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Abstract

Radiomics studies require many patients in order to power them, thus patients are often

combined from different institutions and using different imaging protocols. Various studies

have shown that imaging protocols affect radiomics feature values. We examined whether

using data from cohorts with controlled imaging protocols improved patient outcome

models. We retrospectively reviewed 726 CT and 686 PET images from head and neck

cancer patients, who were divided into training or independent testing cohorts. For each

patient, radiomics features with different preprocessing were calculated and two clinical vari-

ables—HPV status and tumor volume—were also included. A Cox proportional hazards

model was built on the training data by using bootstrapped Lasso regression to predict over-

all survival. The effect of controlled imaging protocols on model performance was evaluated

by subsetting the original training and independent testing cohorts to include only patients

whose images were obtained using the same imaging protocol and vendor. Tumor volume,

HPV status, and two radiomics covariates were selected for the CT model, resulting in an

AUC of 0.72. However, volume alone produced a higher AUC, whereas adding radiomics

features reduced the AUC. HPV status and one radiomics feature were selected as covari-

ates for the PET model, resulting in an AUC of 0.59, but neither covariate was significantly

associated with survival. Limiting the training and independent testing to patients with the

same imaging protocol reduced the AUC for CT patients to 0.55, and no covariates were

selected for PET patients. Radiomics features were not consistently associated with survival

PLOS ONE | https://doi.org/10.1371/journal.pone.0222509 September 19, 2019 1 / 13

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Ger RB, Zhou S, Elgohari B, Elhalawani H,

Mackin DM, Meier JG, et al. (2019) Radiomics

features of the primary tumor fail to improve

prediction of overall survival in large cohorts of CT-

and PET-imaged head and neck cancer patients.

PLoS ONE 14(9): e0222509. https://doi.org/

10.1371/journal.pone.0222509

Editor: Jason Chia-Hsun Hsieh, Chang Gung

Memorial Hospital at Linkou, TAIWAN

Received: February 26, 2019

Accepted: August 31, 2019

Published: September 19, 2019

Copyright: © 2019 Ger et al. This is an open access

article distributed under the terms of the Creative

Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in

any medium, provided the original author and

source are credited.

Data Availability Statement: All relevant data are

within the manuscript and its Supporting

Information files.

Funding: This work was supported by NCI Grants

R21CA216572 and P30CA016672. Rachel Ger is

supported by the Rosalie B. Hite Graduate

Fellowship in Cancer Research awarded by MD

Anderson Cancer Center UTHealth Science Center

at Houston Graduate School of Biomedical

Sciences. Dr. Elhalawani was supported in part by

http://orcid.org/0000-0003-1244-7160
http://orcid.org/0000-0002-8124-5047
http://orcid.org/0000-0002-2557-5340
https://doi.org/10.1371/journal.pone.0222509
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0222509&domain=pdf&date_stamp=2019-09-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0222509&domain=pdf&date_stamp=2019-09-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0222509&domain=pdf&date_stamp=2019-09-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0222509&domain=pdf&date_stamp=2019-09-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0222509&domain=pdf&date_stamp=2019-09-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0222509&domain=pdf&date_stamp=2019-09-19
https://doi.org/10.1371/journal.pone.0222509
https://doi.org/10.1371/journal.pone.0222509
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


in CT or PET images of head and neck patients, even within patients with the same imaging

protocol.

Introduction

The process of radiomics involves evaluating images on a voxel level to extract quantitative

image features (i.e., texture). These radiomics features, combined with conventional prognos-

tic factors (e.g., age), have improved patient outcome models, increasing the interest in radio-

mics studies [1–5].

Studies using computed tomography (CT) images from patients with head and neck cancer

have found that radiomics features were significantly associated with local control, tumor fail-

ure, overall survival, and human papillomavirus (HPV) status [6–12]. Similar findings from

positron-emission tomography (PET) images of head and neck cancer patients have shown

that radiomics features were significantly associated with local control, tumor failure, overall

survival, and freedom from distant metastases [10, 12–14].

