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Objective: We aimed to examine the associations of obesity-related traits (body mass index [BMI], central obe-
sity) and their genetic predisposition with the risk of developing severe COVID-19 in a population-based data.
Research design and methods: We analyzed data from 489,769 adults enrolled in the UK Biobank—a
population-based cohort study. The exposures of interest are BMI categories and central obesity (e.g., larger
waist circumference). Using genome-wide genotyping data, we also computed polygenic risk scores (PRSs)
that represent an individual's overall genetic risk for each obesity trait. The outcome was severe COVID-19, de-
fined by hospitalization for laboratory-confirmed COVID-19.
Results:Of 489,769 individuals, 33%were normalweight (BMI, 18.5–24.9 kg/m2), 43% overweight (25.0–29.9 kg/
m2), and 24% obese (≥30.0 kg/m2). The UK Biobank identified 641 patients with severe COVID-19. Compared to
adultswith normalweight, thosewith a higher BMI had a dose-response increases in the risk of severe COVID-19,
with the following adjusted ORs: for 25.0–29.9 kg/m2, 1.40 (95%CI 1.14–1.73; P = 0.002); for 30.0–34.9 kg/m2,
1.73 (95%CI 1.36–2.20; P < 0.001); for 35.0–39.9 kg/m2, 2.82 (95%CI 2.08–3.83; P < 0.001); and for ≥40.0 kg/
m2, 3.30 (95%CI 2.17–5.03; P < 0.001). Likewise, central obesity was associated with significantly higher risk of
severe COVID-19 (P < 0.001). Furthermore, larger PRS for BMI was associated with higher risk of outcome (ad-
justed OR per BMI PRS Z-score 1.14, 95%CI 1.05–1.24; P = 0.004).
Conclusions: In this large population-based cohort, individuals with more-severe obesity, central obesity, or ge-
netic predisposition for obesity are at higher risk of developing severe-COVID-19.

© 2020 Elsevier Inc. All rights reserved.
1. Introduction

Coronavirus disease 2019 (COVID-19), the infectious disease caused
by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has
led to a global pandemic. Its severity varieswidely, ranging fromasymp-
tomatic to fatal [1]. The accurate identification of risk factors andmech-
anisms for severe illness is critical for the development of effective
prevention, risk-stratification, and treatment strategies. Emerging evi-
dence has described several risk factors (e.g., older age, cardiovascular
rome; BMI, body mass index;
isk score; SARS-CoV-2, severe
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disease, chronic lung disease) for COVID-19 severity and mortality
[1–3].

Concurrently, theworld has been in themidst of obesity epidemic [4].
The Centers for Disease Control and Prevention (CDC) list severe obesity
(body mass index [BMI] of ≥40 kg/m2) as a risk factor for severe illness
from COVID-19 [5]. This is consistent with evidence that obesity in-
creases susceptibility to severe respiratory infections [6,7] and worsens
outcomes of acute respiratory distress syndrome (ARDS) [8]. Addition-
ally, retrospective studies—either single-center [9–17] or single-health
system [3,18] have reported associations between obesity and higher se-
verity of illness. Despite the clinical and research significance, no study
has examined the relationship of obesity—let alone of its related traits
(e.g., central obesity) and their genetic factors—with severe COVID-19.

To address this major knowledge gap, we analyzed the population-
based data of 489,769 individuals to investigate the relationship of obe-
sity and its related traits with the risk of developing severe COVID-19.
By using the genome-wide genotyping data, we also examined the
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relations of genetic predisposition for obesity with the risk of severe
COVID-19. A better understanding of the obesity-COVID-19 relation-
ship, and its mechanisms, should inform strategies to address the colli-
sion of these two epidemics.

2. Research design and methods

2.1. Design, setting, and participants

The current study is an analysis of data from the UK Biobank, a
population-based cohort study. The complete description of the de-
sign, settings, participants, and methods of data measurements in
the UK Biobank is described elsewhere [19]. In brief, the UK Biobank
enrolled approximately 500,000 adults (aged 40–69 years at enroll-
ment) across the UK in 2006–2010, with an overall aim of permitting
detailed investigations of nongenetic and genetic determinants of
multiple diseases [19]. Using standardized protocols, the study has
collected comprehensive phenotypic information (such as demo-
graphics, anthropometric measures [e.g., height, weight, waist and
hip circumference] and medical history), tested for biochemical as-
says, performed genome-wide genotyping, and longitudinally mea-
sured health outcomes (e.g., hospitalizations) through linkages to
national datasets. All participants provided informed consent to the
UK Biobank. The institutional review board of Harvard University
and Massachusetts General Hospital approved the current study.

