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Abstract Telomeres are guanine-rich sequences at the end of chromosomes which
shorten during each replication event and trigger cell cycle arrest and/or controlled
death (apoptosis) when reaching a threshold length. The enzyme telomerase replen-
ishes the ends of telomeres and thus prolongs the life span of cells, but also causes
cellular immortalisation in human cancer. G-quadruplex (G4) stabilising drugs are
a potential anticancer treatment which work by changing the molecular structure of
telomeres to inhibit the activity of telomerase. We investigate the dynamics of telom-
ere length in different conformational states, namely t-loops, G-quadruplex structures
and those being elongated by telomerase. By formulating deterministic differential
equation models we study the effects of various levels of both telomerase and concen-
trations of a G4-stabilising drug on the distribution of telomere lengths, and analyse
how these effects evolve over large numbers of cell generations. As well as calculating
numerical solutions, we use quasicontinuum methods to approximate the behaviour
of the system over time, and predict the shape of the telomere length distribution.
We find those telomerase and G4-concentrations where telomere length maintenance
is successfully regulated. Excessively high levels of telomerase lead to continuous
telomere lengthening, whereas large concentrations of the drug lead to progressive
telomere erosion. Furthermore, our models predict a positively skewed distribution
of telomere lengths, that is, telomeres accumulate over lengths shorter than the mean
telomere length at equilibrium. Our model results for telomere length distributions of
telomerase-positive cells in drug-free assays are in good agreement with the limited
amount of experimental data available.
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1 Introduction

Most normal cells cycle and divide a limited number of times, a discovery first made
by Hayflick (1965), who grew normal human fibroblasts in culture and observed 60–
80 population doublings before apoptosis. The limited number of divisions is referred
to as the Hayflick limit (Hayflick 1979). On reaching the Hayflick limit, cells cease
proliferation permanently and enter a state called replicative senescence in which they
are still alive and functional but do not divide. The erosion of protective structures
located at the ends of chromosomes, known as telomeres, during each replication is
responsible for the limited lifespan of a cell, marking the ageing of cells and eventually
triggering irreversible cell cycle exit and cell death when telomeres become critically
short. Unprotected telomeres are detected by the DNA repair machinery and trigger
a DNA damage response characterized by the formation of telomere dysfunction-
induced foci at telomeres (Takai et al. 2003). Activation of the tumour suppressor
gene p53 then triggers cell cycle arrest leading to apoptotic cell death or replicative
senescence through the induction of p21. Alternatively, expression of p16 can induce
senescence, although this is less well understood (Deng et al. 2008).

There have been several approaches based on mathematical modelling to understand
telomere length dynamics of somatic and cancerous cells and how they contribute to
chromosome stability and the initiation of senescence or apoptosis. The first papers on
quantitative modelling of telomere dynamics describe the process of telomere short-
ening by simple deterministic (Levy et al. 1992) and probabilistic (Arino et al. 1995;
Olofsson and Kimmel 1999) models, which only take account of losses due to a special
phenomenon called the end-replication problem causing telomeres to shorten progres-
sively with each cycle (see Sect. 2.1). Rubelj and Vondracek (1999) extended these
previously established models of telomere shortening (‘gradual telomere shortening’)
by the introduction of the possibility of ‘abrupt telomere shortening’ caused by DNA
repair mechanisms due to accumulation of DNA damage, producing sudden, stochas-
tic changes in telomere length, and becoming more frequent as telomere shortening
advances. Similarly, Sozou and Kirkwood (2001) and Proctor and Kirkwood (2002)
included environment-dependent components effecting telomere shortening, where
oxidative stress in form of endogenous reactive oxygen species produced by mutant
mitochondria is assumed to be the cause of substantial telomere loss.

Telomere length is maintained in most cancer cells by the enzyme telomerase capa-
ble of adding new telomeric DNA onto chromosome ends. Mechanisms contributing to
telomere length equilibrium have been considered by Blagoev (2009), who proposed
a model in which telomere extension by telomerase occurs more frequently at short
telomeres than at long telomeres. A logistic function describes the probability of the
occurrence of an extendible state of telomeres, opposed to a capped state, which was
inspired by data from experiments in Teixeira et al. (2004) on telomere elongation in
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yeast cells. Other work on the dynamics of telomere length by Qi (2011) compares the
effects of normal ageing, accelerated ageing of patients with Werner’s syndrome and
the unlimited lifespan of telomerase-positive cells, where models involve telomere-
length-dependent telomere loss and gain as well as telomere-length-dependent prob-
abilities for cell division.

Mathematical models can be a useful means for integrating different types of exper-
imental data to predict the mechanism of action of compounds (Wolkenhauer et al.
2009). In this paper, we aim to develop and analyse differential equation models of the
effects of G-quadruplex ligands on telomere length regulation in telomerase-positive
cancer cells, where we consider different time-scales, from one cell cycle to a large
number of cell replications.

In Sect. 2 we explain the background biology. In Sect. 3 we develop and analyse
a model describing the telomere length dynamics for telomerase-positive cells during
one cell cycle and investigate how they respond to treatment with the G4-stabilising
drug RHPS4. This model can also be used to describe telomere length dynamics
over a small number of cell generations. In Sect. 4 we investigate for what levels of
telomerase and RHPS4 the telomere length distributions stabilise over a large number
of cell generations, and we predict the corresponding steady-state length distributions.
Section 5 summarises the results and contains a concluding discussion.

2 Background biology

2.1 Telomeres

Mammalian telomeres are specialised nucleotide sequences that protect the end of
chromosomes. Telomeres contain short tandem repeats—sequences of basepairs that
are repeated numerous times. The sequence of the repeat unit is TTAGGG in mam-
malian cells and human telomeres contain around 10–15 kilobasepairs per chromo-
some end at birth. Telomeres of most somatic cells typically shorten in the synthesis
(S) phase of the cell cycle during each replication due to the “end-replication prob-
lem”, that is, the inability to fully replicate the terminating DNA sequences (Levy et
al. 1992). One shorter and one longer telomeric end are generated during replication,
where the longer strand is generally rich in guanosine (G) and devoid of cytosine (C).
The single-stranded protrusion of the longer strand is referred to as the G-overhang,
which varies between 50–500 nucleotides in mammalian cells and is considerably
shorter in most other eukaryotes. About 3 basepairs are lost from one DNA strand on
each round of cell division due to the end-replication problem. However, human and
mouse telomeres shorten by about 50–200 basepairs during each replication at both
telomeric ends and the average telomere length in human cells decreases by roughly
2–4 kilobases during their lifetime. A more likely explanation of the intensive and
double-sided telomere shortening is postreplicative processing by a nuclease (Palm
and de Lange 2008; Makarov et al. 1997). Also, oxidative stress in the from of reactive
oxygen species, which accumulates over the lifespan of a cell, causes accidental lesion
in the DNA and is assumed to be the cause of substantial telomere loss (Richter and
von Zglinicki 2007; von Zglinicki et al. 2005).
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This progressive telomere erosion has been designated as the reason why normal
mammalian somatic cells only divide a finite number of times in vitro, before under-
going permanent growth arrest. It is, however, not yet clear whether it is the average
telomere length (Martens et al. 2000) or the length of the shortest telomere (Hemann
et al. 2001) that is critical for the onset of cell cycle arrest in a cell. Looking at the
distribution of telomere lengths can help determine whether a percentage of short
telomeres or the mean telomere length is a trigger for the onset of replicative senes-
cence. Telomeres that become critically short, and thus unprotected, are recognised by
the cell as DNA double-strand breaks, inducing senescence and apoptosis, which is
dependent on the expression of the oncosuppressor gene p53. Those cells which pass
this point in cell replication through inactivation of p53 continue dividing, lose all their
protective telomeric DNA and enter a state called crisis, causing end-to-end joining of
chromosomes and other forms of enormous genomic instability, carcinogenesis and
eventually cell death (see Greenberg 2005 for a review).

2.2 Telomerase

The enzyme telomerase can antagonise telomere shortening by association with the
telomeric end, where it progressively synthesises telomeric repeat sequences at the
single-stranded overhang of the telomere, thus inhibiting telomere uncapping which
occurs when telomeres become too short. It has been suggested that human telomerase
acts rapidly on most (∼70–100 %) telomeres following replication (Wu and de Lange
2009) and requires the telomeric G-overhang for telomere elongation. In HeLa cells
that were synchronised at the G1/S transition, the total overhang length gradually
increased over the next 6–7.5 h (Zhao et al. 2009; Dai et al. 2010), indicating a phase of
increased telomerase activity, and that telomeric sequences are replenished each time
a cell divides. Telomerase consists of TERC (Telomerase RNA Component) with a
template region for copying telomeric repeat sequences, and the catalytic protein TERT
(Telomerase Reverse Transcriptase), which catalyses the G-rich extension of linear
chromosomes. TERC is generally highly expressed in all cells, and independently of
telomerase activity, whereas the concentration of TERT is estimated at less than 50
copies per cell. In normal somatic cells the catalytic subunit TERT is repressed, but it
is upregulated in immortal cells, suggesting it is the major determinant for telomerase
activity.

