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Abstract

Variation in gene expression may give rise to a significant fraction of inter-individual phenotypic variation. Studies searching
for the underlying genetic controls for such variation have been conducted in model organisms and humans in recent years.
In our previous effort of assessing conserved underlying haplotype patterns across ethnic populations, we constructed
common haplotypes using SNPs having conserved linkage disequilibrium (LD) across ethnic populations. These common
haplotypes cluster into a simple evolutionary structure based on their frequencies, defining only up to three conserved
clusters termed ‘haplotype frameworks’. One intriguing preliminary finding was that a significant portion of reported
variants strongly associated with cis-regulation tags these globally conserved haplotype frameworks. Here we expand the
investigation by collecting genes showing stringently determined cis-association between genotypes and expression
phenotypes from major studies. We conducted phylogenetic analysis of current major haplotypes along with the
corresponding haplotypes derived from chimpanzee reference sequences. Our analysis reveals that, for the vast majority of
such cis-regulatory genes, the tagging SNPs showing the strongest association also tag the haplotype lineages directly
separated from ancestry, inferred from either chimpanzee reference sequences or the allele frequency-derived haplotype
frameworks, suggesting that the differentially expressed phenotypes were evolved relatively early in human history. Such
evolutionary signatures provide keys for a more effective identification of globally-conserved candidate regulatory
haplotypes across human genes in future epidemiologic and pharmacogenetic studies.
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Introduction

Variation in allelic expression is very commonly observed in the

human genome [1,2] and, rather than alteration in protein products,

may account for a significant fraction of inter-individual variation [3].

Therefore, identification of such variation is a major step toward

understanding the differential predisposition to common diseases and

variation in drug responses among individuals and ethnic popula-

tions. For example, slight changes in allelic expression of the tumor

suppressor gene, APC, can affect predisposition to tumorigenesis [4].

Also, as recently illustrated, VKORC1 gene expression influences the

warfarin maintenance dose [5]. In recent years, studies searching for

association between genetic markers and quantitative gene expression

profiling, referred to as genetical genomics [6], have been conducted

in model organisms and humans (reviewed in [7,8]). Loci associated

with the variation of gene expression, described as expression

quantitative trait loci (eQTL), have been identified both in cis and in

trans for many genes.

Following an assessment of common underlying haplotype

patterns across ethnic populations, we previously reported the

observation that pairwise linkage disequilibrium (LD), based on the

commonly used correlation coefficient, r2, between single nucleotide

polymorphisms (SNPs) selected from populations having African

ancestry shows strong conservation across other non-African

populations, but not vice versa [9]. This observation is likely the

consequence of a major population bottleneck out of Africa. Using

these LD-selected SNPs, we demonstrated a defined SNP haplotype

structure that is highly conserved across all ethnic populations.

Hence, a set of globally-applicable tagging SNPs could be feasibly

defined. Two recent studies investigating haplotype/LD variation

and the transferability of tagging SNPs across global populations

have provided strong support for our observation [10,11]. The

conserved common haplotypes we defined clustered into a simple

evolutionary structure of up to three ‘‘haplotype frameworks’’. SNPs

tagging such haplotype frameworks (fmSNPs) could generally be

identified within defined LD blocks as the ones having the highest

allele frequencies in African-ancestry populations. These allele-

frequency-derived, ethnically-conserved frameworks were likely the

ancestral haplotype backgrounds upon which more recent muta-

tions have been superimposed. Interestingly, our preliminary

analysis suggested that a significant portion of reported variants

strongly associated with cis-regulation tagged these globally-

conserved haplotype frameworks [9]. A conceptual illustration of

ancestry-based haplotype clusters and the association with expres-

sion phenotypes is presented in Figure 1.

In this report, we expanded the investigation of the relationship

between cis-regulatory expression phenotypes and the SNPs tagging

local haplotype frameworks (fmSNPs) by collecting and examining

genes from major studies showing strong cis-regulatory association.

