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Monitoring disease activity in a complex, heterogeneous disease such as lupus is difficult. Both over- and undertreatment lead to
damage. Current standard of care serologies are unreliable. Better measures of disease activity are necessary as we move into the
era of precision medicine. We show here the use of a data-driven, modular approach to genomic biomarker development within
lupus—specifically lupus nephritis.

1. Introduction

Systemic lupus erythematosus (SLE) is the prototypical
autoimmune disease. Immune tolerance breaks down leading
to the immune system attacking normal tissues. Antibodies
form that recognize self-antigens and lead to pathologic
immune complex deposition. Dysfunction within both the
innate and adaptive immune systems leads to increased
cytokine production, especially type I interferons, B-cell
overproduction of autoantibodies, andT-cell enhancement of
these processes.This leads to the host of clinical abnormalities
within SLE that includes rashes, oral ulcers, arthritis, inflam-
mation around the heart and lungs, and cytopenias as well as
severe renal and neurologic manifestations.

Treatment of the disease requires attention to all of these
possible manifestations of disease activity. Any patient, at any
time, can develop increased disease activity in any organ.
While some manifestations are obvious (thrombocytopenia)
others can be more subtle and complicated by other potential
etiologies (is the rash or joint pain from lupus or something
else?).There are no serologies which are universally useful for

all manifestations across all patients. Anti-dsDNA antibodies
associate with renal disease activity in a subset of patients
but in only a fraction of these patients do changes in the
levels predict changes in disease activity [1]. This is true for
complement consumption as well. An inflammatory disease
is expected to have elevated inflammatory markers (erythro-
cyte sedimentation rate, ESR, C-reactive protein, and CRP).
In SLE, large changes in ESR are informative (with the caveat
that infection also raises the ESR) but minor fluctuations are
not [2]. Further, many lupus patients maintain a baseline
elevated ESR regardless of clinical disease activity. CRP is less
often elevated in SLE outside of infection [3]. There is no
shortage of attempts at producing better biomarkers for lupus
disease activity. Novel autoantibodies (anti-C1q), cell surface
markers, and cytokines are all reported [4]. Only complement
surface deposition has reached a level of reproducibility to
allow inclusion in a commercially available product (AVISE,
http://www.exagen.com/).

Exploration of gene expression in SLE began in 2002
with the cytokine specific arrays in Rus et al. [5]. They
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showed increased expression of inflammatory cytokines and
were able to separate lupus patients from healthy controls.
A seminal work within this area was by Baechler et al. in
2003 showing the presence of an interferon signature [6].
Further work reproduced the interferon signal but also a
curious neutrophil related signature [7]. However, these early
works revealed the well-described limitations of microarray
work—difficulties with technical and biological variability
[8]. Technical variability includes batch effects as well as
different probe sequences in different platforms. Biologi-
cal variability leads to the lack of reproducibility between
microarray studies. Furthermore, the interferon signature
developed in Baechler was not shown to track disease activity
[9].

The limitations in large-scale gene expression analysis
lead to the development of gene ontology [10] and functional
enrichment methods such as gene set enrichment analysis
(GSEA) [11]. These methods involve the annotating of tran-
scripts with known roles in biologic processes and pathways
as well as molecular structure and cellular components.
These methods were primarily performed within oncologic
processes.

Chaussabel and coworkers developed a novel, data-driven
method using primarily inflammatory diseases [12]. In this
method, clusters of genes that were observed in multiple dis-
ease processes were clustered into “modules.”These modules
were then labeled based on their primary function based on
an automated literature search. This method was shown to
discriminate between active and inactive disease within a
pediatric lupus cohort. The method, initially developed on
Affymetrix arrays was updated for use on Illumina arrays
and the module list was greatly expanded. Importantly, the
interferon module from 2008 was split into three modules,
two of which were responsive to changes in disease activity.
Further work by the group, recently published [13], expanded
the work further, showing longitudinal variation as well as
treatment response.They showed the prominence of a plasma
cell signature within a subset of pediatric lupus patients that
was a reliable marker of disease activity.