The majority of cancer cells express telomerase continually; they possess altered
telomeres and have the potential for unlimited replication. Telomerase was found to
be present in 85–90 % of cancerous cells and it is believed that its specific role is to
immortalise these cells (Kim et al. 1994). Most of the remaining 10–15 % of cancer
cells, in contrast, can maintain their telomeres by a telomerase-independent pathway
called alternative lengthening of telomeres (ALT); see Cesare and Reddel (2010).

2.3 Telomere structure

The extendible, open form of telomeres is presumably the most likely form occurring
during telomere synthesis. Telomeres, however, can loop back and tuck their single-
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stranded end into the duplex DNA of telomeric sequences to form a t-loop (reviewed
by Blackburn 2001; de Lange 2004, 2009), where a specific protein complex named
shelterin (or telosome) (de Lange 2005; Palm and de Lange 2008) is involved in pro-
tecting chromosome ends from DNA degradation and DNA damage responses. The
t-loop might dissolve during DNA replication; however, it is not yet known whether
t-loops switch into an open state during the S phase or persist throughout the cell
cycle. In our model (Sect. 3) we will assume that t-loops also function as telomerase
inhibitors, as they hide the telomeric G-rich end from access by telomerase, and struc-
tural rearrangements between t-loops and the open form of telomeres allow telomerase
to establish telomere length homeostasis.

Alternatively, telomeric ends can spontaneously fold into guanine-rich structures
called G-quadruplexes (G4), discovered by Henderson et al. (1987), which are sup-
ported by monovalent cations such as potassium (K+) in the nucleus. G4 structures
form in vivo and probably unfold during telomere replication (Schaffitzel et al. 2001).
When G-quadruplexes are located at the very end of the telomeric G-overhang, which
has been shown to be their preferred location (Tang et al. 2008), the enzyme telom-
erase is inhibited by the folding of the G-rich end (Zahler et al. 1991). For reviews
of G-quadruplex structures in vitro and in vivo, see Lipps and Rhodes (2009) and
Knig et al. (2010). More general reviews on telomere structures and their function in
chromosome-end protection can be found in Oganesian and Karlseder (2009) and Xu
(2011).

Optimal telomerase activity seems to require the unfolded single-stranded form
of terminal telomere sequences. Despite the length variation of individual telomeres
within a cell or an organism, average telomere length is maintained within a narrow
range that is specific for each species. Studies of sperm (Allsopp et al. 1992), for
instance, suggest 8–20 kb in human, where germ-line cells generally express telom-
erase (except from mature sperm and oocytes, see Wright et al. 1996). Furthermore,
data on telomere length in the telomerase-positive HeLa and MCF-7 human breast can-
cer cell lines (Canela et al. 2007) indicate a coefficient of variation of, respectively, 0.23
and 0.11. The stability of telomere length suggests the thesis that telomerase-positive
cells establish an equilibrium between telomere attrition and elongation. However,
Cristofari and Lingner (2006) found that HeLa telomeres, which were observed over
56 population doublings (PD), elongated at a constant rate of 415–635 bp/PD upon
overexpression of the main functional subunits of the enzyme telomerase, the catalytic
protein TERT and the telomerase RNA component (TERC). This massive telomerase
activity is referred to as super-telomerase, and long telomeres did not change into a
permanently non-extendible state in super-telomerase cells.

Telomere length has been measured using different techniques, among which telom-
ere restriction fragment (TRF) analysis using Southern blotting (Kimura et al. 2010),
and quantitative fluorescence in situ hybridization (Q-FISH) (Poon et al. 1999) have
been frequently used. Several reviews of the techniques of telomere length measure-
ment can be found in the literature (Saldanha et al. 2003; Dmitriev and Vassetzky 2009;
Samassekou et al. 2010). A recent high-throughput (HT) Q-FISH method (Canela et
al. 2007) generates telomere-length frequency histograms, and allows for the analysis
of interphase nuclei. Telomere length is maintained in telomerase-positive HeLa cells,
for example, with a measured mean value of L0 = 3.44 kb and standard deviation of
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Fig. 1 a A HT Q-FISH histogram of the telomere length distribution of HeLa cells, where n = 495 nuclei
were analysed, adapted from Canela et al. (2007), with permission from PNAS. b A gamma probability
density function, p(x) = e−x/θ xγ−1/(θγ Γ (γ )), for the telomere length in HeLa cells, with mean
L0 = 3,440 bp and standard deviation σ0 = 800 bp, that is with the parameters γ = L2

0/σ 2
0 and θ = σ 2

0 /L0,
is indicated by the solid gray line. The rate of t-loop formation (see Sect. 3 and formula (1)), kc(x), is
modelled by a sigmoidal function of telomere length (dashed line) with shape parameters α = 1,775 bp,
β = 300 bp and δ = 5×10−5 s−1. Shorter telomeres are more likely to be in an unlooped form than longer
telomeres

σ0 = 0.80 kb. A HT Q-FISH histogram of the telomere length distribution of HeLa
cells is shown in Fig. 1a, which we approximate by a gamma distribution in Fig. 1b,
shown by a solid gray line.

Investigation of Martens et al. (2000) into normal human fibroblasts (telomerase-
negative) having a limited lifespan showed that short telomeres increasingly accumu-
late in cells and the length distribution of telomeres becomes positively skewed close
to senescence. Proctor and Kirkwood (2003) considered the uncapping of telomeres
by the opening of t-loops as a trigger for replicative senescence to account for the
experimental results found by Martens et al. (2000).

2.4 Quadruplex-stabilising drugs

On the other hand, stabilisation of G-quadruplexes by specific ligands can limit telom-
erase activity and alter telomere function in cancer cells. Anti-cancer researchers are
now trying to design G-quadruplex ligands that will mimic the effect of the metal
ions and inhibit telomerase, with the aim of achieving antitumour activity through
the effective stabilisation of G-quadruplexes (Monchaud and Teulade-Fichou 2008).
The G-quadruplex ligands RHPS4 (3,11-difluoro-6,8,13-trimethyl-8H-quino[4,3,2-
kl]acridinium methosulphate) (Heald et al. 2002) together with the 3,6,9-trisubstituted
acridine compound BRACO-19 (Gunaratnam et al. 2007) and telomestatin (Tauchi et
al. 2006), are promising compounds among the cancer inhibitor agents and have come
close to clinical testing (Bilsland et al. 2011). These compounds all inhibit telomerase
activity, limiting long term proliferation of cancer cells, and directly target compo-
nents of the protective cap of telomeres, leading to immediate effects on cancer cell
proliferation (Neidle 2010).

Cheng et al. (2008) compared relative quadruplex and duplex binding affinity
constants of different quaternary polycyclic acridinium salts and found that quater-
nised quino[4,3,2-kl]-acridinium salts, such as RHPS4, selectively bind and stabilise
quadruplex DNA. Also, quadruplex DNA binding affinity correlated strongly with
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telomerase-inhibitory activity data for these G4 ligands. Cookson et al. (2005) showed
a notable reduction in telomere length of MCF-7 breast cancer cells when treated with
subtoxic doses (<1 µM) of RHPS4. RHPS4 treatment of human melanoma lines pos-
sessing relatively long telomeres resulted in a dose-dependent decrease in cell repli-
cation and accumulation of cells in the S-G2/M phase of the cell cycle (Leonetti et
al. 2004). Furthermore, RHPS4 induces a marked decrease of cell growth in human
cell lines such as the 21NT breast cancer cells and A431 vulval carcinoma cells after
15 days and for concentrations lower than the level of acute cytotoxicity (Gowan et
al. 2001). It also rapidly induces telomere dysfunction by telomere uncapping, which
leads to short-term cell death through usage of higher doses. Integrative approaches
to investigate the effects of RHPS4 experimentally and by means of mathematical
modelling were proposed by Johnson et al. (2011) and Hirt et al. (2012). The precise
cell-cycle specific behaviour of RHPS4 and its mechanism of action in cancer cells,
however, are still to be elucidated.