We first delineated haplotype frameworks based on the high-density

HapMap Phase II genotype data as described previously [9], followed

by phylogenetic analysis among current major haplotypes and the
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corresponding haplotypes derived from chimpanzee reference

sequences. We then measured the association between LD-derived

tagging SNPs with expression phenotypes. As a consequence of this

analysis, we observed significant correlation between SNPs showing

the strongest association and SNPs tagging the major lineages directly

separated from ancestry, inferred either from the frequency-derived

haplotype frameworks (fmSNPs) or the chimpanzee reference

sequences. We discuss the evolutionary implications of these findings

for the origin and maintenance of expression variants in human

populations, as well as for further genetic epidemiologic and

pharmacogenetic studies.

Results

To investigate the relationship between cis-regulatory expression

phenotypes and the SNPs tagging local haplotype frameworks

(fmSNPs), we analyzed a total of 26 genes (Table 1) showing

stringently determined cis-association with expression phenotypes

from five major studies (Morley et al. [12], Cheung et al. [13],

Pastinen et al. [14], Deutsch et al. [15], Stranger et al. [16],

reviewed by Pastinen et al. [17]). These studies were all conducted

with lymphoblastoid cell lines of CEPH or HapMap CEU samples

(Utah residents with ancestry from northern and western Europe),

but using an earlier release (phase I) of HapMap genotype data

having lower SNP density and employing different expression

platforms. We first downloaded HapMap genotype data (Phase II;

release 21) encompassing the gene pre-mRNA transcript and at

least 10 kb upstream and downstream from initiation and

termination sites, where predicted cis-regulatory modules (clusters

of transcription factor binding sites) are most enriched [18]. We

then constructed the local haplotype framework structure as

Figure 1. Ancestry-based haplotype clusters and the association with expression phenotypes. (A) In this hypothetical example, five
extant haplotypes are observed (1–5) within a chromosome segment showing strong LD (low recombination rate). These haplotypes are derived
through five mutation steps (resulting in five SNPs in current populations) from the inferred ancestral sequence (boxed in black) and can be grouped
into two major haplotype clusters (boxed in green and red). Separating the ancestry-based haplotype clusters are earlier mutation steps (G3 R A; C2

R T). Alleles of these SNPs can be applied for ‘‘tagging’’ the clusters (typed in green and red). Currently, ancestry is commonly inferred by either the
allele frequencies of SNPs or the corresponding nucleotides in non-human primate species. When the frequency of SNP alleles is applied (preferably
using those of African populations), the haplotype clusters are referred to as ‘‘haplotype frameworks’’ [9]. The SNPs tagging the frameworks are
termed ‘‘framework SNPs’’ or ‘‘fmSNPs’’. (B) Tree structure of the five extant haplotypes and the expression phenotype clusters. Given a simple
hypothesis that an historical mutation creates a variant altering the expression phenotype (resulting either enhancing or suppressing expression),
two alternative schemes of resulting phenotype clusters associated with the variant are illustrated. The left panel exemplifies an evolutionarily earlier
expression alteration caused by a mutation tagging the ancestry-based haplotype clusters, and the right panel demonstrates the alteration caused by
a more recent mutation (with the mutations boxed and the resulting expression phenotype clusters circled).
doi:10.1371/journal.pone.0003362.g001
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previously described [9]. We used the originally-reported peak

SNPs (SNPs showing strongest association) described in the above

studies to serve as the lower-density screens (HapMap Phase I

data) and then measured the association between gene expression

and all tagging SNPs – this time taking advantage of the high-

density HapMap Phase II data – within the block containing the

reported peak SNPs. We applied public HapMap expression data

across three major populations (GSE2552 [13] and GSE5859

[19], based on the Affymetrix platform, and GSE6536 [20], based

on the Illumina platform).