The work here evaluates the utility of the modular
approach in an adult lupus population. Banchereau et al.
mention that the pediatric population is a special population
to study and this is true as patients who present with lupus
in the pediatric years are more likely to have severe disease
such as lupus nephritis or neurologic disease. Furthermore,
we are specifically evaluating how a modular approach can
discriminate between active and inactive lupus patients. This
is likely amore difficult problem than discriminating between
lupus patients and healthy controls. Also, it is unclearwhether
differences found between lupus and healthy controls can be
directly applied to differences within lupus patients.

2. Methods

2.1. Study Population and Design. The study protocol for
SPARE (Study of biological Pathways, disease Activity and
Response markers in patients with systemic lupus Erythe-
matosus) was approved by the Johns Hopkins University
School of Medicine Institutional Review Board. SLE patients

were enrolled from the Hopkins Lupus Cohort following
informed consent. Adult patients were eligible if they were
aged 18 to 75 years and met the definition of SLE as
defined by the revised American College of Rheumatology
classification criteria [14]. At entry into the study the patient’s
medical history was reviewed and information on current
medications was recorded. Visits were scheduled quarterly
or more often if required for disease activity over a 2-year
period. All patients were evaluated by the same physician at
entry and all subsequent cohort visits (MP). Three hundred
and six SLE patients were enrolled in the observational study.
Patients were treated according to standard clinical practice.
To assess disease activity, the Safety of Estrogens in Lupus
Erythematosus: National Assessment (SELENA) version of
the Systemic Lupus Erythematosus Disease Activity Index
(SLEDAI) [15] as well as the PhysicianGlobal Assessment [16]
was completed at each visit.

2.2. Sample Selection. The samples selected for this analysis
were chosen retrospectively based on the recorded clinical
information. The goal was to compare lupus patients with
active disease to lupus patients with clinically quiescent
disease. Lupus nephritis is one of the more objective and
persistent forms of lupus disease activity. The amount of
protein in the urine is a relatively reliable indicator of ongoing
inflammation within the kidney (with caveats, [17]). The
“high activity” patients were selected based on the presence of
a urine protein/creatinine ratio of 1.6 or higher. There was no
selection for medications, ethnicity, or age. The “no activity”
patients were clinically assessed to have no lupus disease
activity (PGA = 0) and were on no immune-modifying med-
ications other than hydroxychloroquine. Standard practice
in lupus treatment includes continuing hydroxychloroquine
therapy regardless of disease activity. Another comparator
group, “typical” lupus, was created to compare specifically to
the healthy controls. This group was randomly chosen from
the dataset with the only restriction that no patient would
be represented more than once. The healthy control patients
were collected by Biogen and were never assessed by MP.
Patient characteristics are shown in Table 1.

2.3. Sample Preparation. Peripheral blood samples used for
gene expression analyses were collected using the PAXgene
Blood RNA system (PreAnalytix GmbH). RNA was isolated
from PAXgene preserved blood using the Agencourt RNAd-
vance Blood kit automated on an Arrayplex liquid handling
system (Beckman Coulter, Indianapolis, IN). RNA integrity
and concentration were assessed using the HT RNA reagent
kit (Caliper Life Sciences, Hopkinton, MA) using a LabChip
GX (PerkinElmer, Waltham, MA). RNA samples with a
RQS score of >8.0 were considered of acceptable quality for
downstream applications.

2.4. Gene Expression Analysis. RNA (50 ng) isolated from the
PAXgene blood sample was amplified and biotin-labeledwith
the NuGENOvation RNAAmplification systemV2, Ovation
WB reagent, and Encore Biotin module (NuGEN Technolo-
gies, Inc., San Carlos, CA) using an Arrayplex automated
liquid handler (Beckman Coulter, Indianapolis, IN). 2 ug of
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Table 1: Patient characteristics.

