85–1.70 (m, 4H), 1.50–1.36 (m,

4H), 1.38–1.19 (m, 16H), 0.88 (app t, J = 6.7 Hz, 3H), 0.87 (app t, J = 7.1 Hz, 3H). 13C NMR

(101 MHz, CDCl3) δppm 169.2, 165.7, 165.3, 154.5, 116.3, 67.8, 66.4, 64.2, 31.91, 31.88, 29.4,
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29.33, 29.30, 29.28, 28.74, 28.66, 26.1, 26.0, 22.78, 22.76, 14.22, 14.21, 11.1. HRMS-ESI (m/z):

[M+H]+ calcd for C23H41N2O4 409.3066; found 409.3067.

2-propylpentyl 2-(hydroxymethyl)-5-methyl-6-[(2-propylpentyl)oxy]pyrimidine-4-car-

boxylate (2d). General procedure II was followed. Compound 20 (44 mg, 0.085 mmol),

CH3CN/H2O 4:1 (1 mL). Flash chromatography eluents: cyclohexane (A), EtOAc (B); gradi-

ent: 14%! 20% B×10 CV. Compound 2d was isolated as an orange oil (23 mg, 0.055 mmol,

65% yield). Rf 0.3 (cyclohexane/EtOAc 6:1). 1H NMR (400 MHz, CDCl3) δppm 4.68 (s, 2H),

4.29 (d, J = 4.4 Hz, 2H), 4.28 (d, J = 4.7 Hz, 2H), 3.59 (br s, 1H), 2.28 (s, 3H), 1.93–1.70 (m,

2H), 1.46–1.28 (m, 16H), 1.01–0.77 (m, 12H). 13C NMR (101 MHz, CDCl3) δppm 169.3, 165.9,

165.3, 154.5, 116.2, 70.4, 69.0, 64.1, 37.1, 37.0, 33.9 (sym, 2C), 33.7 (sym, 2C), 20.1 (sym, 2C),

20.0 (sym, 2C), 14.51 (sym, 2C), 14.48 (sym, 2C), 11.1. HRMS-ESI (m/z): [M+H]+ calcd for

C23H41N2O4 409.3066; found 409.3068.

Heptan-3-yl 6-(heptan-3-yloxy)-2-(hydroxymethyl)-5-methylpyrimidine-4-carboxylate

(2e). General procedure II was followed. Compound 13 (22 mg, 0.046 mmol), CH3CN/H2O

4:1 (0.54 mL). Flash chromatography eluents: cyclohexane (A), EtOAc (B); gradient: 6%!

20% B×10 CV. Compound 2e was isolated as an orange oil (12 mg, 0.032 mmol, 69% yield). Rf

0.7 (cyclohexane/EtOAc 3:1). 1H NMR (400 MHz, CDCl3) δppm 5.27 (quint, J = 5.9 Hz, 1H),

5.13 (quint, J = 6.1 Hz, 1H), 4.66 (s, 2H), 3.62 (br s, 1H), 2.24 (s, 3H), 1.84–1.52 (m, 8H), 1.47–

1.18 (m, 8H), 0.98 (t, J = 7.4 Hz, 3H), 0.91 (t, J = 7.4 Hz, 3H), 0.91 (app t, J = 7.0 Hz, 3H), 0.89

(app t, J = 6.9 Hz, 3H). 13C NMR (101 MHz, CDCl3) δppm 169.1, 165.9, 165.1, 155.4, 115.5,

78.4, 78.1, 64.1, 33.4, 33.1, 27.7, 27.5, 27.1, 26.7, 22.8, 22.7, 14.1 (2C), 11.1, 9.8, 9.6. HRMS-ESI

(m/z): [M+H]+ calcd for C21H37N2O4 381.2753; found 381.2753.