A typical example, HSD17B1, is depicted in Figure 2, in which

the intragenic SNP, rs4755741, was reported as the peak SNP

[13]. To delineate the local haplotype framework structure from

the YRI population and compare it to that of other major

populations, we downloaded genotypes of HapMap SNPs

encompassing a total of 195.9 kb, including 10 kb upstream of

the transcription initiation site and 10 kb downstream of the

termination site. We then selected SNPs in strong LD (r2.0.8)

against at least one other SNP conserved across populations and

inferred major haplotypes (.5%; see Panel B) within the block

containing the peak SNP (the labeled triangular area in the LD

plot in Panel A). To simplify the presentation in Figure 2, we show

only SNPs with rare allele frequencies greater than 20% in either

population (additional SNPs do not alter the primary result we

obtained). These major haplotypes clustered into two frameworks,

A and B, tagged by a set of fmSNPs having the highest allele

frequency within the block (common and rare alleles are colored in

green and red, respectively). Major haplotypes within each

framework can be further tagged by other SNPs having lower

allele frequencies (rare alleles colored in purple). For this gene, as

well as many others (genes 1 to 14 in Table 1; also see Supporting

Information Figures S1 for detailed analyses), the fmSNPs showed

the strongest association with the expression phenotype. We

designated these genes (14 of 26) as class I in Table 1.

In addition to the peak SNP-fmSNP correlation, we observed

that a few SNPs showing the strongest association, despite having

no correlation with fmSNPs, exhibited a unique characteristic:

namely, that of being in strong LD against a relatively large

number (the vast majority) of other SNPs within the LD block. As

shown in Figure 3, at BTN3A2, using the same SNP selection

criterion of pairwise LD (r2.0.8), the major haplotypes within the

block were delineated (Panel B). The heritable, unidirectional

allelic imbalance and the regulatory haplotype of this gene were

also discussed in Pastinen et al. [21]. Although the reported peak

SNP, rs9379851, was not in strong LD against frequency-derived

fmSNPs (r2 = 0.04, 0.21, 0.40 in YRI, CEU, and CHB/JPT

populations, respectively), it was highly correlated with many other

SNPs tagging the haplotype B4 within the 24 kb LD block (3%,

12%, 9% frequency in YRI, CEU, and CHB/JPT, respectively).

To date, most genetical genomics studies are solely based on

association tests between individual SNPs and expression pheno-

types. One advantage of our haplotype-based approach is its

capability of incorporating evolutionary analysis. Currently, there

are two general approaches for inferring ancestry — one is based

on the frequency of SNP alleles and the other on the comparison

of corresponding nucleotides in species closely related to human

beings, e.g., chimpanzees. Independent studies have reported that

there was a general agreement between the two approaches

[22,23]. The more common human allele generally matches the

corresponding nucleotide in the chimpanzee genome (76%

concordance as reported in Hacia et al. [22]). Given the

conservation of the haplotype frameworks defined by fmSNPs

across other out-of-Africa populations [9], these frameworks are

likely haplotype backgrounds upon which more recent mutations
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Figure 2. Delineation of underlying haplotype framework structure encompassing the HSD17B12 gene (Class I cis-regulatory gene).
(A) Diagram depicting the HSD17B12 gene and its chromosomal position (reproduced from the HapMap graphical browser), aligned with the local LD
structure determined in YRI (output from the Haploview program) using LD-selected SNPs. For simplifying this presentation, we focused on common
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having lower allele frequencies have been superimposed. Since all

genes selected for this study are reported cis-regulatory genes, we

considered whether our observed correlation between fmSNPs

and SNPs showing the strongest association with expression

differences was a consequence of selection in earlier human history

and whether genes behaving like BTN3A2 were under more recent

selection in the African population, resulting in population-specific

frequency distortion.

We subsequently conducted evolutionary analysis of the

common haplotypes across all 26 genes (Supporting Information

Figures S1). For all the SNPs employed in our haplotype

construction, we mapped the corresponding chimpanzee nucleo-

tides using chimpanzee reference sequences, followed by median-

joining (MJ) network analysis to derive phylogenetic relationships

among all major haplotypes. As shown in Figure 4A, at

HSD17B12, the two frequency-derived haplotype frameworks (A

and B) were separated directly from the ancestral haplotype. In

addition, we performed coalescent-based likelihood analysis to

draw the maximum likelihood genealogical relationships among

the common haplotypes. The result also supported the hypothesis

that underlying these haplotype frameworks were older mutations

closer to the root of the gene tree. Thus, the differential expression

pattern of these haplotypes was likely to have appeared early in

human evolutionary history.