2.5 Mathematical modelling

Golubev et al. (2003) used mathematical modelling to investigate possible causes for
the observed positive skewness of telomere length distribution, such as DNA damage
caused by free radicals. Similarly, Grasman et al. (2011) characterise the dynamics
of telomere shortening by the property that longer telomeres are more vulnerable
to oxidative stress, as they are larger targets. The enzyme telomerase is also active
at a low level in some somatic cells (Masutomi et al. 2003), such as human fibrob-
lasts, and telomerase-dependent shortening, leading to positively skewed telomere
length distributions, has been explained by op den Buijs et al. (2004). Another mech-
anism yielding skewed telomere length distributions has been described by Itzkovitz
et al. (2008), who developed a population mixture model with a re-populating pool of
stem cells of constant telomere length and a derived pool which experiences constant
decrease in telomere length, where one daughter cell of the repopulating pool stays
and one transfers to the derived pool after cell replication.

Furthermore, there are a number of models of telomere-length maintenance in
telomerase-positive cells. For example, Kowald (1997) developed a mathematical
model involving the concentration of a capping protein, which can bind the G-overhang
once it is sufficiently long, and which inhibits telomerase and facilitates DNA repli-
cation by maintenance of the single-stranded overhang it is bound to, but is released
after telomere replication. To account for the assumption that the functional state of
the telomere rather than its length determines the fate of a cell, Arkus (2005) consid-
ered the binding and dissociation of a telomeric protein, TRF2, to telomeric repeat
sequences, assuming that TRF2 caps telomeres and inhibits telomerase. Rodriguez-
Brenes and Peskin (2010) proposed another approach of modelling telomere length
maintenance processes based on the biophysics of t-loop formation, which is assumed
to determine the state of a telomere and also the cell’s fate. They assumed that the
longer telomeres are, the more frequently telomere ends come into close proximity of
internal positions of the telomere, and hence the more likely are invasions of double-
stranded DNA by the G-overhang, which can be facilitated by TRF2 and results in the
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Fig. 2 Model of telomeric states U, B, G, C. Kinetics for each reaction are described by their rate constants
k. Free telomerase (T) and the G4-stabilising drug (R) in the nucleus bind open forms (U) and G4 structures
(G), respectively. Telomerase elongation occurs at rate ρ. Telomeres enter the system at rate ke and exit the
system due to t-loop formation at rate kc(x) and due to G4-stabilisation by a G4 ligand at rate kr . Here, x
is the length of a telomere. The transitions U → t-loop and C → stabilised G-quadruplex are assumed to
be irreversible, and only through replication telomeres could leave these states

formation of displacement loops together with t-loops. The dynamics of t-loop forma-
tion were described by a worm-like chain model and an algorithm was developed to
sample telomeric chromatin chains (modelled as semi-flexible polymer chains) at ther-
modynamic equilibrium. An ODE model and a stochastic model describe shortening
by the end-replication problem, C-strand processing and telomerase-induced telom-
ere elongation. In addition to telomere length maintenance, Kowald (1997) modelled
the increase in telomere length when oligonucleotides are added to cell culture. On
the other hand, Sidorov et al. (2003) investigated the impact of telomerase inhibition
on the growth of tumours possessing either homogeneous or heterogeneous telomere
length distributions.

Telomerase-independent pathways of telomere length maintenance are considered
by Olofsson and Bertuch (2010), who capture the mechanisms of survivorship of
individual budding yeast cells. Another approach to understanding telomere length
maintenance by means of mathematical modelling is presented by Antal et al. (2007),
who superimpose stochastic telomere length variations upon the systematic decrease
in telomere length in ALT cells.

3 Model for discrete generation numbers

We summarise the mechanisms of telomere length regulation in a simple model con-
taining the states U, B, G and C respectively for the number of telomeres in the open
(Uncapped/Unfolded) form, those Bound to telomerase (T), those in a G-quadruplex
formation and those forming a Complex with the drug RHPS4 (R). The model is illus-
trated in Fig. 2. We refer to B, C and the t-loop in the model as the capped states, to
G as the folded form of telomeres and to U as the state of telomeres that are neither
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capped nor folded, that is in the open form. After telomere duplication in the S phase
telomeres are introduced into system at rate ke in the open form (U) state and then
switch between the open and G4 forms (G4 folding rate k f and G4 unfolding rate ku),
where telomeres in the open form bind to free telomerase molecules T , with asso-
ciation rate kon and dissociation rate koff, which synthesise nucleotides with rate ρ

at the telomere end. Telomeric intramolecular G4 structures do not allow telomerase
association with the G-overhang, and can be stabilised by free G4 ligand molecules
R, where the association and dissociation rates of RHPS4 are ks and kd , respectively.
We assume that one telomerase molecule binds one telomere to elongate the telomeric
end, and one G4 ligand molecule is sufficient to stabilise a G4 form. Furthermore, all
kinetic rates are assumed to be constant and non-negative.

We aim to simulate not only the dynamics of the average telomere length, but also
of the telomere length distribution over time for control cells and cells treated with
a G4-stabilising compound. We include a variable x for the length of telomeres and
allow for a constant influx of telomeres in the open form into the system, at rate ke,
and losses with rates kc(x) and kr , after the formation of t-loops and locking of G4
structures by G4 ligands, respectively. We assume that the rate of t-loop formation kc is
dependent on telomere length, where shorter telomeres are more likely to form t-loops
than longer telomeres. In particular, we approximate the rate of the formation of t-loops
by a sigmoidal function, shown as the dashed line in Fig. 1b, inspired by a quantitative
model for the probability of uncapping of telomeres in mammalian cells (Proctor and
Kirkwood 2003). The shorter the telomeres, the fewer binding sites for certain shelterin
proteins (Griffith et al. 1999) facilitating the t-loop formation are present, and, in turn,
the less likely the t-loop formation becomes. Hence the probability of uncapping is
modelled as a decreasing function of telomere length. Using x to denote the number of
basepairs (bp) of a telomere, we model the rate of t-loop formation (telomere capping)
by

kc(x) = δ

1 + exp((α − x)/β)
, (1)

with shape parameters α > 0 bp, β > 0 bp and δ > 0 s−1. For small β, this has the
form of a step function, with step at x = α; kc(x) ≈ 0 for x < α and kc(x) ≈ δ for
x > α; and β describes the range of telomere lengths over which the transition occurs.

Since the average telomere loss of about μ = 45 bp during chromosome replication
is much less than the initial telomere length of approximately 2k to 6k basepairs in
HeLa cells, we treat telomere length, x , as a continuous variable. The dynamics of the
number of individual telomeres of length x at time t can be mathematically described
by a partial differential equation (PDE) model of the number densities of telomeres in
the states U, B, G, C, that is,

∂

∂t
U (x, t) = ke p(x) + koff B(x, t) + kuG(x, t)

−(kc(x) + konT (t) + k f )U (x, t), (2)
∂

∂t
B(x, t) = konT (t)U (x, t) − koff B(x, t) − ρ

∂

∂x
B(x, t), (3)
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∂

∂t
G(x, t) = k f U (x, t) + kdC(x, t) − (ku + ks R(t))G(x, t), (4)

∂

∂t
C(x, t) = ks R(t)G(x, t) − (kd + kr )C(x, t), (5)

where p(x) is the probability density function of the length of telomeres entering the
system at rate ke. Assuming that telomerase and RHPS4 are conserved quantities in
the system, we have

T (t) +
∞∫

0

B(x, t) dx = T0, R(t) +
∞∫

0

C(x, t) dx = R0, (6)

for the numbers of free telomerase molecules, T (t), and the numbers of free RHPS4
molecules, R(t). The term ρ ∂

∂x B(x, t) is the only derivative term with respect to x in
the model equations and accounts for the process of telomere elongation at rate ρ by
telomerase.