However, studies have shown that imaging protocol differences, such as pixel size can

increase uncertainties in patient datasets [15–19]. A recent phantom study showed that inter-

scanner variability can be reduced by more than 50% when a controlled imaging protocol is

used for CT imaging [19]. For PET images, acquisition and reconstruction parameters have

been shown to affect radiomics features; particularly, the number of iterations, matrix size,

and smoothing filter have demonstrated variability [20–24].

Based on these uncertainty studies, our hypothesis is that outcome models built with data

from patients on controlled imaging protocols should perform better than models built with

data from a varied patient cohort since the noise from imaging variability is removed in the

former model. We aimed to test this hypothesis in large cohorts of CT and PET head and neck

cancer patients.

Materials and methods

CT patients

Patients who were treated with definitive radiotherapy for head and neck squamous cell carci-

noma (HNSCC) at least five years ago, had pre-treatment CT images available, did not have a

tumor stage of Tx (primary tumor could not be assessed), T0 (no evidence of primary tumor),

or Tis (carcinoma in situ), and did not have a nodal stage of Nx (regional lymph nodes could

not be assessed) were considered eligible. We retrospectively reviewed contrast-enhanced pre-

treatment CT images and medical records of 652 patients with oropharyngeal HNSCC that

were treated between March 2004 and November 2013 with a waiver of informed consent and

study approval from the Institutional Review Board at The University of Texas MD Anderson

Cancer Center. All patients were scanned on GE scanners (GE Healthcare, Chicago, IL). The

primary gross tumor volume (GTV) was contoured by two radiation oncologists specific for

this study. In addition, 156 HNSCC patients from Aerts et al.’s data set from MAASTRO were

included [6]. Fifty patients were excluded from this data set due to no contoured GTV, other

missing data elements, or issues with importing data into our radiomics software.

Patients whose GTV was more than 50% affected by streak artifacts were excluded from

our study. Our previous work has shown that this cutoff was useful for including only those

patients whose features from GTV not affected by streak artifacts represented features from

the whole GTV [25]. Removing all patients with any streak artifact within their GTV would
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have removed 215 patients. Therefore, this method allows many more patients to be included

in the study, as this resulted in the removal of only 32 patients from the study, while not

impacting feature values. The remaining 726 patients were divided into training and indepen-

dent testing cohorts by medical record number (MRN): those with an odd MRN were placed

into the training cohort (377 patients), and those with an even MRN were placed into the inde-

pendent testing cohort (349 patients). The patient demographics for each cohort are summa-

rized in Table 1. Independent testing is used here to identify that these patients were not used

during the training loops and were only used during the final evaluation of the built model.

Our previous work has shown that inter-scanner variability can be significantly reduced

when using a controlled protocol [19]. To investigate this impact on the prognostic ability of

patient outcome models, we included in these cohorts only patients who had been scanned on

a GE scanner with a standard kernel, 1.25-mm image thickness, and 25-cm field of view

because the largest subset cohort could be created from the original cohort using these settings.

Most of the acquisition parameters have been shown to not impact features, while these recon-

struction parameters (kernel, image thickness, and field of view) have been shown to affect fea-

tures [16–18, 26, 27]. Thus we focused reconstruction parameters for selecting the subset of

patients. These patients were only from MD Anderson as the MAASTRO data was not on a

GE scanner.

PET patients

Patients who were treated with definitive radiotherapy for HNSCC at least four years ago, had

pre-treatment PET images available, did not have a tumor stage of Tx (primary tumor could

Table 1. Patient demographics.