2.2. Exposures

The primary exposure was body mass index (BMI). Based on the
CDC's definition [20], we classified the participants into sixmutually ex-
clusive groups: underweight (<18.5 kg/m2), normal weight (18.5–24.9
kg/m2), overweight (25.0–29.9 kg/m2), class I obesity (30.0–34.9 kg/
m2), class II obesity (35.0–39.9 kg/m2), and class III obesity (≥40.0 kg/
m2 [severe obesity]). The secondary exposures were markers of central
obesity, defined bywaist circumference (≥102 cm inmen and ≥88 cm in
women) or waist-to-hip ratio (≥0.90 in men and ≥0.85 in women) [21].
With a standardized procedure (https://www.ukbiobank.ac.uk/about-
biobank-uk/), trained investigators of the UK Biobank measured the
height using Seca 202 height measure, the weight to the nearest 0.1kg
using Tanita BC-418 MA body composition analyser, and circumfer-
ences usingWessex non-stretchable sprung tape measure at an assess-
ment visit.

2.3. Outcome measure

In the current study, we analyzed the first set of the UK Biobank data
with laboratory-confirmed COVID-19 status, which were released on
April 16, 2020. The data contained the SARS-CoV-2 polymerase chain
reaction results in hospitalized participants from March 16, 2020
onwards. These hospitalized patients with SARS-CoV-2 infection had
“severe COVID-19” [22,23]. The detailed information on released
COVID-19 data can be found elsewhere [22].

2.4. Statistical analysis

First, we described the baseline characteristics by BMI status using
summary statistics. Second, to visualize the relationship of BMI and
two markers of central obesity (i.e., waist circumference and waist-to-
hip ratio) with the risk of developing severe COVID-19, we used gener-
alized additivemodels with penalized cubic regression splines. Third, to
investigate the association between BMI categories and the risk of out-
come, we constructed unadjusted and adjusted logistic regression
models, with the normal weight group being the reference. In the mul-
tivariable model, we adjusted for potential confounders (i.e., causes of
both exposure and outcome of interest), including age, sex, and race/
ethnicity based on clinical plausibility and a priori knowledge [1–3].
The multivariable models did not adjust for obesity-related comorbidi-
ties (e.g., cardiovascular disease, diabetes, hypertension) as they were
considered intermediate factors in the causal inference of interest
[24,25]. Additionally, we repeated the analysis for the two markers of
central obesity. To examine the robustness of our inference, we con-
ducted a series of sensitivity analyses. First, to account for the potential
effect of socioeconomic status, we constructed multivariable logistic re-
gression models that also adjust for household income. Second, we also
repeated the models by adding major obesity-related comorbidities
(cardiovascular disease, diabetes, and hypertension) as covariates to
examine if adjustment of these intermediate factors attenuates the
magnitude of association. Lastly, based on a priori hypotheses, we also
stratified the analysis by sex and coexistence of diabetes.

Next, to examine the relationship between the genetic predisposition
for obesity traits and the risk of developing severe COVID-19, we
computed a polygenic risk score (PRS) for each of three obesity mea-
sures—i.e., BMI, BMI-adjusted waist circumference, and BMI-adjusted
waist-to-hip ratio, according to prior research [26], using genome-wide
genotyping data from the Genetic Investigation of Anthropometric Traits
(GIANT) consortium and UK Biobank. PRS is a sum of all risk alleles
weighted by the effect size of each variant, thereby representing an indi-
vidual's overall genetic risk for obesity (and central obesity). Thedetails of
methods used in computation of the PRSs may be found in the Supple-
mental methods. In brief, we retrieved the genome-wide association
study (GWAS) summary statistics of BMI (nmax = 322,154) [27], BMI-
adjusted waist circumference (nmax = 231,355) [28], and BMI-adjusted
waist-to-hip ratio (nmax = 210,086) [28] from the GIANT consortium
data as an independent base dataset.We then applied the LDpredmethod
[29] to computemodel coefficients using approximately 1,480,000 single
nucleotide polymorphisms (SNPs), and computed a PRS for each trait in
an independent target dataset (n = 459,331) from the UK Biobank. We
conducted the genetic analyses restricting to individuals with European
ancestry (i.e., white race). Lastly, we investigated the association of de-
rived PRSs with the risk of severe COVID-19 in the UK Biobank by fitting
logistic regression models adjusting for age, sex, 30 ancestry principal
components (which account for population stratification), and genotyp-
ing array. All P values were 2-tailed, with a P < 0.05 considered statisti-
cally significant. All analyses were performed using R 4.0.0.