For genes showing the features exemplified by BTN3A2, we

observed a weaker correlation between the more common allele

and the chimpanzee nucleotide, i.e., a more significant proportion

of the rare alleles matched the ancestral nucleotides. Phylogenetic

analysis, typified by the results of Figure 4B, suggested that the

ancestral haplotype was between the haplotype, B4, carrying a

relatively large number of tagging SNPs in strong LD, including

the peak SNP, and the rest of the B haplotypes. Similarly, the

coalescent-based maximum likelihood tree structure also suggested

that the accumulation of such a long stretch of B4-tagging SNPs

likely occurred early in the tree. Hence, for such genes, the

differential expression pattern also evolved early, except that the

frequency of the cis-regulatory haplotype showing differential

expression was often lower in current populations having African

ancestry, presumably a consequence of more recent population-

specific selection. We designated these genes (following only the

chimpanzee-inferred ancestry) as Class II (7 genes out of 26) in

Table I. Five of them showed the characteristic of carrying a

relatively large number of tagging SNPs in strong LD (BTN3A2,

SERPINB10, LRAP, CAV2, OAS1).

Since the majority of our sampled genes exhibited the same

evolutionarily conserved feature, we next asked whether their cis-

regulatory phenotypes were, as expected, also conserved across

populations. Based on one set of expression data in YRI

(GSE6536, Illumina platform) and two sets data in CHB/JPT

(GSE5859, Affymetrix platform; GSE6536, Illumina platform), we

tested the association for all tagging SNPs (Figure 4 and

Supporting Information Figures S1). Only three genes in Class I

and II did not show significant association in at least one other

population (Table 1). In addition, for all genes showing significant

cis-association across multiple ethnic populations, the direction of

allelic effect on expression was always consistent, strongly

supporting the hypothesis that the cis-regulation was derived early

and still being maintained in current populations.

Overall, among the 26 cis-regulatory loci we analyzed,

frequency-derived fmSNPs showed strongest association with

expression phenotypes for 14 genes (Class I), 11 of which also

demonstrated the chimpanzee-inferred ancestry. Seven genes

(Class II) followed only the chimpanzee-inferred ancestry, but

not the frequency-derived haplotype frameworks. A total of 80%

(21/26) of genes followed either frequency- or chimpanzee-

inferred ancestry. To determine if this distribution of cis-regulatory

loci could be the result of chance, we performed simulations using

LD-selected common SNPs within the analyzed LD blocks of the

same 26 genes. Assuming that every SNP had the same probability

to be the cis-regulatory variant, our simulations, under a

completely random-occurrence scenario, resulted in an average

of only 13 genes showing an association of a cis-regulatory variant

with the SNPs tagging the major branches separated from

ancestry. When compared to the total of 21 genes actually

observed, our simulation resulted in a significant deviation

(p = 1026). Therefore, we rejected the null hypothesis of

randomness. We concluded that, in the 26 genes, there was a

higher probability of SNPs tagging the major lineages separated

from ancestry to be cis-regulatory variants. Also of note, for the five

genes showing no correlation with either ancestry inference, the

frequency-derived fmSNPs of these five genes all showed

individually significant association in at least one population,

measured by at least one platform.

Discussion

Earlier linkage studies have shown that quantitative gene

expression levels are significantly heritable [12,24]. Although both

cis- and trans-linkages have been detected, one interesting

observation has been the enrichment of cis-linkages among the

strongest signals, a phenomenon also observed in mice and rats

[25–27]. Recent genetical genomics studies based on whole

genome association tests have also revealed that a majority of

signals for differential expression are cis-acting [13,16]. Overall,

current data suggest that cis-regulatory effects are more consistent

and larger. In contrast, trans-acting signals are more modestly

significant and often are not replicated (reviewed in [7,17]).