3-(trifluoromethyl)benzyl 2-(hydroxymethyl)-5-methyl-6-[[3-(trifluoromethyl)benzyl]

oxy]pyrimidine-4-carboxylate (2f). General procedure II was followed. Compound 21 (48

mg, 0.079 mmol), CH3CN/H2O 4:1 (0.92 mL). Flash chromatography eluents: cyclohexane

(A), EtOAc (B); gradient: 12%! 100% B×10 CV. Compound 2f was isolated as a yellow oil

(6.7 mg, 0.013 mmol, 17% yield). Rf 0.18 (cyclohexane/EtOAc 4:1). 1H NMR (400 MHz,

CDCl3) δppm 7.71 (s, 2H), 7.68–7.58 (m, 4H), 7.52 (t, J = 7.7 Hz, 2H), 5.52 (s, 2H), 5.46 (s, 2H),

4.73 (s, 2H), 3.42 (br s, 1H), 2.33 (s, 3H). 13C NMR (101 MHz, CDCl3) δppm 168.68, 165.49,

164.96, 154.06, 136.87, 136.23, 131.69 (app q, J = 1.1 Hz), 131.36 (app q, J = 1.0 Hz), 131.31 (d,

J = 32.7 Hz), 131.25 (d, J = 32.4 Hz), 129.41, 129.34, 125.56 (q, J = 3.8 Hz), 125.37 (q, J = 3.9

Hz), 125.16 (q, J = 3.5 Hz), 124.92 (q, J = 3.7 Hz), 117.19, 68.29, 66.84, 64.24, 11.11 (the quartets

with J� 32 Hz of the quaternary carbons bearing a -CF3 group are indicated as doublets

because the lower intensity peaks could not be identified due to low signal/noise ratio; the

quartets with J� 273 Hz of the -CF3 quaternary carbons could not be identified due to low sig-

nal/noise ratio). 19F NMR (376 MHz, CDCl3) δppm -62.73, -62.74. HRMS-ESI (m/z): [M+H]+

calcd for C23H19N2O4F6 501.1249; found 501.1250.

Methyl 2-(hydroxymethyl)-5-methyl-6-[[3-(trifluoromethyl)benzyl]oxy]pyrimidine-

4-carboxylate (2g). General procedure II was followed. Compound 22 (27 mg, 0.058 mmol),

CH3CN/H2O 4:1 (0.68 mL). Flash chromatography eluents: cyclohexane (A), EtOAc (B); gra-

dient: 8%! 60% B×15 CV. Compound 2g was isolated as a yellow oil (11 mg, 0.029 mmol,

50% yield). Rf 0.15 (cyclohexane/EtOAc 2:1). 1H NMR (400 MHz, CDCl3) δppm 7.71 (s, 1H),

7.67–7.58 (m, 2H), 7.52 (t, J = 7.7 Hz, 1H), 5.53 (s, 2H), 4.74 (app d, J = 0.5 Hz, 2H), 3.98 (s,

3H), 3.06 (s, 1H), 2.37 (s, 3H). 13C NMR (101 MHz, CDCl3) δppm 168.7, 165.7, 165.4, 154.3,

136.9, 131.3 (app q, J = 1.0 Hz), 131.3 (q, J = 32.5 Hz), 129.3, 125.3 (q, J = 3.9 Hz), 124.9 (q,

J = 3.8 Hz), 124.1 (q, J = 272.4 Hz), 117.2, 68.3, 64.3, 53.1, 11.1. HRMS-ESI (m/z): [M+H]+

calcd for C16H16N2O4F3 357.1062; found 357.1063.

Heptan-3-yl 2-(hydroxymethyl)-5-methyl-6-[[3-(trifluoromethyl)benzyl]oxy]pyrimi-

dine-4-carboxylate (2h). General procedure II was followed. Compound 23 (25 mg, 0.046
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mmol), CH3CN/H2O 4:1 (0.54 mL). Flash chromatography eluents: cyclohexane (A), EtOAc

(B); gradient: 8%! 30% B×12 CV. Compound 2h was isolated as a yellow oil (11 mg, 0.025

mmol, 54% yield). Rf 0.25 (cyclohexane/EtOAc 4:1). 1H NMR (400 MHz, CDCl3) δppm 7.71 (s,

1H), 7.66–7.58 (m, 2H), 7.52 (t, J = 7.7 Hz, 1H), 5.52 (s, 2H), 5.13 (quint, J = 6.1 Hz, 1H), 4.71