3. Results

3.1. Patient characteristics

The analytic cohort was comprised of 489,769 adults in the UK
Biobank. Overall, the median age was 58 (IQR 50–63) years and 55%
were female, and 94.5% were white race. Of these, 0.5% were under-
weight, 33% were normal weight, 43% were overweight, and 24% were
obese (17% class I, 5% class II, and 2% class III). The UK Biobank also iden-
tified a total of 641 patientswith severe COVID-19. The participant char-
acteristics are summarized in Table 1. Compared to the adults with
normalweight, thosewith obesityweremore likely to bemale, have co-
morbidities (such as asthma, diabetes, and hypertension), and higher
baseline level of C-reactive protein (P < 0.05). BMI was strongly corre-
lated with both waist circumference (ρ = 0.81; P < 0.001) and less
strongly correlated with waist-to-hip ratio (ρ = 0.43; P < 0.001).

3.2. Associations of obesity and central obesity with the risk of severe
COVID-19

Fig. 1 shows the relationship of BMI and markers of central obesity
with the risk of developing severe COVID-19. For example, BMIwas pos-
itively associated with the risk of severe COVID-19 (unadjusted OR 1.35
per 5 kg/m2 increase; 95% CI 1.26–1.45; P < 0.001; Fig. 1A). Likewise,
there were positive associations of waist circumference (OR 1.35 for
each 10 cm increase; 95% CI 1.28–1.42; P < 0.001; Fig. 1B) and waist-
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Table 1
Baseline characteristics in 489,769 UK Biobank participants.

Underweight (n =
2442; 0.5%)

Normal (n = 159,591;
32.6%)

Overweight (n =
208,367; 42.5%)

Obesity classes I–III (n
= 119,369; 24.4%)

P-value

Demographics
Age (year), median (IQR) 56 (48–62) 56 (49–62) 58 (51–64) 58 (51–63) <0.001
Female 1975 (80.9) 104,260 (65.3) 98,417 (47.2) 63,154 (52.9) <0.001
Race/ethnicity <0.001
White 2262 (92.6) 151,116 (94.7) 196,343 (94.2) 111,488 (93.4)
Asian or Asian British 55 (2.3) 3066 (1.9) 4353 (2.1) 2050 (1.7)
Black or Black British 10 (0.4) 1484 (0.9) 3240 (1.6) 3136 (2.6)
Mixed 24 (1.0) 1023 (0.6) 1126 (0.5) 723 (0.6)
Chinese 35 (1.4) 957 (0.6) 463 (0.2) 88 (0.1)
Other groups 36 (1.5) 1294 (0.8) 1878 (0.9) 1214 (1.0)

Anthropometric measurements
Waist circumference (cm), mean (SD) 66 (5.7) 79 (8.1) 91 (8.4) 105 (11.0) <0.001
Hip circumference (cm), mean (SD) 87 (4.3) 96 (4.8) 103 (4.9) 114 (9.2) <0.001
Waist-to-hip ratio, mean (SD) 0.77 (0.06) 0.82 (0.07) 0.88 (0.08) 0.92 (0.09) <0.001

Smoking status <0.001
Never 1453 (59.5) 95,065 (59.6) 112,330 (53.9) 61,426 (51.5)
Previous 502 (20.6) 46,759 (29.3) 74,410 (35.7) 45,995 (38.5)
Current 475 (19.5) 17,160 (10.8) 20,563 (9.9) 11,158 (9.4)