CT Patients PET Patients

Training Cohort Testing Cohort Training Cohort Testing Cohort

Number of patients 377 349 345 341

Number of events 97 75 76 51

Age (years)� 59 (21–87) 57 (30–80) 60 (34–87) 58 (35–90)

HPV status

Positive 224 189 207 206

Negative/unknown 153 160 138 135

Tumor stage

T1 71 78 52 63

T2 143 142 131 142

T3 88 72 111 75

T4 75 57 51 61

Nodal stage

N0 47 40 47 38

N1 34 34 39 40

N2 286 260 248 245

N3 10 15 11 18

AJCC stage

I-II 20 20 18 21

III 48 45 57 52

IV 309 284 270 268

Primary Gross Tumor Volume (cm3)� 9 (0.3–326) 8 (0.3–150) 9 (0.8–81) 9 (0.4–123)

� median; range in parentheses

https://doi.org/10.1371/journal.pone.0222509.t001
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not be assessed), T0 (no evidence of primary tumor), or Tis (carcinoma in situ), and did not

have a nodal stage of Nx (regional lymph nodes could not be assessed) were considered eligi-

ble. We retrospectively reviewed the images and medical records of 445 patients with oropha-

ryngeal HNSCC that were treated between March 2004 and November 2013 with a waiver of

informed consent and study approval from the Institutional Review Board at The University

of Texas MD Anderson Cancer Center. In addition, we used images, patient survival data, and

demographics from the Head-Neck-PET-CT TCIA collection [28, 29]. This collection con-

tained 298 patients, 241 of whom were included; those excluded had lesions with no F18-FDG

PET radiotracer uptake or there were issues with importing data into our radiomics software.

Each patient’s primary GTV was contoured using MIM PET Edge (MIM Software Inc, Cleve-

land, OH).

The 686 patients were divided into training and independent testing cohorts by MRN:

those with an odd MRN were placed into the training cohort (345 patients), and those with an

even MRN were placed into the independent testing cohort (341 patients). The patient demo-

graphics for each cohort are summarized in Table 1.

To investigate the effect of reducing inter-scanner variability on the predictive performance

of patient outcome models, we included in these cohorts only patients who had been scanned

on a GE scanner with two iterations and 20 or 21 subsets; these reconstruction settings were

chosen to enable the largest subset cohort to be created from the original cohort. Additionally,

in our unpublished work we have found that iterations and subsets can cause the largest dis-

crepancies in radiomics features from the reconstruction parameters that can be changed.

However, inter-vendor variances can be large, thus restricting this subset to only patients

imaged on a GE scanner is the main driving force in reducing the uncertainty for this study.

Feature extraction

The radiomics features were calculated using IBEX, an open-source radiomics tool [30, 31].

Tables of the extracted features are provided in the Supplemental Material. The settings for

each feature were the same as those listed in Fave et al.’s Supplemental Material [1]. All of the

features were calculated by using four different preprocessing techniques for the CT images:

(1) thresholding (lower limit -100 HU, no upper limit), (2) thresholding and a Butterworth

smoothing filter (order of 2, cut-off of 125), (3) thresholding and 8-bit depth resampling, and

(4) thresholding, 8-bit depth resampling, and Butterworth smoothing. Different features have

been shown to be most prognostic with different preprocessing techniques, which is why this

assortment of preprocessing techniques was chosen [32]. For the PET images, all of these fea-

tures were preprocessed using two methods: (1) a fixed bin width of 0.5 SUV, as suggested by

Leijenaar et al. [33], and (2) rescaling to 64 levels, as suggested by Hatt et al. [34]. The volume

of each GTV was also extracted.

Model building

The modeling process used here is based on that used for several of our previous, successful

radiomics studies [1–3]. The overall survival was defined as the time interval from the end of

definitive radiotherapy to death, and was censored at the last follow-up for patients who were

alive. The end point of overall survival was selected for this study because the number of events

are higher than events using locoregional control or freedom from distant metastases as an

end point. The model was built by using scaled training data and then fitting the final model

with the non-scaled training data and computing receiver operator curve statistics by using the

trained model on the independent testing data. The radiomics features and volume of the

training data were scaled by subtracting the mean and dividing by the standard deviation for

Radiomics features fail to improve survival prediction in CT- and PET-imaged head and neck cancer patients

PLOS ONE | https://doi.org/10.1371/journal.pone.0222509 September 19, 2019 4 / 13

https://doi.org/10.1371/journal.pone.0222509


each since Lasso penalizes larger values more (R version 3.5.1). Tumor volume and HPV status

were the only clinical variables used in order to focus on the effect of the radiomics features.