(s, 2H), 3.30 (br s, 1H), 2.32 (s, 3H), 1.81–1.59 (m, 4H), 1.44–1.27 (m, 4H), 0.98 (t, J = 7.4 Hz,

3H), 0.91 (app t, J = 7.0 Hz, 3H). 13C NMR (101 MHz, CDCl3) δppm 168.5, 165.4, 165.3, 155.7,

137.0, 131.3 (app q, J = 1.3 Hz), 131.2 (q, J = 32.6 Hz), 129.3, 125.3 (q, J = 3.8 Hz), 124.9 (q,

J = 3.8 Hz), 124.1 (q, J = 272.4 Hz), 115.7, 78.3, 68.1, 64.1, 33.4, 27.6, 27.1, 22.7, 14.1, 11.1, 9.8.

HRMS-ESI (m/z): [M+H]+ calcd for C22H28N2O4F3 441.2001; found 441.2003.

Heptan-3-yl 6-(heptyloxy)-2-(hydroxymethyl)-5-methylpyrimidine-4-carboxylate

(2i). General procedure II was followed. Compound 24 (50.7 mg, 0.104 mmol), CH3CN/

H2O 4:1 (1.25 mL). Flash chromatography eluents: n-hexane (A), EtOAc (B); gradient: 3%!

28% B×10 CV. Compound 2i was isolated as a yellow oil (30.3 mg, 0.0796 mmol, 76.5% yield).

Rf 0.4 (n-hexane/EtOAc 6:1). 1H NMR (400 MHz, CDCl3) δppm 5.12 (quint, J = 6.1 Hz, 1H),

4.67 (s, 2H), 4.39 (t, J = 6.6 Hz, 2H), 3.62 (br s, 1H), 2.26 (s, 3H), 1.84–1.60 (m, 6H), 1.50–1.21

(m, 12H), 0.98 (t, J = 7.4 Hz, 3H), 0.90 (app t, J = 7.0 Hz, 3H), 0.89 (app t, J = 6.9 Hz, 3H). 13C

NMR (101 MHz, CDCl3) δppm 169.1, 165.7, 165.3, 155.2, 115.5, 78.1, 67.7, 64.1, 33.4, 31.9, 29.1,

28.8, 27.6, 27.1, 26.1, 22.73, 22.69, 14.2, 14.1, 11.0, 9.8. MS-APCI (m/z): [M+H]+ 381.3.

HRMS-ESI (m/z): [M+H]+ calcd for C21H37N2O4 381.2753; found 381.2756.

3-(trifluoromethyl)benzyl 6-(heptyloxy)-2-(hydroxymethyl)-5-methylpyrimidine-

4-carboxylate (2j). General procedure II was followed. Compound 25 (46 mg, 0.085 mmol),

CH3CN/H2O 4:1 (1.25 mL). Flash chromatography eluents: n-hexane (A), EtOAc (B); gradient:

5%! 40% B×10 CV. Compound 2j was isolated as a yellow oil (9.0 mg, 0.020 mmol, 24%

yield). Rf 0.4 (n-hexane/EtOAc 4:1). 1H NMR (400 MHz, CDCl3) δppm 7.71 (s, 1H), 7.64 (d,

J = 7.6 Hz, 1H), 7.61 (d, J = 7.9 Hz, 1H), 7.52 (t, J = 7.7 Hz, 1H), 5.45 (s, 2H), 4.70 (s, 2H), 4.40 (t,

J = 6.6 Hz, 2H), 3.50 (s, 1H), 2.27 (s, 3H), 1.79 (quint, J = 6.7 Hz, 2H), 1.49–1.22 (m, 8H), 0.89

(app t, J = 6.9 Hz, 3H). 13C NMR (101 MHz, CDCl3) δppm 169.3, 165.4, 165.2, 153.5, 136.3, 131.7

(app q, J = 1.3 Hz), 131.3 (q, J = 32.8 Hz), 129.4, 125.5 (q, J = 3.8 Hz), 125.1 (q, J = 3.9 Hz), 124.0

(q, J = 272.2 Hz), 117.1, 67.9, 66.7, 64.2, 31.9, 29.1, 28.7, 26.1, 22.7, 14.2, 11.1. MS-APCI (m/z):

[M+H]+ 441.2. HRMS-ESI (m/z): [M+H]+ calcd for C22H28N2O4F3 441.2001; found 441.2007.