High activity
𝑁 = 13

Low activity
𝑁 = 25

Healthy
𝑁 = 51

Typical SLE
𝑁 = 95

Average age (SD) 43.9 (12) 44 (14) 39 (11) 46 (12)
Ethnicity (%)

African American 23 44 27 38
White 62 52 73 58

Average SLEDAI 7 0 NA 2.7
Mycophenolate (N) 6 0 NA 21
Azathioprine (N) 2 0 NA 12
Average Prednisone (mg) 8.5 0 NA 3

biotin labeled sscDNA probe was hybridized to Affymetrix
GeneChip HT HG-U133+ PM plate arrays with modified
conditions as described in Allaire et al. [18]. Washing and
staining of the hybridized arrays were completed as described
in theGeneChip Expression analysis technicalmanual forHT
plate arrays using the Genechip� Array Station (Affymetrix,
Santa Clara, CA) with modifications as described in Allaire
et al. [18]. The processed Genechip plate arrays were scanned
using GeneTitan scanner (Affymetrix, Santa Clara, CA).
Affymetrix scans were subjected to standard quality control
(QC) measures. These tests included a visual inspection of
the distribution of raw signal intensities and an assessment
of RNA degradation, relative log expression (RLE), and
normalized unscaled standard error (NUSE). All sample
scans passed these QC metrics. CEL files were subjected
to GC-content-based Robust Multi-array Average (GCRMA)
normalization [19]. Expression levels were log (base 2) trans-
formed. All calculations and analyses were carried out using
R and Bioconductor computational tools [20]. Modules used
included limma [21], PAMR [22], and GEOQuery [23]. Top-
Gene (https://toppgene.cchmc.org/) was used for functional
enrichment analysis. Genes composing Chaussabel modules
were taken directly from Table S2 in [12].

3. Results

An analysis of differential gene expression leads to a total of
799 genes differentially expressed at a Benjamini-Hochberg
adjusted significance of 0.05. There is an obvious difference
between the high and no disease activity groups as seen in
the heatmap in Figure 1. For the most part, the high disease
activity clusters to the left and the low disease activity clusters
to the right. Simple hierarchical clustering separates 10/13
high disease activity from the no disease activity.

Functional enrichment analysis using TopFunn shows
results that would be expected for lupus (Table 2). There
is significant upregulation of type I interferon pathways,
immune pathways, and cytokine-associated pathways. There
was nothing unexpected in this analysis.

A search for a “gene signature” that would separate high
lupus disease activity from no disease activity used PAMR.
This is a clusteringmethod that finds the smallest list of genes
that leads to the smallest misclassification error. These genes
are shown in Table 2. While there are genes in the list that are

Figure 1: Heatmap of SLE patients. Hierarchical clustering separates
patientswith high disease activity from thosewith no clinical disease
activity. The red bars along the bottom indicate patients with high
disease activity and green bars indicate thosewith nodisease activity.

biologically plausible, it suffers from “noise” inherent in these
microarray gene lists [24].

We next looked at the modules developed by Chaussabel
and colleagues. We used the 2008 modules as they were
developed using the Affymetrix platform. The arrays used
in the study reported here lack the mismatch probes of the
U133A andU133B chips used byChaussabel but are otherwise
the same probes. We first reproduced the work of Chaussabel
using the datasets available on the NIH GEObus (GSE11909).
These were comparing untreated pediatric lupus to healthy
controls.This dataset was not complete, missing 6 of 12U133B
chips of the healthy controls, but all lupus and all 133A chips
were available. This is shown in Table 3. Each module has a
certain number of genes. For instance, Module 1.1, plasma
cells, is defined by the membership of 76 genes. The first data
box in Table 3 is reproduction of the pediatric lupus data.
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Table 2: Functional enrichment analysis from ToppGene. Hit count in query list is the number of genes from the list of significantly
differentially expressed genes in that ontology. Hit count in genome is the number of described genes in the ontology.