3.1 Steady state

We now assume that the numbers of bound telomerase and bound RHPS4 molecules
are small compared respectively to the numbers of free telomerase and free RHPS4
molecules in the nucleus, that is, T (t) ≈ T0 and R(t) ≈ R0. This assumption requires
kon � koff and kd � ks , which will be verified later (see Table 1). Steady state
telomere length distributions are described by the equations

0 = ke p(x) + koff B(x) + kuG(x) − (kc(x) + konT0 + k f )U (x), (7)

ρ
∂

∂x
B(x) = konT0U (x) − koff B(x), (8)

0 = k f U (x) + kdC(x) − (ku + ks R0)G(x), (9)

0 = ks R0G(x) − (kd + kr )C(x), (10)

for each of the four telomere states U, B, C, G. Using Eqs. (9) and (10), we obtain
C ∝ G ∝ U . We then express U as a function of B and p using equation (7), and
subsequently rewrite (8) as an ODE for the variable B(x). Solving (10), (9) and (7)
respectively, we find

C = ks RG

kd + kr
, G = k f (kr + kd)U

ku(kd + kr ) + kr ks R
, (11)

U = (ke p + kof f B)[ku(kd + kr ) + kr ks R]
[ku(kd + kr ) + kr ks R](kc + konT ) + k f kr ks R

, (12)

then the equation relating the distributions B and p is

�B ′ = −kof f B + konT (ke p + kof f B)[ku(kd + kr ) + kr ks R]
[ku(kd + kr ) + kr ks R](kc + konT ) + k f kr ks R

, (13)
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Table 1 Parameter estimates for the discrete-generation model

Parameter Description Value

kon Telomerase binding rate 2.6 × 10−7 s−1

koff Telomerase dissociation rate 2.2 × 10−4 s−1

ρ Rate of nucleotide addition 6.287 × 10−2 nt s−1

k f G4 folding rate 1.6 × 10−2 s−1

ku G4 unfolding rate 3.8 × 10−3 s−1

K RHPS4 equilibrium binding constant 1.4 × 10−5

ks RHPS4 binding rate 10−7 s−1

kd RHPS4 dissociation rate 7.1 × 10−3 s−1

ke Telomere influx rate 1.5 × 10−2 s−1

kr Telomere loss rate 5 × 10−6 s−1

δ Maximum formation rate of t-loops 5 × 10−5 s−1

α Parameter describing the value x at which kc(x) = δ
2 1,775 bp

β Parameter describing the range of x over which
the transition kc(x) occurs

300 bp

L0 Mean length of HeLa telomeres 3,440 bp

σ0 Standard deviation of HeLa telomere length 800 bp

μ Average telomere loss per cell replication 45 bp

which has the form p = ΛB + νB ′ where both coefficients are x-dependent through
the step-like kc(x).

3.2 Gamma-distributed input

If we temporarily restrict ourselves to consider the lengths x > α and assume β � α

so that kc = δ, then we can find explicit forms for the distribution. We write x̂ = x −α

so we are only concerned with x̂ ≥ 0. The form p( x̂ ) = ΛB( x̂ ) + νB ′( x̂ ) has
special solutions in terms of the Gamma distribution. We model the input function
p( x̂ ) as a gamma distribution with parameters γ and θ , hence

p( x̂ ) = 1

Γ (γ )θγ
x̂γ−1 e− x̂

θ . (14)

Choosing the parameters such that γ = L2/σ 2 and θ = σ 2/L we obtain a distribution
with mean telomere length L and variance σ 2. Choosing the parameters θ = ν/Λ, we
find that both B( x̂ ) and p( x̂ ) are Gamma-distributed with

B(̂x) = x̂γ−1e−Λx̂/νΛγ−1

Γ (γ )νγ
, and p( x̂ ) = x̂γ−2e−Λx̂/νΛγ−1

Γ (γ − 1)νγ−1 . (15)
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Hence, the effect of the process is to increase the exponent from the input value (p)
of γ − 1 to the output (B) value γ . Since the Gamma distribution has mean γ θ , and
variance γ θ2, the overall effect of the process illustrated in Fig. 2 is to increase the
mean from the input value of (γ −1)ν/Λ, being the mean of the input function p( x̂ ),
to γ ν/Λ, as the mean of B, the output. The standard deviation is also increased by the
process. These solutions satisfy the boundary conditions p, B → 0 as x̂ → 0+,∞.

3.3 Gaussian-distributed input

We now return to the more general case, where x < α is permitted, and impose the
boundary condition B(−∞) = 0 or B(+∞) = 0 on (8). This boundary condition
is chosen such that to avoid negativity in B(x) (imposing B(0) = 0 leads to a sign
change of B(x) in x = 0 due to p(x) > 0 for all x ∈ R).

In order to investigate which parameters control the shape of the telomere length
distributions at steady state, we derive approximate analytical expressions for the
distributions. Assuming γ = L2/σ 2 is sufficiently large and using the central limit
theorem, we approximate the gamma distribution p with the Gaussian distribution

p̃(x) = 1√
2πσ 2

exp

(
− (x − L)2

2σ 2

)
, (16)

having the same mean, L , and variance, σ 2, as p. We also assume β is small
and so approximate kc(x) in (1) by δ H(x − α), where H(x) denotes the Heavi-
side step function, to derive (approximate) analytical expressions at steady state for
U (x), B(x), G(x), C(x), and the mean telomere length of telomeres leaving the sys-
tem, kc(x)U (x) + kr C(x). We use an integrating factor to solve the ODE (8) with the
boundary conditions B(−∞) = 0 and B(+∞) = 0, to obtain

B(x) =
⎧⎨
⎩

a1e−a2x
(

1 + erf
(

x−L
σ
√

2
− σ√

2
a2

))
, x < α,

b1e−b2x
(

b0 + erf
(

x−L
σ
√

2
− σ√

2
b2

))
, x > α,

(17)

U (x) =
{

1
c1

(koff B(x) + ke p̃(x)), x < α,
1

δ+c1
(koff B(x) + ke p̃(x)), x > α,

(18)

G(x) = k f (kd + kr )

kukd + kr (ku + ks R0)
U (x), (19)

C(x) = ks R0

kd + kr
G(x), (20)

where

a2 = koff

ρ

(
1 − konT0

c1

)
, b2 = koff

ρ

(
1 − konT0

δ + c1

)
, (21)
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and

c1 = konT0 + k f kskr R0

kukd + kr (ku + ks R0)
, (22)

and a1, b0, b1 are explicit expressions involving kinetic parameters of the system that
are too complex to display here; for details see Hirt (2012). All constants satisfy
ai , bi > 0. Here, the steady state distribution of B is a product of an exponential
function and an error function, where the error function dominates the exponential
function for x < α and vice versa for x > α. The parameter b2 determines how rapidly
the telomere length distribution approaches zero for increasing telomere lengths, x ,
with smaller values of b2 increasing the positive skewness of the distribution. Hence,
decreasing the rate of t-loop formation (by lowering δ) increases the positive skewness
of B(x), and so does increasing the number T0 of telomerase molecules (or the rate,
ρ, of telomere elongation), for example.

The parameters koff and ke function as scaling factors that determine the contribution
of B(x) and p̃(x) to the telomere length distribution U (x). For small koff, when B(x)

is increasingly positively skewed, we expect B(x) to have a larger tail than U (x) due
to the respectively decreasing and increasing contributions of B(x) and p̃(x) to U (x).
We note that U (x) is independent of the rates k f and ku of G4 folding and unfolding,
respectively, for control cells (R0 = 0). The distributions of G and C are of the same
shape as U (x), where larger R0 increases the ratio of telomere numbers C/G. The
ratio of telomere numbers C/U increases with increasing R0 in a nonlinear fashion,
and tends to k f /kr for large R0. On the other hand, the ratio of telomere numbers
G/U decreases with increasing R0 in an inverse fashion, and is equal to k f /ku for
R0 = 0. For larger T0, the distributions become increasingly positively skewed.

By integrating the Eqs. (7)–(10) over the interval [−∞,∞), assuming B(−∞) =
B(∞) = 0, and taking the sum of all these equations, we obtain the steady-state
input-output balance

ke =
∞∫

−∞
kc(x)U (x) dx + kr

∞∫

−∞
C(x) dx, (23)

where kc(x) is given by (1). We have confirmed that this holds for the solutions plotted
later.

An analytic expression for the mean telomere length, L̂ = L̂(T0, R0), of telomeres
leaving the system at steady state, is

L̂ =
∫ ∞
−∞ xkc(x)U (x) + xkr C(x) dx∫ ∞

−∞ kc(x)U (x) + kr C(x) dx

= 1

ke

∞∫

−∞
xkc(x)U (x) dx + kr

ke

∞∫

−∞
xC(x) dx, (24)
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and an approximate formula for (24), based on the approximation of kc(x) by δ H(x −
α), has been derived using MATHEMATICA with a series of variable substitutions
and simplifications, as the formulae involved in the computation are long and complex.
We consider only the limiting case R0 = 0 (no drug) for L̂ , whence

L̂ = L + ρ

2koff
erfc

(
L − α

σ
√

2

)
+ konT0ρ

koffδ
, (25)

where erfc(x) = 1 − erf(x) is the complementary error function, and we assume
positive concentrations of telomerase, T0 > 0, and L > α. Whereas the last term in
(25) is dependent on telomerase, and mean telomere length increases linearly with the
concentration of telomerase, the second term in (25) is small (≈0.63 nt) relative to the
final term (≈37 nt for T0 = 25), when we adopt the parameter values in Table 1 and
choose L = L0−μ. This telomerase-independent term is due to short telomeres, which
can stay in the system for an extremely long time, lengthening slowly only leaving
when x > α. Approximating kc(x) by a step function gives rise to the discontinuous
limit of L̂ as T0 → 0, but L̂ = L when T0 = 0.