Methyl 6-(heptan-3-yloxy)-2-(hydroxymethyl)-5-methylpyrimidine-4-carboxylate

(2k). General procedure II was followed. Compound 26 (52 mg, 0.13 mmol), CH3CN/H2O

4:1 (1.5 mL). Flash chromatography eluents: cyclohexane (A), EtOAc (B); gradient: 12%!

100% B×10 CV. Compound 2k was isolated as a brown oil (22 mg, 0.075 mmol, 58% yield). Rf

0.65 (cyclohexane/EtOAc 1:1). 1H NMR (400 MHz, CDCl3) δppm 5.26 (quint, J = 5.8 Hz, 1H),

4.68 (s, 2H), 3.96 (s, 3H), 3.45 (br s, 1H), 2.29 (s, 3H), 1.76–1.60 (m, 4H), 1.39–1.20 (m, 4H),

0.91 (t, J = 7.4 Hz, 3H), 0.88 (app t, J = 7.1 Hz, 3H). 13C NMR (101 MHz, CDCl3) δppm 169.3,

166.0, 165.1, 153.9, 117.1, 78.7, 64.3, 53.0, 33.0, 27.5, 26.7, 22.7, 14.1, 11.1, 9.6. HRMS-ESI (m/
z): [M+H]+ calcd for C15H25N2O4 297.1814; found 297.1814.

3-(trifluoromethyl)benzyl 6-(heptan-3-yloxy)-2-(hydroxymethyl)-5-methylpyrimidine-

4-carboxylate (2l). General procedure II was followed. Compound 27 (44 mg, 0.080 mmol),

CH3CN/H2O 4:1 (0.94 mL). Flash chromatography eluents: cyclohexane (A), EtOAc (B); gra-

dient: 6%! 46% B×9 CV. Compound 2l was isolated as an orange oil (0.010 g, 0.023 mmol,

29% yield). Rf 0.4 (cyclohexane/EtOAc 3:1). 1H NMR (400 MHz, CDCl3) δppm 7.72 (s, 1H),

7.65 (d, J = 7.7 Hz, 1H), 7.61 (d, J = 7.8 Hz, 1H), 7.52 (t, J = 7.8 Hz, 1H), 5.46 (s, 2H), 5.27

(quint, J = 5.9 Hz, 1H), 4.68 (s, 2H), 3.02 (br s, 1H), 2.26 (s, 3H), 1.82–1.52 (m, 4H), 1.42–1.17

(m, 4H), 0.91 (t, J = 7.1 Hz, 3H), 0.88 (app t, J = 7.1 Hz, 3H). 13C NMR (101 MHz, CDCl3)

δppm 169.3, 165.3 (2C), 153.6, 136.3, 131.7 (app q, J = 1.1 Hz), 131.3 (q, J = 32.4 Hz), 129.4,

125.5 (q, J = 3.8 Hz), 125.2 (q, J = 3.8 Hz), 124.0 (q, J = 272.3 Hz), 117.1, 78.8, 66.7, 64.2, 33.0,
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27.5, 26.7, 22.7, 14.1, 11.1, 9.6. HRMS-ESI (m/z): [M+H]+ calcd for C22H8N2O4 441.2001;

found 441.2003.

ChemGPS-NP

All the structures included in the 3D-plot were converted into SMILES using ChemDraw Pro-

fessional 16.0.0.82 and uploaded to the ChemGPS-NPWeb tool (http://chemgps.bmc.uu.se)

[25]. The resulting coordinates were plotted using Grapher 2.5 distributed together with

MacOS X. All the pyrimidines reported in this article were included. The following list com-

prises all the other compounds in alphabetical order and relevant/available Ki values for PKCα
are indicated in parenthesis: 9-decyl-benzolactam-V8 (3.8 nM) [32]; bryostatin-1 (1.35 nM)