ID Name 𝑝 value 𝑞-value
Bonferroni

Hit count in
query list

Hit count in
genome

GO:0006955 Immune response 1.35𝐸 − 25 6.46𝐸 − 22 114 1416
GO:0019058 Viral life cycle 9.43𝐸 − 24 4.50𝐸 − 20 50 314
GO:0045087 Innate immune response 2.20𝐸 − 23 1.05𝐸 − 19 84 883

GO:0044764 Multiorganism cellular
process 4.44𝐸 − 23 2.12𝐸 − 19 75 725

GO:0071357 Cellular response to type I
interferon 4.70𝐸 − 23 2.25𝐸 − 19 27 76

GO:0060337 Type I interferon signaling
pathway 4.70𝐸 − 23 2.25𝐸 − 19 27 76

GO:0051607 Defense response to virus 6.08𝐸 − 23 2.90𝐸 − 19 41 212
GO:0034340 Response to type I interferon 7.06𝐸 − 23 3.37𝐸 − 19 27 77
GO:0016032 Viral process 3.62𝐸 − 22 1.73𝐸 − 18 73 714
GO:0009615 Response to virus 1.85𝐸 − 21 8.84𝐸 − 18 47 310
GO:0002252 Immune effector process 2.18𝐸 − 21 1.04𝐸 − 17 67 628
GO:0006952 Defense response 1.45𝐸 − 19 6.93𝐸 − 16 107 1515

GO:0098542 Defense response to other
organisms 5.35𝐸 − 19 2.56𝐸 − 15 50 401

GO:0043207 Response to external biotic
stimulus 1.29𝐸 − 18 6.14𝐸 − 15 68 726

GO:0051707 Response to other organisms 1.29𝐸 − 18 6.14𝐸 − 15 68 726
GO:0009607 Response to biotic stimulus 1.43𝐸 − 17 6.82𝐸 − 14 68 760

GO:0048525 Negative regulation of viral
process 1.43𝐸 − 16 6.85𝐸 − 13 22 78

GO:0034097 Response to cytokine 2.85𝐸 − 16 1.36𝐸 − 12 59 629

GO:0071345 Cellular response to cytokine
stimulus 5.70𝐸 − 16 2.72𝐸 − 12 53 527

GO:0006414 Translational elongation 2.32𝐸 − 15 1.11𝐸 − 11 26 130

GO:0045069 Regulation of viral genome
replication 1.31𝐸 − 14 6.27𝐸 − 11 18 58

GO:0006413 Translational initiation 1.87𝐸 − 14 8.94𝐸 − 11 29 179

GO:0019221 Cytokine-mediated signaling
pathway 4.42𝐸 − 14 2.11𝐸 − 10 43 402

GO:0019079 Viral genome replication 1.94𝐸 − 13 9.25𝐸 − 10 19 76

GO:0043900 Regulation of multiorganism
process 4.19𝐸 − 13 2.00𝐸 − 09 37 325

GO:0035455 Response to interferon-alpha 4.56𝐸 − 13 2.18𝐸 − 09 11 19

The number of significantly differentially expressed genes
is shown as a proportion. Thus, 45% of the genes within
Module 1.1 are increased in expression when comparing
untreated pediatric lupus to healthy controls. This nearly
exactly reproduces the original work as expected. This work
showed the notable increased expression of genes within the
interferon, plasma cell, neutrophil, erythrocyte, and myeloid
modules. Decreased expression was seen in genes associated
with the ribosomal, cytotoxic, and T-cell modules.