Tumor volume was a surrogate for T stage in this study as T stage is primarily determined by

the size of the tumor [35], but volume is a continuous variable allowing for more finite

discrimination.

To begin building the model, we first used univariate Cox proportional hazards models to

select the one preprocessing technique for each feature that had the most significant associa-

tion with overall survival. Clinical variables were used in forward selection, keeping only those

that reduced the Akaike information criteria (AIC) by more than 2. Next, the selected clinical

variable(s) were held constant in a univariate Cox proportional hazards model with the pre-

screened radiomics features to further reduce the dimensionality of the data (R survival pack-

age version 2.42–6). The features that had a p-value less than 0.01 were kept. One thousand

bootstrap iterations of Lasso regression, using the selected radiomics features and clinical vari-

ables, were conducted (R glmnet package version 2.0–16). For these 1000 iterations, the Lasso

was fit by using the minimum lambda determined from a 10-fold cross-validation with a maxi-

mum of 1000 iterations. The covariates selected in more than 50% of the 1000 bootstrap itera-

tions were kept. Due to the minimum lambda under penalizing the regression, a final forward

selection was performed. Those covariates that reduced the AIC by more than 2 were selected.

A final Cox model was fit by using these covariates and the non-scaled training data.

The area under the curve (AUC) of the final Cox model when predicting overall survival in

the independent testing data was calculated at 3 years (R survivalROC package version 1.0.3).

Patients were assigned to the “High Risk” group if their prediction score was higher than the

median; otherwise they were assigned to the “Low Risk” group. The survival probability curve

of each group was estimated by the Kaplan-Meier method. The separation between these

groups was evaluated by the log-rank test and determined to be significant if the p-value was

less than 0.05 (R survival package). Models were built separately for the whole patient cohort

and the subset of patients with the same imaging protocol.

We also examined the HPV positive and negative/unknown patients separately because

HPV status is a strong known predictor of overall survival. Additionally, most of the patients

in our original patient cohort had oropharyngeal cancer, therefore, we analyzed the data using

only these patients as well. For these subgroups, the whole modeling process was repeated,

including modeling with only those patients with the same imaging protocol to allow for

comparisons.

Results

CT patients

When using the whole patient cohort, volume and HPV status were selected from the forward

selection of the clinical variables. Twelve radiomics features had a p-value < 0.01 when tumor

volume and HPV status were held within the Cox proportional hazards model. Five covariates

were selected from the bootstrap Lasso. The final selected model contained the following four

covariates: tumor volume, HPV status, gray level nonuniformity calculated using thresholding

and bit depth resampling, and inverse difference norm calculated using thresholding. The

AUC of this model on the independent testing data was 0.72. The High Risk and Low Risk

groups were statistically separated (p = 5x10-4). Survival plots are shown in Fig 1. However,

when a Cox model with these covariates was fit on the independent testing data, volume, gray

level nonuniformity, and inverse difference norm were just under the significance threshold

(p = 0.027, p = 0.024, and p = 0.017, respectively), and HPV status was not significant

(p = 0.18), although all four covariates were significant in univariate models on the
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independent testing data. Volume alone or volume and HPV status fit in a Cox model on the

training data and evaluated on the independent testing data provided an AUC of 0.73. Adding

any radiomics features to this reduced the AUC. This is interesting as other covariates were

significant in the multi-variable Cox model. However, the covariates were not strongly signifi-

cant in the multi-variable Cox model, while the p-value of volume in the Cox model lowered

to 6.08 x 10−9 when it was alone which is likely the reason for the increase in AUC with volume

alone.