Total annual household income (£) <0.001
≤18,000 583 (24.4) 26,107 (16.5) 38,218 (18.5) 27,786 (23.6)
18,000 to 30,999 474 (19.8) 33,307 (21.1) 45,529 (22.1) 26,311 (22.3)
31,000 to 51,999 484 (20.2) 36,345 (23.0) 47,371 (23.0) 24,899 (21.1)
52,000 to 100,000 335 (14.0) 30,992 (19.6) 36,881 (17.9) 17,200 (14.6)
≥100,000 115 (4.8) 9285 (5.9) 9690 (4.7) 3649 (3.1)
Do not know 134 (5.6) 6447 (4.1) 7974 (3.9) 5842 (5.0)
Prefer not to answer 267 (11.2) 15,511 (9.8) 20,559 (10.0) 12,112 (10.3)

Comorbidities
Asthma 309 (12.7) 18,534 (11.6) 26,421 (12.7) 19,962 (16.7) <0.001
Diabetes 31 (1.3) 2980 (1.9) 8704 (4.2) 13,444 (11.3) <0.001
Cardiovascular disease 237 (9.7) 14,659 (9.2) 28,376 (13.6) 22,588 (18.9) <0.001
Coronary artery disease 36 (1.6) 3371 (2.2) 8982 (4.5) 8132 (7.1)
Chronic kidney disease 23 (0.9) 910 (0.6) 2008 (1.0) 2255 (1.9) <0.001
Chronic obstructive pulmonary disease 78 (3.2) 1851 (1.2) 2801 (1.3) 3016 (2.5) <0.001
Hypertension 273 (11.2) 24,189 (15.2) 55,741 (26.8) 50,893 (42.6) <0.001
Stroke 18 (0.7) 1449 (0.9) 2852 (1.4) 2469 (2.1) <0.001

Blood test at assessment visit
Fasting glucose (mg/dL), mean (SD) 88.2 (17.1) 89.1 (16.6) 91.6 (20.0) 97.4 (30.1) <0.001
HbA1c (mmol/mol), mean (SD) 34.9 (4.7) 34.7 (4.8) 35.8 (6.1) 38.5 (8.9) <0.001
HbA1c (%), mean (SD) 5.4 (0.4) 5.3 (0.4) 5.4 (0.6) 5.7 (0.8) <0.001
Total cholesterol (mg/dL), mean (SD) 215.0 (41.0) 220.4 (41.8) 222.7 (44.5) 216.2 (46.4) <0.001
HDL-Cholesterol (mg/dL), mean (SD) 70.4 (17.0) 62.6 (15.1) 54.5 (13.5) 49.5 (12.0) <0.001
LDL-Cholesterol (mg/dL), mean (SD) 125.7 (29.8) 135.0 (31.7) 140.4 (34.0) 137.3 (35.2) <0.001
Triglycerides (mg/dL), mean (SD) 93.9 (46.9) 119.6 (65.5) 162.1 (91.2) 189.5 (103.6) <0.001
C-reactive protein (mg/L), mean (SD) 1.4 (4.5) 1.7 (3.7) 2.4 (4.0) 4.1 (5.0) <0.001
Insulin-like growth factor-1 (nmol/L), mean (SD) 20.0 (5.5) 21.9 (5.6) 21.8 (5.6) 20.2 (5.8) <0.001

Pulmonary function test at assessment visit
FEV1 (L/s), mean (SD) 2.56 (0.66) 2.84 (0.74) 2.91 (0.78) 2.72 (0.75) <0.001
FVC (L), mean (SD) 3.41 (0.82) 3.76 (0.96) 3.82 (0.99) 3.52 (0.95) <0.001
FEV1/FVC ratio, mean (SD) 0.75 (0.09) 0.76 (0.06) 0.76 (0.06) 0.77 (0.06) <0.001

SARS-CoV-2 PCR test during hospitalization, positive 4 (0.2) 133 (0.1) 269 (0.1) 226 (0.2) <0.001

Data are n (%) of participants unless otherwise indicated. Percentages may not equal 100, because of missingness.
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to-hip ratio (OR 1.59 per 0.1 ratio increase; 95% CI 1.46–1.73; P< 0.001;
Fig. 1C) with the risk of outcome.