Since our current knowledge of trans-acting regulation may still

be insufficient for comprehensive association studies [17], an

adequate approach at this stage would be to focus on the

identification of cis-regulatory genes that are heritable as a

SNPs (frequency .0.2) in either the HapMap YRI or CEU populations. Pairwise calculation of standardized LD, r2, was first determined using YRI data.
SNPs in strong LD (r2.0.8) with at least one other SNP and also exhibiting conserved LD in CEU and CHB/JPT were selected for the LD plot and
haplotype analyses. The original SNP reported to show the strongest association with expression (peak SNP) is marked with a solid black triangle at its
physical position and mapped to its corresponding position in the LD plot. The LD block containing the peak SNP is surrounded with black lines. (B)
Haplotype frameworks within the block containing the peak SNP. The major haplotypes (.5% in either population) and their population frequencies
were inferred using the Haploview program. Five major haplotypes in the YRI population clustered into two haplotype frameworks (A and B) that can
be tagged by a set of SNPs (fmSNPs) in strong LD and having the highest allele frequency within the block. The common alleles of fmSNPs are
colored green, and the rare alleles red. The rare alleles of other lower-frequency SNPs are colored purple. Comparison of major haplotypes delineated
in CEU and CHB/JPT using the same sets of SNPs showed an identical haplotype structure with a different frequency distribution as shown to the
right. (Four SNPs having no genotype information in CEU were left blank.) All SNP reference (rs) numbers are shown above, with the original reported
peak SNP, rs4755741, outlined in black. The chimpanzee nucleotides corresponding to each SNP are shown below. The colors of SNP alleles used in
CEU, CHB/JPT, and chimpanzee follow the convention defined in YRI. The stars below chimpanzee nucleotides indicate polymorphisms located at (C/
T)pG positions on either strand.
doi:10.1371/journal.pone.0003362.g002
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Figure 3. Delineation of underlying haplotype framework structure encompassing the BTN3A2 gene (Class II cis-regulatory gene). (A)
Diagram depicting the BTN3A2 gene, its chromosomal position, and the local LD structure. This panel follows the convention in Figure 2 except that,
for simplifying the presentation, we focused on common SNPs with frequency .0.1 in HapMap populations. (B) Haplotype frameworks within the
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monogenic trait. Currently, most genetical genomics studies

searching for cis-regulatory genes are based on association tests

between individual SNPs and expression phenotypes. However,

while the SNP density employed in the commercially available,

high-throughput platforms keeps growing, the major trade-off is

true associations failing to pass the stringent statistical correction

for multiple testing. Our analysis indicates that, since the vast

majority of true cis-regulatory genes carry evolutionarily common

signatures, the use of such signatures (fmSNPs for class I genes and

subhaplotypes with many SNPs in high LD for class II genes)

should provide more effective identification of true positives. Also,

since recent major studies have only focused on a limited number

of expressed genes in lymphoblastoid cell lines, learning the

common genetic characteristics of identified cis-regulatory genes

from these studies should help future identification of other

globally-conserved cis-regulatory genes across different tissues.

Genetical genomics studies, often based on different platforms

with different experimental designs, have in the past shown poor

correlation between studies [17]. Examples are given at LRAP and

SFRS6 (Supporting Information Figures S1), where an apparent

discrepancy across the two major commercial platforms, Illumina

and Affymetrix, is shown. In the case of SFRS6, different 50mer

probes used in the Illumina platform also produced a discrepancy,

probably a consequence of different probes recognizing alternative

transcripts. Other questions regarding statistical analysis and cell

line variability have also arisen, leading to warnings to interpret

results with caution [7,28,29]. We would like to note, however,

that our observations were based on a collection of cis-regulatory

genes from independent studies, conducted in different laborato-

ries using different approaches, but confirmed using an indepen-

dent dataset with a larger sample size. Although the number of

genes we collected is limited in this study, we nonetheless observed

common genetic features of these cis-regulatory genes that could

be applied to a significant fraction of genes analyzed (21/26 in

which the reported associations could be replicated). While it is

possible that our observation was only a result of enrichment of a

specific profile of cis-regulation using the top association hits from

different studies, other examples fitting our observation have

independently appeared in recent literature, for example, the

clustering of VKORC1 and NPY haplotypes based on their

expression phenotypes and their correlation to drug and stress

response [5,30]. This suggests that these features may be a general

and powerful means of discovering evolutionarily-conserved

variants of gene expression. Since the variants were generally

common in current populations, they will likely prove useful for

validating expression differences across multiple tissues, popula-

tions and enhancing our understanding of the differential

predisposition to common diseases and variation in drug responses

in different ethnic groups.