The CT imaging protocol is also known to affect radiomics features measured from CT

images [15–19]. Therefore, to reduce the noise in the data sets, only those patients scanned on

Fig 1. Patient survival curves using CT patient data for the cohort using all patients and the subset of patients

that had the same imaging protocol. For the cohort using all patients, the independent testing data were from 349

patients who were assigned to High Risk or Low Risk groups according to prediction scores from the Cox model fit

using the training data and the four covariates: volume, HPV status, gray level nonuniformity calculated using

thresholding and bit depth resampling, and inverse difference norm calculated using thresholding. The separation

between the curves was statistically significant (p = 5x10-4). These patient curves are called “All” and are in red and

orange. For the subset of patients with the same imaging protocol, the independent testing data were from 251 patients

who were assigned to High Risk or Low Risk groups according to prediction scores from the Cox model fit using the

training data and the two covariates: HPV status and cluster tendency calculated using thresholding, smoothing, and

bit depth resampling. The separation between the curves was not statistically significant. These patient curves are called

“Subset” and are in blue and light blue.

https://doi.org/10.1371/journal.pone.0222509.g001
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a GE scanner with the same imaging protocol were included. This reduced the training data to

260 patients and the independent testing data to 251 patients. The final model using this data

included two covariates and had an AUC of 0.55 on the independent testing data. However,

neither covariate was significant (p = 0.90, p = 0.79) in the independent testing data, so this

attempt to control for imaging parameters was not effective. The High Risk and Low Risk

groups were not statistically separated, and the survival curves for these risk groups are shown

in Fig 1 alongside the survival curves using all of the patients. Table 2 summarizes the model

information for the whole patient data set and the subset of patients with the same imaging

protocol.

When analyzing the CT data, inclusion of data from Aerts et al. [6] substantially affected

the results. Although the MD Anderson data set was large, no radiomics feature was produced

from the modeling process that was also significant in the independent testing data. However,

inclusion of Aerts et al. [6] data produced two radiomics features that were also significant in

the independent testing data and an AUC above 0.7, as discussed at the beginning of the results

presented here.

Examining subgroups of only HPV positive, HPV negative/unknown, or oropharyngeal

cancer patients did not improve these results. The information on the covariates selected, the

hazard ratio, 95% confidence interval, p value, and the AUC for these patient cohorts can be

found in the Supplemental Material.

PET patients

When using the whole patient cohort, HPV status was selected from the forward selection of

the clinical variables. Four radiomics features had a p-value < 0.01 when HPV status was held

within the Cox proportional hazards model. Three covariates were selected from the bootstrap

Lasso. The final selected model contained two covariates: HPV status and coarseness calcu-

lated using 64 gray levels. The AUC of this model on the independent testing data was 0.59.

However, neither of the covariates was significant (p = 0.69, p = 0.16) when the Cox model

was fit using the independent testing data or when selecting only one covariate. The High Risk

Table 2. Model information for CT and PET patients.

Patient Information Model Information Evaluation Information

Image

Type

Subset of

Patients

Patients in

training

Patients in

testing

Covariates in final model Hazard ratio of

covariates on training

data (95% CI)

p-value of covariates

when fit on testing

data

AUC on

testing data

CT All patients 377 349 Volume 1.01 (1.00–1.02) p = 0.027 0.72

HPV status 1.93 (1.27–2.95) p = 0.18

Gray level nonuniformity (GLCM)

calculated using thresholding and bit

depth resampling

9.74 x 10−8 (9.22 x 10−12–

1.03 x 10−3)

p = 0.024

Inverse difference norm (HLCM)

calculated using thresholding

3.34 x 106 (13.5–8.28 x

1011)

p = 0.017

CT Same

imaging

protocol

260 251 HPV status 2.27 (1.32–3.89) p = 0.79 0.55

Cluster tendency (GLCM) calculated using

thresholding, smoothing, and bit depth

resampling

1.07 (1.04–1.11) p = 0.90

PET All patients 345 341 HPV status 1.8 (1.14–2.9) p = 0.69 0.59

Coarseness calculated using 64 gray levels 2614 (11.6–5.9 x 105) p = 0.16

PET Same

imaging

protocol

144 167 None

https://doi.org/10.1371/journal.pone.0222509.t002
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and Low Risk groups were not statistically separated, as shown by the survival plots for these

patients in Fig 2 where the curves overlap.