We then looked at the modular representation of gene
expression differences between high and low disease activity
in adult SLE patients. The reason for doing this is that we
hypothesized that what distinguishes high and low disease

lupus within SLE may be different than what distinguishes
SLE from healthy controls. In the second data box, “Adult
SLE, High versus No Activity,” we show that 97% of genes
within the interferon module are significantly increased
in expression. Thus, even within SLE there is increased
expression of the genes that make up the interferon module.
This is similar to the untreated pediatric lupus population.
It is also quite expected as many studies have shown the
importance of the interferon pathways in SLE. Remarkably,
even in this treated, adult populationwe see an increase in the
neutrophil signature. The neutrophil signature is associated
with lupus nephritis [25] and this was also demonstrated in
the most recent pediatric SLE study [13]. We do not observe
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Table 3: Module name and number as described in [12]. The “pediatric SLE” column is reproduced from GSE11909. The numbers shown
are the percentage of genes from the module that have significant differential gene expression (DGE). Thus, the first row is interpreted as
follows: 45% of the genes in Module 1.1 have significant DGE and are increased in expression. The second column, “Adult SLE, High versus
No Activity,” is a DGE analysis between lupus patients with high disease activity and lupus patients with no activity.The third column, “Adult
SLE versus HC” is a DGE analysis between a cohort of lupus patients with average disease activity and healthy controls.

Module name Module number
Pediatric SLE

Untreated versus HC
Adult SLE

High versus no activity
Adult SLE

SLE versus HC
Up Down Up Down Up Down

Plasma cells 1.1 45 0 8 0 4 14
Erythrocytes 1.2 5 5 5 9 20 7
B-cells 1.3 1 4 3 36 1 30
None 1.4 5 4 5 18 8 19
Myeloid 1.5 13 6 9 15 32 4
None 1.6 5 5 1 11 0 45
Ribosomal 1.7 0 78 5 64 11 40
None 1.8 3 5 2 27 6 21
Cytotoxic 2.1 2 21 1 40 2 29
Neutrophils 2.2 33 0 55 0 29 4
Erythrocytes 2.3 26 3 9 3 9 8
Ribosomal 2.4 0 77 0 74 5 36
None 2.5 1 27 3 3 6 5
Myeloid 2.6 23 2 10 3 28 8
None 2.7 1 31 0 4 1 7
T-cells 2.8 0 42 0 56 1 32
None 2.9 3 12 8 1 3 40
None 2.1 4 8 8 11 18 8
None 2.11 2 6 2 8 4 22
Interferon 3.1 91 0 97 0 97 0
Inflammation 3.2 13 2 16 4 20 14
Inflammation 3.3 9 6 8 7 17 8
None 3.4 6 14 2 16 2 25
None 3.5 14 18 5 5 14 5
None 3.6 6 5 2 15 2 19
None 3.7 4 9 1 23 17 9
None 3.8 1 13 1 45 4 42
None 3.9 2 11 1 29 3 23

significantly increased numbers of genes associated with the
plasmablast signature.

Next we looked at a cohort of adult lupus patients with
a typical mixture of disease activity and compared to healthy
controls.This is an attempt tomake the comparisonwithData
Box 1 but with adult lupus patients on a mix of therapies.
Characteristics of this group are shown inTable 1.The average
SLEDAI for this group is 2.7, representing mild disease. Only
eight of the 95 patients have renal disease, six have arthritis,
and none have significant neurologic disease. Again, we do
not see the plasma cell signature reported in Chaussabel
et al. [12] and Banchereau et al. [13]. Again, the interferon
signal is very strong but notably is not significantly different
from either of the other comparisons. There are notable
differences between the comparison within lupus patients
and the comparison between lupus and healthy controls. For

the neutrophil module, 55% of the genes were present in high
disease activity while only 29% showed this difference when
comparing “typical lupus” to healthy controls.This is roughly
what was seen in the pediatric population where there was
some evidence that increased expression of genes in the
neutrophil module associated with increased disease activity.
Increased presence of reduced expression genes was seen
in the two ribosomal modules, T-cell module and cytotoxic
modules.