Recent surveys have shown that many gene coding regions in

the human genome do not show an excess of low-frequency alleles,

suggesting that balancing selection might be more common than

previously thought (reviewed by Bamshad et al. [31]). Our

analyses also revealed that haplotypes in current populations

carrying high- and low-expression phenotypes were nearly

exclusively evolved early in human evolutionary history

(Figure 4), likely as a consequence of balancing selection.

Therefore, disease gene variation taking the form of cis-acting

eQTLs may have a narrower allelic spectrum toward high

population frequencies, as predicted by the common diseases/

common variant (CDCV) model that genetic risk of common

diseases is often conferred by alleles having relatively high

frequencies [32].

Methods

cis-regulatory genes included in this study
As shown in Supporting Information Table 1, a total of 44 genes

showing stringently determined cis-association with expression

phenotypes were initially collected from five major studies [12–

16]. These studies were all conducted with lymphoblastoid cell

lines of CEPH or HapMap CEU samples (Utah residents with

ancestry from northern and western Europe) using an earlier

release (phase I) of HapMap genotype data, but employing

different expression platforms. Although the majority of these

genes demonstrated prior positive results for linkage or allelic

imbalance (AI) assays, we added a further validation step by

confirming the cis-association using an independent dataset having

a relatively large sample size [33] (GSE8052; Affymetrix platform;

400 UK samples). Thirty of the 44 genes passed the genome-wide

significance threshold (a LOD score of 6.076, corresponding to a

false discovery rate of 0.05, as listed in supplementary table 1 in

Dixon et al. [33]). Of the thirty genes, four genes were excluded

from our analysis (GSTM1 and GSTM2: known region of structure

variation [deletion]; PSPHL: probe 205048_s_at mapped to a

region having no annotated gene in the b35 assembly; POMZP3:

HapMap SNP density too low for our haplotype analysis). Overall,

we included 26 genes for our haplotype and cis-association analysis

listed in Table 1.

SNP selection for delineating haplotype framework
structure

SNP data from HapMap release 21/Phase II in July, 2006,

based on NCBI b35 assembly and dbSNP b125, were downloaded

using the graphical browser provided by the International

HapMap Project (http://www.hapmap.org/). For regions encom-

passing at least 10 kb upstream and downstream from initiation

and termination sites of the pre-mRNA transcript, genotypes

(forward strand) of 60 YRI (Yorubans of Ibadan, Nigeria), 60 CEU

(Utah residents with ancestry from northern and western Europe)

individuals (parents of family trios) and 90 CHB/JPT (Han

Chinese in Beijing, China, and Japanese in Tokyo, Japan) were

employed for LD-based SNP selection and local haplotype

framework analyses. For delineating major haplotypes with

frequencies greater than 5% in current populations, SNPs having

rare allele frequencies greater than 5% in any population were

screened first (unless otherwise noted in the figures), followed by

selection using the pairwise LD measure [34], r2, for those in

strong LD against at least one other SNP (based on the criterion of

r2.0.8). SNPs showing conserved LD behavior across populations

were employed in haplotype construction, as described in our

previous publication [9].