The subsets and iterations in a PET imaging protocol are known to affect radiomics features

measured from PET images [20–24]. Therefore, including only patients scanned on a GE scan-

ner with 20 or 21 subsets and two iterations reduced the training data to 144 patients and the

independent testing data to 168 patients. These patients were imaged on Discovery ST, Discov-

ery STE, or Discovery RX PET scanners which are all non-time of flight and did not model

point spread function. The final model included no covariates, even when relaxing the p-value

for passing the additional prescreening univariate Cox analysis, so this attempt to control for

imaging parameters was not effective. Table 2 summarizes the model information for the

whole patient data set and the subset of patients with the same imaging protocol.

Examining subgroups of only HPV positive, HPV negative/unknown, or oropharyngeal

cancer patients did not improve these results. The information on the covariates selected, the

hazard ratio, 95% confidence interval, p value, and the AUC for these patient cohorts is in the

Supplemental Material.

Discussion

In this study, we investigated radiomics features for HNSCC patients by using CT and PET

images. Both studies included more than 600 patients. A recent study published by Orlhac

et al. found that since the first published PET radiomics study in 2009, almost 80% of studies

Fig 2. Patient survival curves using PET patient data. The independent testing data were from 341 patients who

were assigned to High Risk or Low Risk groups according to prediction scores from the Cox model fit using the

training data and two covariates: HPV status and coarseness calculated with use of using 64 gray levels. The High Risk

and Low Risk groups were not statistically separated as shown by the overlap of the survival curves. These patient

curves are called “All” and are in red and orange. For the subset of patients with the same imaging protocol, no

covariates were selected, therefore, the patients could not be separated into High Risk and Low Risk and no curves are

displayed for the subset patient group.

https://doi.org/10.1371/journal.pone.0222509.g002
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have included fewer than 100 patients [21]. Similarly, CT head and neck cancer studies often

include about 200 patients. Our study included more than three times this amount for both

CT and PET analyses.

We hypothesized that outcome models built with data from patients on controlled imaging

protocols should perform better than models built with data from a varied patient cohort since

the noise from imaging variability is removed in the former model. We were unable to demon-

strate an improvement in prediction accuracy in a subset of patients with the same imaging

protocol compared to a patient cohort with different imaging protocols. Across both types of

patient groups we found that while some features selected were significant in both the training

and testing cohorts, none of our analyses in CT or PET studies could find a reliable radiomics

feature that correlated with overall survival that was better than tumor volume. Our negative

results are in contrast to other radiomics studies of head and neck cancer patients. Other stud-

ies have found radiomics features that correlated with overall survival, locoregional control,

and freedom from distant metastases [6, 9, 10, 14, 36, 37]. We also investigated these other out-

comes, in addition to overall survival, and found similar results to the overall survival results

presented here. We chose to focus on overall survival since there were more events which typi-

cally results in better model building. However, most of our patients had oropharyngeal can-

cer, whereas most other radiomics studies included patients with general head and neck

cancers that included sites such as the larynx. Foy et al. also showed that there are differences

in implementation of the various radiomics software tools [38]. All of these differences could

contribute to the differences in results found in other studies compared to our study.

We attempted many manipulations of the data, including the patient cohorts all one HPV

status (e.g., positive), which removed the issue of HPV status having different rates of survival,

and radiomics features were not consistently correlated with survival. Different splitting tech-

niques of the training and testing cohorts yielded similar, negative, results. For example, all

patients were assigned a number based on their row in the data table, then using this number

(and not their MRN), patients were split based on an even or odd number. The data between

the training and testing was similar in patient number, HPV status composition, event rate,

and other patient demographics regardless of splitting technique. Based on this we are certain

that the splitting technique used in the study did not affect the negative results found.