The expression L̂ is independent of ke, and in the limiting case R0 = 0, L̂ is also
independent of k f , ku, ks, kd and kr . An increase in the parameter values T0 (or ρ)
leads to a linear increase in (25), becoming nonlinear for positive values of R0. An
increase in σ leads to an increase in L̂ for R0 = 0.

3.4 Numerical solutions

We aim to show numerical results of telomere length distributions over a few gen-
erations. To derive steady state distributions at the end of each replication, we ini-
tially assume the length distribution of telomeres before the first replication event to
be Gaussian p0(x) as in (16) with L = L0 and σ = σ0. Telomeres shorten at an
average amount μ due to the end-replication problem and postreplicative processing,
and consequently enter the system with length distribution p(x) = p0(x + μ). By
numerically integrating (8) and using (23) we simulate the telomere length probability
density function of telomeres leaving the system, p1(x) = (kc(x)U (x)+kr C(x))/ke,
at steady state and compare it to the distribution p0(x) of telomeres entering the
system before telomere shortening takes place. Assuming telomere length does not
change between the S/G2 phases of subsequent cell divisions, we treat the output
telomere lengths of one cycle as the input telomere length for the next generation,
p = p1(x +μ). In particular, we use the steady state distribution of telomeres leaving
the system at the end of the initial generation i = 0 as input (of rate ke) into the
system at the beginning of generation i = 1 and after telomere loss of amount μ

occurred, that is (kc(x +μ)U (x +μ)+ kr C(x +μ))/ke = p1(x +μ) replacing p(x)

in Eq. (2), and derive steady state distributions pi (x) for higher generations i in this
fashion.

In general, there is only very little data on the rate parameters available in the
literature. We estimate ke = 1.5 × 10−2 s−1 according to an approximate influx
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of 2 × 2 × 82 telomeres [after telomere duplication and considering HeLa cells
with a modal chromosome number of 82, as determined by Macville et al. (1999)]
into the system per 6 h, that is the time during which telomere extension occurs
(Zhao et al. 2009), and estimate, within biologically feasible ranges, the values α, β

and δ for the sigmoid function kc(x) (compare Fig. 1b) and the loss rate kr , as
shown in Table 1. In order to adopt appropriate values for the remaining parameters,
given in Appendix, we employ the fact that a concentration of 1 nM corresponds
to approximately 10−9 NAVn mol l−1 ≈ 415 molecules per HeLa nucleus, where
NA = 6.022 × 1023 mol−1 is the Avogadro constant and Vn = 6.9 × 10−13 l is
the nuclear volume of a HeLa cell. The BioNumbers data base of Milo et al. (2010)
provides us with this average volume for HeLa nuclei, which is taken from Monier
et al. (2000). Using standard conversion factors, we obtain the rate parameters shown
in Table 1. Note that kon � koff and kd � ks as required by the earlier assumption
that T (t) ≈ T0 and R(t) ≈ R0 for the numbers of bound telomerase and RHPS4
molecules, respectively. The exact values for each of the rates of RHPS4 binding,
ks , and RHPS4 dissociation, kd , are not relevant for the steady state of the system,
so we set ks = 10−7 s−1 (following the size of the other molecular binding kinetic
parameter, kon), for example, and derive kd = ks K −1 from the RHPS4 equilibrium
binding constant, K .

Figure 3 shows simulations of telomere length distributions, pi (x), of telomeres
entering the system at generations i = 0, 10, 20, 30, for different concentrations of
RHPS4 for the cases T0 = 25 (telomere length equilibrium) and T0 = 50 (super-
telomerase cells), respectively. For increasing drug concentrations, R0, the telomere
length distributions are shifted towards zero and become less positively skewed. The
value ρ = 6.287 × 10−2 nt s−1 has been chosen in the simulations, as the telomere
length distribution for telomeres leaving the system for T0 = 25 is in good agreement
with experimental data from HeLa cells (see Sect. 4.2).

3.5 Summary

We developed and analysed a model of telomere length dynamics for a single divi-
sion event, which describes the length regulation by telomerase and a G4-stabilising
drug. We solved the model numerically and iterated the replication process over few
generations. We now investigate the long term evolution over many generations.

4 Model with continuous time

In order to investigate changes in the telomere length distribution over a large number
of cell divisions, we now modify the model (2)–(5). We feed the telomeres that exit the
system with rates kc(x) and kr back into the system in the unfolded form, assuming that
telomeres shorten by an amount μ due to the end replication problem (in the S phase)
before they re-enter the system. The strategy we employed to simulate telomere length
distributions over several generations worked well for smaller generation numbers
i , but is computationally too expensive for large values of i . Figure 4 illustrates a
modified version of the model (2)–(5), allowing for analysis of the telomere length
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Fig. 4 A closed model of telomeric states U, B, G, C, with telomeres of length x losing μ basepairs when
they exit the system by t-loop formation (rate kc(x)) or after forming a complex with RHPS4 (rate kr );
telomeres re-enter the system in the open (U) form. Kinetics for each reaction are described by their rate
constants k. Free telomerase (T) and RHPS4 (R) in the nucleus bind open telomere forms (U) and G4
structures (G), respectively. Telomerase elongation occurs at rate ρ in the bound state, B

distribution after large numbers of cell divisions, that is iterative S/G2 phases, where
we assume that telomere length does not change in the G0/G1 and the M phase of the
cell cycle.

We aim to analyse the model dynamics and compare the output telomere lengths
kc(x)U (x) + kr C(x) to experimental telomere length measurements. We replace
ke p(x) in (2) by kc(x + μ)U (x + μ, t) + kr C(x + μ, t) and obtain the resulting
closed system of differential equations of (3)–(5) together with

∂

∂t
U (x, t) = kc(x + μ)U (x + μ, t) + kr C(x + μ, t) + koff B(x, t) + kuG(x, t)

−(kc(x) + konT (t) + k f )U (x, t), (26)

which is a partial differential-delay equation.
We are interested in analysing the system’s steady-state telomere length distribu-

tions and predicting how telomerase and/or RHPS4 affect telomere length distributions
over large numbers of cell divisions.

4.1 Steady states

Assuming that steady state solutions exist is a major assumption, the validity of which
we must consider carefully; for example, there may not be enough telomerase to
maintain a steady state, or there may be too much telomerase and telomere length
may increase without limit. Hence we expect a window in parameter space of feasible
steady solutions. We assume that T (t) ≈ T0 and R(t) ≈ R0 hold at steady state and
hence obtain the approximate steady state equations

0 = kc(x + μ)U (x + μ) + kr C(x + μ) + koff B(x) + kuG(x)
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−(kc(x) + kon T0 + k f )U (x), (27)

ρ
∂

∂x
B(x) = konT0U (x) − koff B(x), (28)

0 = k f U (x) + kdC(x) − (ku + ks R0)G(x), (29)

0 = ks R0G(x) − (kd + kr )C(x). (30)

Solving (27), (29), (30) for B as a function of U (x) and U (x + μ), we obtain

B(x) = 1

koff
((g(x) + konT0)U (x) − g(x + μ)U (x + μ)), (31)

with

g(x) = kc(x) + cR, (32)

where

cR = k f kskr R0

kukd + kr (ku + ks R0)
. (33)

Inserting (31) into the ODE (28) reduces the governing equations to a single delay
differential equation in U (x), namely

0 = ρ

koff
(g(x)+konT0)U

′(x) − ρ

koff
g(x+μ)U ′(x + μ)+

(
g(x) + ρ

koff
g′(x)

)
U (x)

−
(

g(x + μ) + ρ

koff
g′(x + μ)

)
U (x + μ). (34)

Now we aim to find approximate solutions to Eq. (34) by using quasi-continuum
approximations. Such approximations have previously been used for nonlinear waves
in advance-delay equations (Collins 1981; Rosenau 1986; Wattis 1996).