Compared to adults with normal weight, those with a higher BMI
had a dose-response increase in the risk of developing severe COVID-
19, with the following ORs: for overweight, 1.55 (95% CI 1.26–1.91; P
< 0.001); for class I obesity, 1.92 (95% CI 1.51–2.44; P < 0.001); for
class II obesity, OR 3.06 (95% CI 2.26–4.14; P < 0.001); and for class III
obesity, 3.45 (95% CI 2.28–5.21; P < 0.001) (Fig. 2). These association
remained significant after adjusting for potential confounders (all P <
0.01). Of note, there was no significant difference in the risk in the
underweight group (adjusted OR 2.05; 95%CI 0.76–5.56; P = 0.16).
Likewise, adults with central obesity were at higher risk of severe
COVID-19. Indeed, there were significant associations of a larger waist
circumference (adjusted OR 1.84; 95% CI 1.57–2.16; P < 0.001) and
higher waist-to-hip ratio (adjusted OR 1.79; 95% CI 1.49–2.14; P <
0.001) with the risk of outcome. In the sensitivity analysis adjusting
for household income as ameasure of socioeconomic status (in addition
to age, sex, and race/ethnicity), the inference did not materially change
(Table 2). Additionally, as expected, adjusting for major obesity-related
comorbidities attenuated the associations of interest (Table 2), suggest-
ing that these covariates served as intermediates in the association of
interest.

In the stratified analysis by sex, the BMI-outcome associations were
consistent across the strata (Pinteraction=0.16 indicating no statistically-
significant effectmodification), exceptwomenwith class I obesity had a
non-significant increase in the risk of severe COVID-19 (adjusted OR,
1.34; 95% CI 0.92–1.93; P = 0.12; Supplemental Table S1). Likewise,
there was no clinically-significant between-sex heterogeneity in the as-
sociations between the markers of central obesity and the risk of out-
come despite their statistical significance. In the stratified analysis by
coexistent diabetes, there were consistent results across the strata
(Pinteraction = 0.71), while adults with both class III obesity and diabetes
appeared to have a larger magnitude of association with a correspond-
ing adjusted OR of 5.43 (95% CI 1.08–27.2; P = 0.04) compared to
those without diabetes (adjusted OR of 3.36; 95% CI 2.10–5.39; P <
0.001; Supplemental Table S2). Likewise, adults with both a larger



Fig. 1.Relationships of bodymass index,waist circumference, andwaist-to-hip ratiowith risk of developing severeCOVID-19 in theUKBiobank. Thefitted lines represent smoothed curves
—using a generalized additivemodelwith penalized cubic regression splines—with 95%CI for the three obesity-related traits: A) BMI: Therewas a positive relationship of BMIwith the risk
of developing severe COVID-19. B)Waist circumference: Likewise, therewas a positive relationship ofwaist circumferencewith the risk of outcome. C)Waist-to-hip ratio: Similarly, there
was a positive relationship of waist-to-hip ratio with the risk of outcome. The grey bars in the bottom represent the range in which 95% of corresponding data are present. Abbreviations:
BMI, body mass index; COVID-19, coronavirus disease 2019.
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waist circumference and diabetes appeared to have a larger magnitude
of association (adjusted OR 3.02; 95% CI 1.51–6.02; P = 0.002) com-
pared to those without diabetes (adjusted OR 1.73; 95% CI 1.46–2.04;
P < 0.001; Pinteraction = 0.04).

3.3. PRS and the risk of severe COVID-19

To examine the relationship of the individual's overall genetic risks
for obesity and central obesity with the risk of developing severe
COVID-19, we examined the associations of the derived PRSs with the
outcome risk (Table 3). Individuals with a larger PRS for BMI had a sig-
nificantly higher risk of outcome in both the unadjusted (OR per PRS Z-
score 1.14; 95% CI 1.05–1.24; P= 0.003) and adjusted (OR 1.14; 95% CI
1.04–1.24; P = 0.004) models. In addition, the PRSs of BMI-adjusted
waist circumference (adjusted OR 1.05; 95% CI 0.96–1.15; P = 0.31)
and BMI-adjusted waist-to-hip ratio (adjusted OR 1.04; 95% CI 0.95–
1.14; P = 0.40) were not significantly associated with the risk, but the
direction of effects was consistently positive.