4. Discussion

The clinical evaluation and treatment of patients with SLE
is in desperate need of advanced biomarker development.
Assessment of disease activity is difficult and currently
inadequate. Medical treatment decisions are, for the most
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part, not guided by individual characteristics of the patient
or the disease. If we are ever to achieve precision medicine
in this complex, heterogeneous disease it will be through
detailed molecular phenotyping and close monitoring of
reliable indicators of disease activity.

Gene expression analysis allows for measurement of
many variables at once, potentially allowing for capture of the
heterogeneity of this complex disease. Multiple techniques
for dimension reduction have been proposed and one of
the more promising for the quantification of disease activity
in lupus is the modules developed in pediatric lupus by
Chaussabel et al. [12]. We show here the application of these
modules in quantification of SLE disease activity, specifically
lupus nephritis.

The results of this analysis show some similarities with the
pediatric lupus patients studied in Dallas [12, 13, 26]. First,
the prominence of the interferon signature is reproduced.
This is not surprising based on the fundamental importance
of interferon in SLE pathology. It is worth noting that a
“score” of 97% in the interferon module indicates that 97%
of genes in that module were found to have significant
differential gene expression. Comparing SLE patients with
high disease activity to those with low disease activity reveals
increased expression of these genes. However, comparing
“typical” SLE activity to healthy controls reveals increased
expression as well. The score does not indicate the level of
gene expression only that there was an increase from one
group to another. Microarray measurement of gene expres-
sion has some association with more quantitative methods of
measuring mRNA, for example qPCR, but is not as sensitive
to changes in expression [27]. We did not make an attempt
here to further quantify the amount of expression within the
module. Furtherwork in this area can include an analysiswith
RNAseq that leads to actual mRNA counts.

Another similaritywith the pediatric study is the presence
of the neutrophil module. Truly remarkable work evaluating
the roles of neutrophils in SLE pathology emerged after the
demonstration of the neutrophil signature [7]. Unlike the
interferon module above, the neutrophil module did show
increased numbers of differentially expressed genes in the
active-inactive group compared to the lupus-healthy control
group. This is possibly due to the demonstrated role of
neutrophils in lupus nephritis specifically [25]. However, it
is also possible that multiple neutrophil-related interactions
are involved. Perhaps increased disease leads to recruitment
ofmore of these pathways or that some patients have different
components of these pathways.

A significant difference between this work and the origi-
nal work of Chaussabel is in the plasma cell module. Plasma
cells are the antibody producing cells and are increased in
active lupus. In the recent work with the Dallas pediatric
SLE cohort the plasmablast module was found to asso-
ciate with disease activity and was significantly reduced by
treatment with mycophenolate [13]. We find here, in an
adult population, the absence of a significant plasma module
differentiating either active from inactive disease or typical
SLE from healthy controls. This seems to be also true in the
primarily Caucasian, French population analyzed in Chiche
et al. [26]. In that work, the newer Illumina-based modules

were used where the plasma cell module is Module 4.11.
Thus, it is unclear at this point if the plasma cell signature is
enhanced in the pediatric population studied or unable to be
differentiated from treatment effects in this study.

This study has multiple limitations. First, for a true
biomarker study the response to change in disease activity
and outcomes would have to be followed over time. At this
time we were interested in the applicability of the modules
in a specific subpopulation of lupus but plan for further
analysis. The limited size of this sample did not allow for
treatment effects to be studied, though great effort was made
to minimize those differences in the active versus inactive
group. Finally, one of the limitations is that the technology
of the Affymetrix microarray is limiting and future work will
include more quantitative and reproducible techniques.

There is great promise in the use of data-driven analysis
in the exploration of complex, heterogeneous diseases such
as lupus. We show here an example of how this can be used
in evaluating active versus inactive disease within SLE. As we
move to precisionmedicinemethods such as thesewill lead to
better characterization of disease, better therapies, and better
response to therapies.
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