By defining y = x + μ/2, we rewrite (34) as

0 = ρ

koff
((gU )′ + konT0U ′)

(
y − 1

2μ
) − ρ

koff
(gU )′

(
y + 1

2μ
) + (gU )

(
y − 1

2μ
)

−(gU )
(
y + 1

2μ
)
. (35)

It is useful to introduce the notation ∂y for the differential operator ∂/∂y, and use
∂n

y to denote ∂n/∂yn . For analytic functions, f (y), and α ∈ R, we express

f (y + α) = eα∂y f (y), (36)

where exp(α∂y) = ∑∞
n=0 αn∂n

y /n! is a differential operator which yields the Taylor
series at y, that is,
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f (y + α) = eα∂y f (y) = f (y) + α f ′(y) + α2

2! f ′′(y) + α3

3! f ′′′(y) + · · · , (37)

when applied to a function f .
Assuming U is analytic, we use (36) with α = μ/2 and α = −μ/2 and re-formulate

(35) as

e− 1
2 μ∂y

(
konT0ρ

koff
∂y

)
U +

(
e− 1

2 μ∂y − e
1
2 μ∂y

)(
ρ

koff
∂y + 1

)
(gU ) = 0. (38)

Rearranging using commutativity of operator multiplication yields

gU = −
(

e− 1
2 μ∂y − e

1
2 μ∂y

)−1 (
ρ

koff
∂y + 1

)−1 (
e− 1

2 μ∂y

)(
konT0ρ

koff
∂y

)
U

= AU, (39)

where A is an operator. Expanding the components of A to third order in μ, we find

exp
(− 1

2μ∂y
) = 1 − 1

2μ∂y + μ2

8
∂2

y − μ3

16
∂3

y + O(μ4), (40)

and

exp
(− 1

2μ∂y
) − exp

( 1
2μ∂y

) = −μ∂y − μ3

24
∂3

y + O(μ5)

= (−μ∂y)

(
1 + μ2

24
∂2

y + O(μ4)

)
, (41)

and for the inverse operators

(
1 + μ2

24
∂2

y

)−1

= 1 − μ2

24
∂2

y + O(μ4), (42)

and

(
ρ

koff
∂y + 1

)−1

= 1 − ρ

koff
∂y + ρ2

koff
2 ∂2

y − ρ3

koff
3 ∂3

y + O
(

ρ4

koff
4

)
, (43)

where we write f (x) = O(h(x)) if there exists a constant M such that | f (x)| <

Mh(x) for sufficiently large x . Hence, assuming the quantities μ and ρ/koff are small
(from Table 1, μ = 45 nt, ρ/koff ≈ 286 nt) compared to x ≈ L0 = 3,440 nt, from
(39) we obtain

gU = konT0ρ

μkoff

[
1 −

(
1
2μ + ρ

koff

)
∂y

]
U + O(μ2). (44)
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Note that the integration constant that appears when one applies ∂−1
y to U is equal to

zero, as we assume U ( j)(x) → 0 as x → ±∞ for j = 0, 1, 2, 3. Thus we obtain the
first-order differential equation

(
1
2μ + ρ

koff

)
dU

dy
=

(
1 − μkoffg(y)

konT0ρ

)
U, (45)

which approximately describes the telomere length distribution U (x) at steady state.
We rewrite (45) as

c0cT
dU

dx
+ (g(x) − cT )U = 0, (46)

by defining

c0 = 1

2
μ + ρ

koff
, cT = konT0ρ

μkoff
, (47)

and use (46) to analyse how different numbers T0 and R0 affect the distribution of
telomeres in the system at steady state. Equation (46) is a separable ODE, which
we solve by integrating with respect to x and using (32) and (1) for g(x) and kc(x),
respectively, thus

lnU (x) = − βδ

c0cT
ln

(
ex/β + eα/β

) + 1

c0

(
1 − cR

cT

)
x + s0, (48)

where s0 ∈ R is a constant that depends on the initial number of telomeres in the
system. We simplify (48) to obtain

U (x) = Aeλx sech
βδ

c0cT

(
x − α

2β

)
, (49)

where

A = exp

(
−δ(2β ln 2 + α)

2c0cT

)
exp(s0), (50)

and

λ = 2cT − 2cR − δ

2c0cT
. (51)

The amplitude of the distribution is determined by A. For example, we may choose
s0 and hence A, such that

∫ ∞
−∞ U (x) dx = 1, that is, U (x) is a probability density

function. The quantity λ describes the skewness of the distribution, sech being a
symmetric bell-like curve.
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4.2 Parameter range of steady state solutions

Having constructed a steady-state approximation for the solution (49), and noted at
the start of Sect. 4.1 that presuming the existence of a steady state is a significant
assumption, we now analyse the conditions under which such a solution may be
expected to be relevant. Necessary conditions for a steady solution, U (x), of the
continuum model (27)–(30) to be a distribution are that U must have a maximum at
a point x̂ where U ′( x̂ ) = 0 and U (x) ≥ 0 for all x ∈ R. From (46) it follows that
g( x̂ ) = cT must be satisfied for the relevant values of T0 ≥ 0 and R0 ≥ 0 in order for
U to be physical. We note that solutions U (x) > 0 for x < 0, representing a positive
probability of telomeres with a negative length, should be regarded as unphysical.
The probability of telomeres with length x < 0, however, is usually very small in our
simulations and we interpret the occurrence of larger proportions of telomeres with
negative length to reflect the presence of telomeres that have lost all their telomeric
sequences and are no longer functional. Such telomeres would typically cause a cell
to become senescent or undergo apoptosis. In the following, we aim to find conditions
on T0 and R0 that must be satisfied to yield solutions with U � 0, and we require
x̂ > 0 for such solutions to be physical.

It follows immediately from the definitions (32) and (1) that g(x) < δ + cR for all
x ∈ R, and hence by (46) and (47) cT < g < δ + cR in x > x̂ , providing us with an
upper bound for the number T0 of telomerase molecules, from (33) and (47)

T0 < Tmax(R0) = μkoff

konρ

(
δ + k f kskr R0

kukd + kr (ku + ks R0)

)
. (52)

For high concentrations of RHPS4 namely as R0 → ∞ we find Tmax(R0) → T ∞
max =

μkoff (δ + k f )/(ρkon).
By the same reasoning as for (52) and since, from (32), g(x) > cR for all x ∈ R,

we find cT > cR , which provides us with a lower bound on T0, namely

T0 > Tmin(R0) = μkoff

konρ

k f kskr R0

kukd + kr (ku + ks R0)
. (53)

Thus, for high concentrations of RHPS4 (R0 → ∞) we find Tmin(R0) → T ∞
min =

μkoffk f /(ρkon). For physical solutions U (x), x̂ needs to be positive, and since g is
monotonic increasing in x , we need g( x̂ ) > g(0) = cR + δ/(1 + eα/β), which
provides a larger lower bound on T0 than (53), namely

T0 > T̃min(R0) = Tmin(R0) + μkoffδ

konρ(1 + eα/β)

= μkoff

konρ

(
k f kskr R0

kukd + kr (ku + ks R0)
+ δ

1 + eα/β

)
. (54)

Note that in the limit β → 0 T̃min = Tmin, however, in the figures below we use
β = 300 bp.
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For T̃min < T0 < Tmax we expect steady state solutions, for T0 < T̃min the amount
of telomerase is insufficient and the telomere length decays causing the cell to become
senescent or undergo apoptosis. For T0 > Tmax telomere length grows without limit.

Alternatively, we reformulate these inequalities to provide a lower and an upper
bound on R0, for given T0 > 0, in a similar way to (52) and (53), that is,

R0 > Rmin(T0) = ku(konρT0 − μkoffδ)(kd + kr )

kskr [μkoff(k f + δ) − konρT0] , (55)

and

R0 < Rmax(T0) = konρT0ku(kd + kr )

kskr (μkoffk f − konρT0)
, (56)

for μkoffk f > konρT0 (T0 < T ∞
min), respectively. Note that Rmax(T0) → ∞ as T0 →

(T ∞
min)

− and there is no upper bound on R0 for T0 > T ∞
min. Similarly, Eq. (55) is valid

for T0 < T ∞
max only (where Rmin(T0) > 0) with Rmin(T0) → ∞ as T0 → (T ∞

max)
−, and

no physical solutions U (x) exist for T0 ≥ T ∞
max, as T ∞

max > Tmax(R0) (note k f < cR)
for all R0 ≥ 0. If δ > k f , there is a range of telomerase concentrations, T ∞

min < T0 <

Tmax(0) = μkoffδ/(ρkon), where no upper bound on R0 exists for solutions U (x) to
be physical, and this is not true for δ < k f , because then Tmax(0) < T ∞

min.
The lower and upper bounds on R0 or T0 can be used to plot (T0, R0)-regions of

parameter space where steady physical solutions U (x) exist, we can then identify the
effects of changes of telomerase and RHPS4 concentrations in the cell. Examples with
different values of δ are given in Fig. 5 to illustrate the cases δ < k f and δ > k f ,
where we choose ρ = 2.5 × 10−1 nt s−1 to illustrate the shape of these regions (lower
values of ρ result in unphysically large values of T ∞

min, for example T ∞
min > 105 for

ρ = 4.5 × 10−3 nt s−1). For δ > k f , there exists a range of telomerase concentrations
where a steady state solution exists no matter how large or how small the concentration
of RHPS4 is. For δ < k f , the region of steady state solutions is much smaller, hence
more care for the regulation of telomerase and/or RHPS4 is required. We believe this
latter case to be the more physically relevant by our choice of parameter values in
Table 1, where δ � k f .