4. Discussion

On the basis of large cohort data, with comprehensive phenotyping
and genotyping,we found that adultswithmore-severe obesity (defined
by larger BMI) and those with central obesity (defined either by larger
waist circumference or higher waist-to-hip ratio) are at a higher risk
for developing severe COVID-19. Further, we also found a significant
positive relationship between the individual's overall genetic risk for
BMI—represented by its PRS—and the risk of severe COVID-19, which
indicates the role of obesity-related genetics in the pathobiology of ill-
ness. Yet, we did not find significant association between PRSs of BMI-
adjustedwaist circumference or BMI-adjustedwaist-to-hip ratio and se-
vere COVID-19 risk, which is possibly due to decreased GWAS power
after adjusting BMI. To our knowledge, this is the first analysis of large-
scale data that has examined the relationship of BMI, central obesity,
and their genetic predisposition with the risk of developing severe
COVID-19.

Consistent with these observations, a recent sentinel surveillance of
1482 adults hospitalized with COVID-19 in 14 U.S. states reported that
obesitywas the secondmost prevalent underlying condition (48% prev-
alence), following hypertension [30]. Additionally, retrospective studies
—either from single centers [9–16] or health systems [3,18]—have re-
ported associations between obesity and higher morbidity of COVID-
19. For example, in a single-center analysis of 389 patients hospitalized
for COVID-19 in China, Cai et al. reported patients with obesity (defined
by BMI of ≥28 kg/m2) had higher severity of illness [9]. Similarly, in an-
other single-center case-control study of 150 patients hospitalized for



Fig. 2.Associations of obesity-related traitswith risk of developing severeCOVID-19 in theUKBiobank. The risk of developing severe COVID-19was compared betweeneachof thefiveBMI
groups—underweight (<18.5 kg/m2), overweight (25.0–29.9 kg/m2), class I obesity (30.0–34.9 kg/m2), class II obesity (35.0–39.9 kg/m2), and class III obesity (≥40.0 kg/m2)—and the
reference (normal weight group [18.5–24.9 kg/m2]). In addition, we also examined the association of markers for central obesity—defined by waist circumference (≥102 cm in men
and ≥88 cm in women) and waist-to-hip ratio (0.90 in men and ≥0.85 in women)—with the risk of severe COVID-19. The multivariable logistic regression models adjusted for
potential confounders, including patient's age, sex, and race/ethnicity. Abbreviations: BMI, body mass index; CI, confidence interval; COVID-19, coronavirus disease 2019.
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COVID-19 in China, Gao et al. found that patients with obesity (defined
by BMI of ≥25 kg/m2) had a longer hospital length-of-stay and higher
disease severity [11]. These earlier studies—albeit from different patient
populations and settings with varying definitions of obesity and out-
comes—collectively indicate that obesity is a risk factor for severe illness
from COVID-19. The current study builds on these prior reports, and
Table 2
Associations of obesity-related traits with risk of developing severe COVID-19 with adjusting f

Number of severe COVID-19, n (%)

BMI categories
Underweight 4 (0.2)

Adjusted model 1
Adjusted model 2

Normal weight (reference) 133 (0.1)
Overweight 269 (0.1)

Adjusted model 1
Adjusted model 2

Class I obesity 137 (0.2)
Adjusted model 1
Adjusted model 2

Class II obesity 62 (0.3)
Adjusted model 1
Adjusted model 2

Class III obesity 27 (0.3)
Adjusted model 1
Adjusted model 2

Central obesity
Larger waist circumference 306 (0.2)

Adjusted model 1
Adjusted model 2

Higher waist-to-hip ratio 419 (0.2)
Adjusted model 1
Adjusted model 2

Abbreviations: BMI, body mass index; CI, confidence interval; COVID-19, Coronavirus disease 2
Adjusted model 1: the multivariable logistic regression models adjusted for age, sex, and race/
Adjusted model 2: the multivariable logistic regression models adjusted for age, sex, and race/
extends them by demonstrating, in a large cohort, the relations of
obesity-related traits (including central obesity) and their genetic pre-
disposition with the risk of developing severe COVID-19.