Delineation of LD and haplotype framework structure
For each analyzed region, the LD plotting, haplotype block

partitioning, and the delineation and population frequency estimation

block containing the peak SNP. This panel also follows the convention in Figure 2. The pairwise LD measure, r2, between the peak SNP and fmSNP is
shown in all three populations. Sets of SNPs in strong LD, determined using YRI genotypes and based on the criterion of r2.0.8, are depicted at the
bottom. The number of SNPs in each bin is shown to the left. The SNP set marked in red, containing an extraordinarily large number of SNPs relative
to other bins (tagging haplotype B4 within the block), shows the strongest association with expression phenotypes.
doi:10.1371/journal.pone.0003362.g003
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Figure 4. Phylogenetic relationships among current major haplotypes and the association to expression phenotypes. Median-joining
(MJ) network analysis was conducted using the Network program for HSD17B12 (Class I; shown in panel A) and BTN3A2 (Class II; shown in panel B).
The major haplotypes in HapMap populations shown in Figure 2 and 3 were entered, using their population haplotype frequencies, along with the
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of major haplotypes were performed by the HAPLOVIEW program,

version 3.32 (http://www.broad.mit.edu/mpg/haploview) [35]. The

haplotype block partitioning was generally determined with YRI data

using one of the three methods (confidence intervals, four gamete

rule, solid spine of LD) incorporated into the HAPLOVIEW

program, depending on which covered the most extensive area

containing the peak SNP. For some genes, we covered more extensive

regions to increase informativeness. The haplotype frameworks were

clustered based on YRI allele frequencies, as described in our

previous publication [9].

Genealogical analysis
Phylogenetic relationships among major haplotypes were

analyzed by the Median Joining (MJ) network algorithm packaged

in the NETWORK program, version 4.201 (http://www.fluxus-

engineering.com/sharenet.htm) [36]. The major haplotypes in

either population, along with chimpanzee haplotypes, were

entered with their population haplotype frequencies. The

chimpanzee haplotypes were derived using corresponding nucle-

otides in the chimpanzee reference sequences, retrieved using the

UCSC genome browser (http://genome.ucsc.edu/) [37]. SNPs

located at (C/T)pG positions on either strand, because of their

higher mutation rate, were generally excluded from this analysis.

Coalescent-based genealogical analysis was performed by the

GENETREE program version 9.0 (http://www.stats.ox.ac.uk/

g̃riff/software.html) [38]. It applies the Markov chain simulation

to perform likelihood estimates of tree probabilities under the

infinite site model. The major haplotypes in the three populations

(denoted as subpopulations) at HSD17B12 and BTN3A2 (shown in

Figure 4) were entered using their population haplotype

frequencies. The chimpanzee corresponding alleles of the

polymorphic sites were designated as ancestral alleles.

Association analysis
LD-derived SNP bins were defined from SNPs within the block

containing the originally reported peak SNPs using the TAGGER

program (‘‘tagger pairwise’’ option) incorporated into the

HapMap graphical browser [39]. For each bin (generally marking

the branches in the genealogical analysis), a tagging SNP was

selected based on the completeness of genotypes across the three

populations for testing association. Association analysis between

each tagging SNP and two sets of HapMap expression data, based

on two (Affymetrix and Illumina) platforms and across three

HapMap populations, (GEO accession number GSE2552 [13],

GSE5859 [19], and GSE6536 [20]), was conducted by following

the regression methods described in Cheung et al. [13] (discussed

in [40]). The nominal p-value of each tagging SNP was used for

the determination of SNPs showing strongest association. The

value of 0.05 was used as our cutoff for statistical significance.

Monte-Carlo-based simulation
We tested the hypothesis whether cis-regulatory SNPs were

randomly distributed along the genealogical tree versus an

alternative that there was an enrichment or selection effect among

the 26 genes in Table 1. We performed a Monte-Carlo-based

simulation under the assumption that every common SNP has the

same probability to be the cis-regulatory variant. For each gene, we

randomly selected an LD-selected common SNP (as shown in all

figures) under a binomial distribution. The number of trials was the

count of common SNPs and the probability of a cis-regulatory

variant was the number of SNPs tagging the major lineages

separated from ancestry divided by the total number of LD-selected

common SNPs across the investigated LD blocks of all genes. Our

test statistic compared the average number of genes found in a series

of 1,000,000 simulations, versus the observed 21 genes.

Supporting Information

Supporting Information Figures S1

Found at: doi:10.1371/journal.pone.0003362.s001 (7.15 MB

PDF)
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