For smaller (and more realistic) values of ρ, one is likely to find simpler T0-R0-
regions in the form of a band in the T0-R0-plane as illustrated in Fig. 6. The mean
telomere length of telomeres leaving the system at steady state has been computed
using the same formula as for L̂ in (24) and tends to −∞ for large values of R0 and
small values of T0, and to +∞ for small values of R0 and large values of T0. Figure 6
shows a contour plot of L̂ as a function of T0 and R0 for ρ = 6.287×10−2 nt s−1 (see
below for explanation), and a plot of L̂ as a function of T0 for R0 = 0.

We simulate the approximate telomere length distributions of telomeres leaving the
system at steady state. The bounds on T0 for physical solutions U (x) at R0 = 0, that
is

T̃min(0) = μkoffδ

konρ(1 + eα/β)
< T0 < Tmax(0), (57)

123



Modelling the regulation of telomere length 1543

0 500 1000 1500 2000 2500 3000

100

200

300

400

500

600

700

100

200

300

400

500

600

700

T0

R
0

µM

0 1000 2000 3000 4000 5000 6000

100

200

300

400

500

600

700

100

200

300

400

500

600

700

T0

R
0

µM

Fig. 5 T0-R0-region of physical steady state solutions U for δ = 5 × 10−3 s−1 (δ < k f , left plot)

and δ = 2.5 × 10−2 s−1 (δ > k f , right plot). The rate of telomerase-induced telomere synthesis is

ρ = 2.5×10−1 nt s−1. The lower (Tmin(R0)) and upper (Tmax(R0)) bounds on T0 are defined by (53) and
(52), respectively, and there is no visible difference between the lower bound Tmin(R0) and the larger lower
bound T̃min(R0), defined by (54). The dotted line indicates the upper bound on telomerase, Tmax(0), for the
case of no drug and the two dashed lines in each plot indicate the lower (T ∞

min) and upper (T ∞
max) bounds on

telomerase for large concentrations of RHPS4, where the values of T̃ ∞
min could not be distinguished from

the values of T ∞
min in these plots and are not shown
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Fig. 6 a Contour plot of the mean telomere length L̂ in (T0, R0) space for ρ = 6.287 × 10−2 nt s−1

and δ = 5 × 10−5 s−1. The dotted lines indicates the best approximation for T0 such that L̂ = L0 when
R0 = 0 (T0 = 25), and the according upper limit Rmax(T0). b A plot of the mean telomere length L̂ of
telomeres kc(x)U (x)+kr C(x) exiting the system per unit time as a function of the number T0 of telomerase
molecules for the case of no drug (R0 = 0) in the system (ρ = 6.287 × 10−2 nt s−1, δ = 5 × 10−5 s−1).
The dotted lines indicate the value L0 and according value T0

are 1 ≤ T0 ≤ 30 for ρ = 6.287 × 10−2 nt s−1. Figure 7 shows two plots of telomere
length distributions with T0 = 25 and T0 = 30 and varying concentrations of R0.
Whereas an increase of T0 leads to more skewed telomere length distributions, an
increase in R0 causes telomere length distributions to become less skewed. In Table 2
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Table 2 Mean telomere lengths,
L̂ , with their respective standard
deviations, σ̂ , of telomeres
leaving the system at steady
state. Data are shown for the
continuous-time model and two
different values of telomerase
molecule numbers, T0

T0 RHPS4 (nM) L̂ (nt) σ̂ (nt)

25 0 3,440 1,517

50 2,706 966

100 2,303 789

150 1,975 768

30 0 12,201 6,549

50 4,265 2,363

100 3,017 1,304

150 2,477 988

we give the mean telomere length L̂ with their respective standard deviations σ̂ , which
are computed using the probability density function

p̂(x) = kc(x)U (x) + kr C(x)∫ ∞
−∞ kc(x)U (x) + kr C(x) dx

. (58)

The decreasing positive skewness with increasing concentrations of RHPS4, R0
shown in Fig. 7 for T0 = 25 and T0 = 30 is predominantly caused by large numbers
of telomeres forming a complex with RHPS4, whose length is overall shorter than the
length of telomeres leaving the system when they are in the open form, as illustrated in
Fig. 8. The dependence of the mean telomere length L̂ on the concentration of RHPS4,
R0, is shown in Fig. 9 for chosen values of T0 = 25, 30, 35.

The value ρ = 6.287 × 10−2 nt s−1 for the lengthening of telomeres by telomerase
has been chosen in the simulations, as the telomere length distribution for telomeres
leaving the system for T0 = 25 is in good agreement (L̂ = 3,440 ± 1,517 nt) with
experimental data from HeLa cells (compare Figs. 1a, 7). The choice of a smaller value
of ρ would yield much larger values for the number of telomerase molecules, that is

Fig. 7 Simulations of telomere length probability density distribution p̂(x) at steady state of the system
(3)–(5), (26) per unit time for varying concentrations of RHPS4 (solid line R0 = 0 nM, dashed line
R0 = 50 nM, dot-dashed line R0 = 100 nM, dotted line R0 = 150 nM) and the probability density
distribution of the input telomere lengths, p0(x) (solid gray line, see Sect. 3.4 for more details). In all cases
ρ = 6.287 × 10−2 nt s−1, δ = 5 × 10−5 s−1 and T0 = 25 (left plot) or T0 = 30 (right plot). The x-axis
represents telomere length in units of basepairs
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Fig. 8 Proportions of the telomere length distribution p̂(x) for telomeres kc(x)U (x) (gray lines) and
kr C(x) (black lines) and varying concentrations of RHPS4 (dashed line R0 = 50 nM, dot-dashed line
R0 = 100 nM, dotted line R0 = 150 nM). In all cases ρ = 6.287 × 10−2 nt s−1, δ = 5 × 10−5 s−1 and
T0 = 25 (left plot) or T0 = 30 (right plot). The x-axis represents telomere length in units of basepairs
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Fig. 9 A plot of the mean telomere length L̂ of telomeres kc(x)U (x)+ kr C(x) exiting the system per unit
time as a function of the concentration R0 of RHPS4 for three different numbers of telomerase molecules,
T0 = 25, 30, 35, represented by the dashed, dot-dashed and dotted line, respectively. The solid, gray line
indicates the value L0

T0 ≈ 400 for ρ̄ = 4.5 × 10−3 nt s−1 (mean value from experimental measurements,
see Appendix) at telomere length equilibrium. Slightly smaller values of ρ with corre-
sponding larger values of T0 can produce telomere length distributions being similar to
each other. Having more knowledge of the values ρ, therefore, will help us determine
the number of telomerase molecules in the nucleus more accurately. The small value
of T0 = 25 is, however, consistent with the average value of about 20–50 telomerase
molecules per HEK-293 (human embryonic kidney) nuclei measured by Cohen et al.
(2007), which is the only quantitative measurement of telomerase levels in cells we
are aware of in the literature.

5 Discussion and conclusions

We have investigated the effects of G-quadruplex interactive agents, such as RHPS4,
on telomere erosion in telomerase-positive cells, and developed mathematical models
of telomere length dynamics. In particular, we considered telomere length dynamics
during the S/G2 phases, when telomerase replenishes telomeric sequences of open
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t-loops but not the G-quadruplex structure at each cell division. We determined steady-
state length distributions, over small and large numbers of cell generations, with and
without treatment by RHPS4.

We derived approximate analytic expressions, and simulated numerically, steady-
states of the length distributions of telomeres, as cancer cells exit the cell cycle. We
analysed the effects of different levels of telomerase and various concentrations of
RHPS4 on telomere length during the S/G2 phases and considered how these effects
evolve over large numbers of generations. Our models predict a positively skewed
length distribution of telomeres and are in good agreement with experimental obser-
vations of HeLa cells. Moreover, our predicted value of the number of telomerase
molecules in the nucleus is consistent with experimental findings in cancer cells.