The exact mechanisms linking the observed obesity (and its genetic
predisposition) to severe COVID-19 are likely multifactorial—which
stem from obesity-related changes in pulmonary physiology and the
or household income or obesity-related comorbidities in the UK Biobank.

Number of participants, n Odds ratio (95% CI) P-value

2442
1.19 (−0.20–2.59) 0.80
2.99 (0.98–5.00) 0.28

159,591 Reference –
208,367

1.40 (1.17–1.62) 0.004
1.13 (0.66–1.60) 0.62

85,599
1.62 (1.35–1.89) <0.001
1.08 (0.55–1.61) 0.78

24,347
2.63 (2.29–2.97) <0.001
1.88 (1.26–2.51) 0.05

9423
3.08 (2.62–3.55) <0.001
1.22 (0.23–2.21) 0.69

164,806
1.71 (1.51–1.91) <0.001
1.64 (1.20–2.08) 0.03

241,480
1.82 (1.64–1.99) <0.001
1.25 (0.91–1.59) 0.20

019.
ethnicity and household income.
ethnicity, cardiovascular disease, diabetes, and hypertension.



Table 3
Unadjusted and adjusted associations between obesity polygenic risk scores and risks of
severe COVID-19 in the UK Biobank.

PRS models Odds ratio P-value

(95% CI)

BMI PRS
Unadjusted 1.14 (1.05–1.24) 0.003
Adjusteda 1.14 (1.04–1.24) 0.004

BMI-adjusted waist circumference PRS
Unadjusted 1.05 (0.96–1.14) 0.31
Adjusteda 1.07 (0.98–1.17) 0.15

BMI-adjusted waist-to-hip ratio PRS
Unadjusted 0.99 (0.91–1.08) 0.84
Adjusteda 1.01 (0.92–1.10) 0.89

Abbreviations: BMI, body mass index; CI, confidence interval; PRS, polygenic risk score.
a Odds ratios and 95% CIs (per one Z-score of the corresponding PRS)were estimatedby

multivariable model adjusting for age, sex, 30 ancestry principal components in the corre-
sponding genome-wide association analysis, and genotyping array.
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genetics to alterations in immune response and inflammatory profiles,
endothelial dysfunction, and metabolic dysfunction [31]—and warrant
clarification. More specifically, severe obesity reduces lung compliance,
expiratory reserve volume, and functional residual capacity aswell as ef-
fectiveness of respiratorymuscle, leading to increased respiratory effort,
oxygen consumption, and respiratory energy consumption [32]. Second,
recent research has shown the role of genetics (e.g., genes related to cell
proliferation and inflammatory response) shared between obesity and
pulmonary diseases [26,33]. The observed relation between the genetic
preposition to obesity and severe COVID-19 also suggest the role of ge-
netics in the pathogenesis of severe COVID-19. Third, emerging evidence
suggests the role of adiposopathy—adipose tissue dysfunction—in the
pathobiology of complex disease conditions including asthma [34,35].
Adiposopathy is characterized by impaired adipogenesis, altered lipid
metabolism, and adipose/systemic inflammation (e.g., upregulated IL-6
and TH17 pathways, TH1 polarization) [35,36]. Furthermore, research
of obesity and dyslipidemia has suggested “priming” of the lung for
ARDS, reflecting activation of not only systemic immune response but
lung-resident cells (e.g., alveolar macrophages, endothelial cells) [37].
Fourth, a recent non-COVID-19 study also demonstrated that patients
with a higher BMI had higher expression of ACE2 (the SARS-CoV-2 re-
ceptor [38]) in their bronchial epithelium [39], suggesting an increased
susceptibility to SARS-CoV-2 infection in patients with obesity. In addi-
tion to these potential mechanisms, the literature has documented
that obesity—particularly central obesity—is also causally linked to
other comorbidities (e.g., cardiovascular disease, diabetes, hyperten-
sion) [24,25]. These underlying conditions increase susceptibility to
ARDS-related end-organ failure. Lastly, these possibilities are not mutu-
ally exclusive. Notwithstanding the complexity, the identification of
obesity and its genetic predisposition as a culprit of COVID-19morbidity
is an important finding. Our observations should encourage future re-
search disentangling the complex web of the pathogen, obesity, airway
and systemic inflammation, and COVID-19 pathobiology.