The complete CT patient cohort included the MAASTRO data, while the subset of patients

with the same imaging protocol did not include any MAASTRO data. We were able to find a

significant radiomics feature when the MAASTRO data was included, but when only MD

Anderson data was included, no significant radiomics feature was found in the final model. As

the subset of patients with the same imaging protocol only included MD Anderson patients,

this could be a potential reason that an increase in prediction accuracy was not observed. The

positive results from the inclusion of the MAASTRO data is consistent with the positive results

found by Aerts et al. [6] in their original study with these data. Patient demographics (e.g., age,

stage) were similar between the Aerts et al. [6] data set and the MD Anderson data set; however,

there was a difference in event rate. This, in addition to the substantially different radiomics

results between the two patient cohorts, indicated that there may have been differences in the

patient population that we cannot understand through this study, such as differences in the

patient population as it relates to the overall health care system. This suggests that radiomics

signatures may not always be transferrable due to unseen differences in patient populations.

These discrepancies were not observed with the PET data. The MD Anderson and TCIA

data sets were similar in patient demographics and event rate. These data sets produced no

AUC above 0.6, even when sources of noise, such as imaging protocol or HPV status, were

removed. Some of these models resulted in no covariates selected, which meant that even the

two included clinical variables in the first stages of the modeling were not good predictors of
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survival. Since PET scans are not part of the standard of care for HNSCC patients, the patient

cohort in this study that underwent PET scans may not be representative of HNSCC patients

in general. This could explain why the traditional strong clinical correlates of survival, tumor

volume and HPV status, were not selected or significant.

There are several limitations to this study. First, there are known clinical factors that affect

survival that were not included in the analysis, such as smoking pack-years. The focus of this

study was to demonstrate improvement in patient outcome models when imaging protocols

are controlled, not to build the best possible outcome model that would include these clinical

factors. Also, in common with other radiomics studies, only the primary GTV was analyzed.

In patients with HNSCC, often nodes are involved, and some nodes may be irradiated due to

suspected tumor involvement without definitive confirmation on images. It is difficult to

determine how to best include these data in a conventional radiomics study such as this one.

Deep learning approaches have shown promising results as a different technique to radiomics

studies and may handle these challenges better [39, 40]. Additionally, most patients included

in this study had oropharyngeal carcinoma. Therefore, applying the results from this study to

other head and neck sites must be done with caution. This study was based on one software

that has been successfully used in the past [1–3]. It is possible that other features not explored

in this analysis may be more successful.

While the results of this particular study are negative, they highlight the areas that radiomics

research should go towards in head and neck cancer patients. Our large CT study showed that

the noise due to different imaging protocols can be overshadowed by noise due to differences

between patient cohorts. This needs to be considered and investigated when applying radio-

mics signatures to patient groups from different regions with potentially different characteris-

tics. Another avenue for CT radiomics for head and neck cancer may be analyzing the nodal

regions as a recent paper has shown that analyzing the nodal regions can be used to predict dis-

tant metastases [41]. Additionally, for PET, the lack of any texture signature correlation with

overall survival outweighed the noise due to different imaging protocols. This again identifies

an avenue for future studies as alternative approaches are needed, for example, deep learning

or development of PET-specific features. Lastly, we showed that harmonizing imaging proto-

cols does reduce some uncertainties in radiomics features. Reducing this source of uncertainty

should make it easier to investigate other sources of uncertainty (such as differences in patient

cohorts) that impact the results of radiomics studies. If these additional sources of uncertainty

can also be reduced, then this harmonization of imaging protocols could result in more precise

radiomics studies.

Conclusions

This is one of the largest radiomics studies in head and neck cancer patients and one of the larg-

est PET radiomics studies in general. CT and PET-based radiomics features failed to improve

survival models for head and neck cancer patients. Controlling the imaging protocol to mini-

mize image uncertainties did not improve the radiomics models. The inconsistent CT findings

here demonstrate that radiomics signatures for head and neck cancer patients may not be robust

or reproducible, even when patient cohorts appear to be very similar. Head and neck cancer

patient images may not have enough PET texture to be used in conventional radiomics studies.
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