In our models we assumed that t-loops and G4 structures are the key inhibitors of
telomerase, and telomerase-induced telomere elongation. Constant telomere shorten-
ing due to the end-replication problem and C-strand resection, described by a constant
loss term, μ, in our model for a population of continuously cycling cells, that is (3)–
(5) and (26), complete the mechanisms that determine the shape of telomere length
distributions. We modelled telomere elongation as a length-dependent process in that
shorter telomeres are more likely to remain in an open state and be extendible by
telomerase than longer telomeres, as longer telomeres have a higher tendency to coil
up and form t-loops.

We further assumed that telomeres only exit the system by t-loop formation, unless
G4 structures are locked by RHPS4 binding, when telomeres leave the G2 phase of the
cell cycle in the complex state and may unfold either at a later stage or at the beginning
of the next cell cycle. We also supposed that the concentrations of telomerase and
RHPS4 do not change over cell generations.

We have estimated most of the kinetic parameters in each system by using experi-
mental results from the literature, and estimated the remaining parameters in order to
reproduce the experimental results of HeLa cells obtained by Canela et al. (2007). Our
model results agree well with the experimental telomere length distribution of HeLa
cells and suggests a low concentration of about T0 = 25 telomerase molecules per
nucleus. In the literature the telomerase processivity parameter ρ is given in the range
1.2 − 7.7 × 10−3 nt s−1. We investigated the sensitivity of the results to ρ within this
range. For small ρ we obtained narrower distributions of telomere lengths (and larger
values of T0) than in experimental data. We therefore fitted ρ using a larger value,
ρ = 6.287×10−2 nt s−1, to describe the experimental data. There is almost no visible
change in the telomere length distribution for smaller numbers of T0 (≤ 100) during
one S/G2 phase as simulated by the model for a population of telomeres undergoing
a single replication event, described by Eqs. (2)–(5), but visible changes occur after
5–30 generations, as shown in Fig. 3 with T0 = 25 and T0 = 50.

Our simulations of conditions on T0 and R0 for physically relevant steady solutions
showed that the range of values T0 ≥ 25 reproduces well the experimental results in
the literature, and telomeres grow unboundedly in length for values of T0 larger than
30. In contrast, telomeres shorten below physical lengths (or indefinitely) if we use
drug concentrations larger than ∼100 nM of RHPS4 (see Fig. 7). Hence, the equilib-
rium state is rather sensitive to the amount of telomerase and RHPS4 in the system:
larger doses of RHPS4 lead to continuous telomere shortening, whilst telomerase over-
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expression, on the other hand, induces continuous telomere lengthening. The steady
telomere length increase we found for large T0 is consistent with the findings of Cristo-
fari and Lingner (2006), who observed elongation of telomeres at a constant rate in
super-telomerase HeLa cells for over 50 population doublings. Hence, telomere length
homeostasis cannot be established with telomerase overexpression.

Our model suggests two different effects of the treatment with RHPS4 which are
dependent on the drug concentration used: low concentrations reduce telomere length,
but do not impair the ability of the system to maintain an equilibrium, and high con-
centrations destabilise the system leading to chromosome degradation and senescence
and/or cell death. Additionally, overexpression of telomerase can counteract telomere
degradation; however, telomerase addition should be carefully regulated to maintain
the system in equilibrium and not trigger unlimited telomere elongation.

Note that the upper limit for R0, when telomere equilibrium can still be main-
tained, is probably lower than we predicted. The threshold value for telomere length
as determined by the Hayflick limit (Hayflick 1979), triggering senescense or apop-
tosis pathways in a cell terminating cell proliferation, is likely to be based on the
shortest telomere in the cell, not the average length (Hemann et al. 2001; Abdallah et
al. 2009). As far as we are aware, telomere length distributions for cells exposed to
different drug concentrations of RHPS4 have not yet been measured experimentally.
Measurements of telomere length distributions of telomerase-positive cells at different
population doublings and for varying concentrations of the drug RHPS4 or different
concentrations of telomerase will be useful in comparing our model predictions to
experimental results.

We found that higher concentrations of telomerase can lead to ongoing telomere
lengthening, which is consistent with observations from experiments with telomerase-
positive cells. We derived regions of different telomerase and RHPS4 levels that pro-
vide physically plausible solutions to our model of telomere length dynamics over
large numbers of generations and showed that telomerase expression must be strictly
regulated for telomere length maintenance. Too high concentrations of RHPS4 can
lead to progressive telomere erosion; we estimate that drug concentrations larger than
≈100 nM impair the equilibrium of the system leading to continuous telomere short-
ening and triggering senescence and apoptosis.

In summary, the main results of this paper are showing how telomerase acts as a
regulator for telomere length, and how RHPS4 can disrupt this regulation as illustrated
by Figs. 6b and 9. At small concentrations, RHPS4 has little effect, but there is a critical
concentration above which telomerase is unable to maintain a steady state, and rapid
shortening occurs. The region of telomerase-RHPS4 parameter space where steady
states exist has also been determined and is illustrated in Fig. 5.

Promising directions for future work include modelling other players involved in
telomere maintenance. For instance, the shelterin protein POT1 is involved in several
processes at the telomere end, which might be an interesting avenue to follow in
future work. For example, two distinct functions of the protein have been identified,
depending on the position of POT1 at the 3’-overhang: if POT1 is bound at the very end
of the overhang (leaving less than 8 nt free at the 3’ end), telomerase cannot extend the
telomere (Lei et al. 2005). On the other hand, the formation of G-quadruplex structures
require that POT1 is not bound to the terminal four telomeric sequences involved
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in G-quadruplex formation. Since G-quadruplexes form spontaneously at the end of
telomeres and are in a dynamic equilibrium with unfolded or partially unfolded forms,
POT1 binding of unfolded structures may trap telomeres in the open form (Zaug et
al. 2005). It may be interesting in future studies to analyse the effects of different
levels of POT1 binding, in particular POT1 being overexpressed or suppressed in
telomerase-positive cells.
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Appendix: Estimation of kinetic model parameters

Some experimental results on the kinetic rate and equilibrium binding constants which
we use in model simulation and analysis can be found in the literature. HeLa cells are
telomerase-positive cells which were taken from a cervical cancer patient in 1951. The
HeLa cell line is immortal, but when telomerase activity is inhibited in HeLa nuclei,
telomeres shorten by ∼45 bp/cell division (Zhao et al. 2009).

Binding kinetics of telomerase to single-stranded telomeric (TTAGGG)3 sequences
(no G4 folding possible) have been measured at 37 ◦C in vitro. Wallweber et al. (2003)
determine the dissociation rate of telomerase as koff = 0.013 min−1, which is equiv-
alent to a half-life of t1/2 = ln2/koff ≈ 53 min of the complex, and the equilib-
rium dissociation (Michaelis–Menten) constant has been measured at Km ≈ 2 nM.
We estimate the binding rate of telomerase as kon = koff/Km = 6.5 × 10−3 min−1

nM−1.
The typical number (R1/2) of telomeric repeats synthesised before half-life t1/2

of the telomerase-telomere complex has been estimated by Wang et al. (2007) to be
between 0.66 and 4.1, that is, between about 4 and 25 bases, depending on the level
of POT1-TPP1 complexes used in assays. We derive the rate of telomere elongation
by ρ = R1/2/t1/2, hence we find ρ ∈ [1.2 × 10−3, 7.7 × 10−3] in units of nt s−1 with
mean value ρ̄ = 4.5 × 10−3 nt s−1.

Zhao et al. (2004) studied the formation of telomeric quadruplex structures by
measuring the folding (k f ) and unfolding (ku) rate constants of the human telomere
sequence (TTAGGG)4 as 150 mM of K+ (typical intracellular concentration) at 37 ◦C.
The rate constants were determined as k f = 1.6×10−2 s−1 and ku = 3.8×10−3 s−1,
hence G4 structures and the unfolded, single-stranded form exist in vitro in equilibrium
with equilibration occurring slowly, with half lives of about 3 min and less than 1 min,
respectively.

The equilibrium binding constant of RHPS4 with quadruplex forming human telom-
eric sequences d[ AG3 ( TTAGGG)3] has been estimated by Cheng et al. (2008) as
K = 2.70 × 105 M−1 and K = 110.0 × 105 M−1 depending on the experimental
methods used. We estimate K̄ by choosing the mean of these values, K = 5.6 × 106

M−1.
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