The observed relationship between PRS for BMI and risks of se-
vere COVID-19 has several clinical and research implications. First,
the simple use of “obesity” as the exposure of causal inference has
several important limitations, particularly a potential violation of
consistency assumption (one of the major identifiability assump-
tions in causal inference [40]). Indeed, in most past research, the
obesity exposure was ill-defined and had “multiple-versions” while
the study exposure needs to be sufficiently well-defined (e.g., an in-
crease in BMI from 30–34.9 kg/m2 to 35–39.9 kg/m2 between ages 50
and 55 years) to make a robust causal inference [41]. The use of PRS
strengthens the causal inference, such as the causal effects of obesity
on severity of COVID-19. Additionally, obesity is a physical represen-
tation of a complex interplay between genetic, environmental
(e.g., diet), and behavioral (e.g., physical activity) factors. This com-
plexity has hindered efforts to robustly examine the effect of these
obesity-related factors on various disease conditions, including
COVID-19. By contrast, the use of PRS—which captures and summa-
rizes the cumulative effects of many common DNA variants [42]—ef-
fectively captures the obesity-related genetic factors (i.e., well-
defined exposure), and hence potentially enables us to examine its
effects on severe COVID-19 that are independent from the aforemen-
tioned confounders. In addition, conventional research approaches
have evaluated the pathophysiology of obesity with comparison to
lean individuals. Yet, it can be difficult to draw robust inferences
from such research as the observed differencemay be attributable ei-
ther to a cause or consequence of obesity. In contrast, the use of PRS
for obesity-related traits and careful investigations of individuals at
the extremes of its distribution (even without a clinically-evident
obesity trait) potentially enables us to uncover new causal risk
factors for the development of severe COVID-19 as well as to identify
individuals at risk. For example, research has shown that individuals
free of heart disease with a high PRS for coronary artery disease are
found to have a higher prevalence of coronary risk factors
(e.g., type 2 diabetes, hypertension) [43]. Furthermore, biological
profiling of these individuals at the extremes of obesity-related PRS
distribution may identify molecular pathways that link obesity to se-
vere COVID-19, thereby potentially leading to the development of
novel prevention, prediction, and treatment strategies.

The present study has several potential limitations. First, the UK
Biobank is not a random sample of the entire UK population, while
the study sample consists of socioeconomically- and geographically-
diverse participants [19]. Second, there may have been some misclas-
sification of the exposure and outcome of interest. However, both
were measured using standardized protocols in the UK Biobank
[19,22]. These potential misclassifications were likely independent
nondifferential measurement errors, thereby biasing our inferences
toward the null [40]. Anthropometric measurements performed at as-
sessment visitsmay have not accurately reflected the exposure data at
the COVID-19 inception. Yet, the PRS for BMI—time-invariant genetic
data—was also significantly associated with the risk of developing se-
vere COVID-19. Third, as with any observational study, causal infer-
ence may be confounded by unmeasured factors, such as health
behaviors and access to healthcare. However, the study focused on se-
vere COVID-19 requiring inpatient management, thereby mitigating,
at least partially, this problem. Fourth, information on detailed clinical
parameters and longitudinal outcomes (e.g., post-intensive care syn-
drome) is not yet available in the UK Biobank. Finally, the study sam-
ple consisted mainly of white individuals and we focused on severe
COVID-19.Wemust cautiously generalize the inferences to other pop-
ulations or patients with mild-to-moderate COVID-19. Nevertheless,
our inferences are directly relevant to hundreds of thousands of pa-
tients hospitalized for COVID-19 [44].

In summary, based on data from a large cohort of 489,769 individ-
uals, we found that adults with more-severe obesity had a signifi-
cantly higher risk of developing severe COVID-19. In addition, these
data also demonstrated that adults with central obesity were at
higher risk of severe COVID-19. Furthermore, we demonstrated a
significant positive relationship between the PRS for BMI—an indi-
vidual's overall genetic risk for obesity—and the risk of developing
severe COVID-19. These observations should assist clinicians in opti-
mizing risk-stratification among patients with overweight and obe-
sity. Furthermore, our inferences should also facilitate further
investigations into delineating the complex interrelations between
SARS-CoV-2 infection, host genetics and inflammatory response,
and outcomes in patients with obesity.
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