[33], bryostatin-18 (4.8 nM) [34]; (E)-DAG-lactone 31 (2.7 nM) [16], (Z)-DAG-lactone 9 (11

nM) [35]; HMI-1a1 and -1a2, HMI-1a3 (205 nM), HMI-1b1–1b10, HMI-1b11 (319 nM),

HMI-1b12–1b21, HMI-15e, -22c and -24a [12]; indolactam-V (11 nM) [36]; ingenol 3-ange-

late (0.1 nM) [37]; iripallidal (75.6 nM) [38]; mezerein (0.27 nM) [36]; phorbol 13-acetate

(120 μM) [39], phorbol 12,13-dibutyrate (0.3 nM) [37], phorbol 12-myristate-13-acetate (2

nM) [39]; prostratin (4.83 nM) [36]. The full list of the compounds, ChemGPS-NP raw data,

SMILES and structures are available in S1 File.

Biological assay

Materials: [20-3H]Phorbol-12,13-dibutyrate ([3H]PDBu) (20 Ci/mmol) was acquired from

American Radiolabeled Chemicals Inc. (Saint Louis, MO). Phorbol 12-myristate-13-acetate

(PMA) and phosphatidyl-L-serine (PS; product number: P6641) and bovine immunoglobulin

G (IgG) were purchased from Sigma-Aldrich (Steinheim, Germany). Protease inhibitors

(Complete Protease Inhibitor Cocktail Tablets) were from Roche (Mannheim, Germany) And

the Optiphase SuperMix liquid scintillant was from PerkinElmer (Groningen, Netherlands).

Method: PKCα protein was produced in recombinant baculovirus-infected Sf9 cells as

described previously [40]. The cells were harvested two days after infection, washed with PBS,

and the resultant cell pellets were frozen. Subsequently the cells were suspended in buffer con-

taining 25 mM Tris-HCl (pH 7.5), 0.5 mM EGTA, 0.1% Triton X-100, and protease inhibitors

to prepare a crude cell lysate. Following a 30-min incubation on ice, the lysate was centrifuged

at 16000g for 15 min at 4 ˚C and the supernatant representing the soluble (cytosolic) fraction

was collected. The protein content of the supernatant was determined with a Bradford assay.

The ability of the compounds to compete in binding to the regulatory domain of PKCα
with radioactively labeled phorbol ester [3H]PDBu was determined according to Gopalak-

rishna et al. [26]. First, 20 μg of protein/well from the supernatant was incubated with the test

compounds and [3H]PDBu for 10 min at room temperature in a 96-well Durapore filter plate

(Millipore, cat. no. MSHVN4B50, Carrigtwohill, Ireland) in a total volume of 125 μL. The final

concentrations in the assay were as follows: 20 mM Tris-HCl (pH 7.5), 40 μM CaCl2, 10 mM

MgCl2, 400 μg/ mL bovine IgG, 25 nM [3H]PDBu, and 0.1 mg/mL phosphatidyl-L-serine

(1,2-diacyl-sn-glycero-3-phospho-L-serine). Proteins were then precipitated by the addition of

125 μL of cold 20% poly(ethylene glycol) 6000, and after 15 min of incubation on a plate shaker

at room temperature the filters were washed six times using a vacuum manifold with buffer

containing 20 mM Tris-HCl (pH 7.5), 100 μM CaCl2, and 5 mM MgCl2. The plates were dried

and 25 μL of Optiphase SuperMix liquid scintillant was added to each well. Radioactivity was

measured using Wallac Microbeta Trilux microplate liquid scintillation counter (PerkinElmer,

Waltham, MA, USA) after an equilibration period of three hours. All tested compounds were

diluted in DMSO to give the same final DMSO concentration in the binding assay (4%) in

each well. PMA (1 μM) was used as a positive control in all assays and as the nonspecific
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binding was around 6%, only the total binding was measured. The results were calculated as a

percentage of control (4% DMSO) from the same plate. The graphs were created using Graph-

Pad Prism version 5.02 for Windows (GraphPad Software, La Jolla, CA, www.graphpad.com).

Supporting information

S1 File. ChemGPS-NP raw data, SMILES and structures.

(XLSX)

S2 File. Displacement assays raw data.

(XLSX)

S1 Appendix. NMR spectra of all target compounds and representative intermediates.

(PDF)
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